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1. Pointers and Addresses

P.J. Plauger

Abstract

One of the largest areas of variation among modern computers is the
way they address memory. Since C supports a broad assortment of pointer
data types, it is hard for the C implementer, or sophisticated program-
mer, to hide from the consequences of this variation. This paper describes
what you can count on to be true about pointers and addresses in any
conforming implementation of Standard C. It also warns you about vari-
ations that can occur among implementations.

Early History

Most of us are familiar with the general concept of “address space.” An address
space is the set of all possible values that can be used to specify where infor-
mation is stored in a computer memory. The Intel 8080/8085 (and Zilog Z80)
offer an extremely simple example. These chips use a 16-bit number to specify
which of 65,536 possible 8-bit bytes they wish to access from computer memory.
There is no way to distinguish the fetch of an instruction byte from an access
to an arbitrary data byte. Hence, we say that this family has a 65,536-byte
address space, and all sensible implementations of C represent all pointers as
16-bit (two-byte) values.
For a slightly more complex example, let’s look at another old architecture.

The PDP-11 series also develops a 16-bit address for any memory access. A
memory management unit (MMU) typically maps each 16-bit program address
to a 22-bit physical memory address, but that doesn’t alter the programmer’s
view of the world. It is sufficiently difficult to manipulate the MMU from a
program that PDP-11 programmers just think in terms of having a 65,536-
byte address space occupying a small part of a memory that may be up to
4 megabytes. Only a few diehard RSX programmers usually master the window
manipulations needed to access the larger memory.
Where the PDP-11 architecture does shine through to each running program

is on the processor models numbered 44 and higher. These generally support
separate address spaces for instructions and data. When the program wishes
to access bytes of code from the executing program, such as a C function, it
instructs the MMU to fetch from “I-space.” When the program wishes to access
bytes of manipulable data, such as a C data object, it instructs the MMU to

1
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fetch from “D-space.” Thus, it is easy to organize your PDP-11 program into
upwards of 65,536 bytes of executable code and an equal quantity of manipulable
data. In a C program compiled to take advantage of separate I- and D-spaces,
the values stored in function pointers come from a different address space than
the values stored in data object pointers. A function pointer can coincidentally
have the same numeric value as a data object pointer and still point to a distinct
entity. Moreover, you cannot inspect (or corrupt) your C functions as if they
were data. Nor can you build executable code in a data object and contrive to
execute it.
The Motorola 68000 family also supports separate code and data spaces, but

this feature seems to be much less used than on the PDP-11. Perhaps this is
because each address developed by the program is 32 bits. You seldom need to
separate the spaces just to double the number of bytes you can access. The other
advantages you get from separating the spaces evidently are not sufficiently
compelling to convince most system designers to add the extra complexity in
the hardware.
All of these machines that I have discussed so far are alike in one impor-

tant respect. They all represent program addresses to byte resolution. Since
C encourages you to treat an arbitrary data object alternatively as an array of
characters, and since C programs often traffic heavily in character data, it’s im-
portant to be able to manipulate data efficiently a byte at a time. Fortunately,
most modern computers use byte resolution addressing.
Unfortunately, there are some important exceptions. Machines that natu-

rally address a multi-byte word often must indulge in special representations for
pointers to data objects smaller than a word. In some cases, pointers to char-
acter data objects might even occupy more bits than pointers to larger data
objects. Standard C has endeavored to include such implementations, and not
as second class citizens. Whether arbitrary programs port easily to such im-
plementations, or whether they run well when ported unchanged, is a different
matter. I suggest you write important programs with word-resolution machines
in mind, but be prepared to tune and tailor if you ever have to port to such an
implementation.

The Notorious 8086

IBM’s decision to build its line of PC’s around the Intel 8086 family has done
more to sensitize people to address space issues than anything else that I can
imagine. That architecture also develops a 16-bit program address for each
memory access, but that’s just the start of it. Each program address is ac-
companied by a reference to one of four (or more, on later models) “segment
registers.” The actual memory address is composed from the 16-bit program
address and information in the segment register. In the earliest models (8086,
8088, and 80186), the segment register merely contains a 16-bit number that is
shifted left four places and added to the program address to develop a 20-bit
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physical address. That way, you can reach up to 1 megabyte of storage. Set
aside about 384 kilobytes of high memory addresses for special purposes and
you have the magic 640 kilobyte program size limitation for which DOS has
grown infamous.
Later models of the 8086 family (80286, 80386) can enter a mode where the

segment register value is used to designate a table entry that gives considerably
more information about how to find the physical memory. The table entry pro-
vides access control information, for example, so you can write-protect chunks
of code. It also holds a much larger number to add to the program address, so
you can build systems that make use of up to 16 megabytes of storage.
The simplest way to use the 8086 is as a system that has four 65,536-byte

address spaces. With this scheme, the segment registers form a sort of MMU
that the program leaves largely untouched. That seems to be the original intent
of the designers of the 8086 architecture. All pointers were to remain 16 bits,
just like on the Intel 8085. Your program determined which address space, and
hence which segment register, to use from context. It is no accident that Pascal
can traffic pretty comfortably in four data spaces – one each for code, static
data, automatic data (stack), and controlled data (heap). The Intel 8086 is a
Pascal engine.
Unfortunately for those plans, the Intel 8086 has become a C engine. And

C, given its PDP-11 heritage, can distinguish only two separate address spaces
from context. All functions live in one space, all data objects live in another.
Sure, if you access a data object by name the compiler can tell whether it

has static or dynamic lifetime. That way, it could know whether to reference
the segment register for static data or the one for automatic data. And if it
knew that a pointer was set by a call to calloc, it could know that the pointer
points into the heap. (Pascal knows that all pointers point into the heap, at
least in a strict implementation of standard Pascal.)
But once you take the address of a data object and store it in a pointer,

all bets are off. Like so many things your children drag home, you don’t know
where it’s been. That means that whatever you store in a data object pointer, it
must be sufficient for you to access a static, automatic, or controlled data object.
The easiest way to do this on an 8086 is to pack all flavors of data objects in one
65,536-byte address space. The only problem is, you can then run programs no
bigger than those that fit on an old PDP-11. And our ambitions outgrew that
architecture years ago.
A more powerful alternative is to make pointers big enough to store both

address and segment register information. The architecture doesn’t support
storing (or making use of) a two-bit segment register designator. Besides, once
you go beyond 16 bits, the next sensible stopping point is 32 bits. The archi-
tecture does support storing (and making use of) the 16-bit segment register
contents alongside the 16-bit program address. So the natural thing to do is
to compile C programs to represent pointers in 32 bits. Your program then
spends considerable time loading and storing segment registers so that your
measly four windows slide properly around within the larger address space.
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Naturally, you pay a penalty when using 32-bit pointers instead of 16-bit
pointers. Code size essentially doubles and execution time along with it. And,
of course, the storage required for pointer data objects also doubles. A good
bit of the extra headroom we won over the 8085 and PDP-11 is sacrificed to
code space inefficiencies. One cultural side effect of these severe penalties is
that people adopt heroic measures to avoid them.
You have a relatively easy out if all the functions in your program fit in one

65,536-byte window. You can then get away with 16-bit pointers for functions
(which you probably don’t use very often anyway), alongside the 32-bit pointers
you need for data objects. C has never explicitly required all pointers to have
the same representation. On many early implementations that happens to be
the case, and a few programs doubtless took advantage of the coincidence.
But Standard C has been clear on the subject for many years. Between the
needs of the marketplace and the guidance of the evolving C standard, most
programmers have long since cleaned up their act, and any code they hope to
keep marketable.
Occasionally, you will find a program that has lots of functions, but only

needs one 65,536-byte window for all of its data. In this case you go to 32-bit
function pointers and 16-bit data pointers.
All these options drive compiler vendors gaga. Compilers for the PC are

dripping with compile-time switches and in-line pragmas to help the program-
mer communicate his varied wants. And you can’t easily mix code compiled
with different pointer sizes. That means the compiler vendor is obliged to ship
an assortment of libraries for linking with the various addressing models.
Now for the worst part. Some programmers are so desperate to avoid the

inefficiencies that come with large pointers that they insist on writing hybrid
programs. These traffic in pointers of mixed sizes. Now, you just plain can’t do
this in Standard C. Nevertheless, where there is a need there is a way. What
the serious compiler vendors have done is extend C by adding pointer qualifiers
such as NEAR and FAR. These provide direction to the compiler so that it can
know what size to make certain nonstandard pointers. The semantics of these
extensions are generally shaky. Mostly, they are offered on the caveat emptor
basis that is customary for extensions that people want more than they need.
I believe that X3J11 was wise not to enfold hybrid pointers within Stan-

dard C. They aren’t even listed as a common extension, though perhaps they
should be. Having thought through the semantics rather thoroughly years ago
(with the Whitesmiths Version 3 compilers), I can attest that you pay a high
price in complexity for a small payoff in performance. That’s not the stuff of
standards.
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Rules of the Game

Most of this history is doubtless familiar to you. I recite it here partly to fill in
any gaps you may have, and partly to recreate the climate in which X3J11 made
a number of key decisions about Standard C. To summarize the key decisions
relating to pointers and addressing, I now state a number of principals, not all
of which are obvious from a quick reading of the draft. Here goes:

1. Standard C supports 2 1
2 address spaces.

You know about functions and you know about data objects from the
earlier discussion. The extra “half” address space is for data objects whose
address you never determine in your program. This includes, naturally, all
data objects declared with storage class register. There is no valid way
you can take the address of some other data object and use that address
value to compute a pointer into one of these anonymous data objects.
Hence, the compiler is at liberty to tuck these data objects in a separate
address space. It can place anonymous data objects in machine registers
or address them in other funny ways.

All other data objects must be reachable by dereferencing an arbitrary
data object pointer. This means that even if you know a shortcut for
accessing certain data objects (it may have a 16-bit displacement off the
code segment register, for example), you must also be able to store its
address in a data object pointer (you write the FAR pointer composed of
the 16-bit displacement and the value stored in the code segment register).
Once you start trafficking in different pointer representations for the same
data object, be wary of the rules for comparing pointers (described below).

2. A pointer representation is not necessarily the same as an ad-
dress space.

A perfectly valid implementation of C could have 8-bit pointers. The
pointer value is the index into a table of data object descriptors, which
contain full addresses and possibly other information on the data object.
Far more commonplace, a pointer can have excess bits that do not par-
ticipate in forming the actual storage address. Both situations can cause
surprises when comparing pointers and when converting glibly between
integers and pointers.

3. A null pointer is not necessarily all bits zero.

This is unlikely, but permissible. Standard C requires that a pointer
assigned an integer zero be a null pointer. It must point to no valid data
object (or function) in your program. It must compare equal to integer
zero. Neither of those requirements prevents an implementation from
picking an arbitrary bit pattern (or patterns) to represent the null pointer.
It does cause trouble with, say, static initializers. The implementation
may have to replicate its funny idea of a null pointer many times to fill
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out a partially initialized large array of pointers. But it can do so if it
chooses.

An implementation can also represent 0.0 as other than all bits zero. The
same caveats apply. I doubt that any real life implementer would go to
the trouble to indulge in either of these liberties, but be warned. Either
or both may just burn you some day.

4. All function pointers have the same representation.

Standard C lets you cast any function pointer to any other type of function
pointer without loss of information. You must cast it to a function pointer
of type compatible with the function it points at before you dare use it
in a function call, but you can copy it all over the place beforehand. This
rule provides one small island of sanity in the world of pointers.

5. Every data object pointer can have a different representation.

Actually, there are a few sets of pointers that must have the same rep-
resentation among all members of the set, but the overriding rule is that
variety reigns. Pointers to all character types have the same representa-
tion, which is the same as for pointer to void. (Remember that this is
the only representation to which you can cast an arbitrary data object
pointer with no loss of information.) Pointers to const whatever have the
same representation as pointers to non-const whatever, where the two
“whatever”s have compatible type. The same holds true for volatile, of
course. And pointers to incomplete types have the same representation,
perforce, as pointers to their completed data object types. Beyond these
guarantees, don’t play games with pointers in unions, or with pointers
not coerced by a function prototype on a function call.

6. Pointers and integers are incommensurate.

You can subtract two 8-bit pointers and get a 32-bit integer difference.
You can subtract two 96-bit pointers and get a 16-bit integer difference.
You are asking for trouble if you mix anything but integer zeros with
pointers in comparisons, assignments, and initializations. Don’t even
think about playing games with unions. Forget anything you ever used to
believe about relationships between pointer and integer representations.

7. The result of the sizeof operator can always be represented as
an unsigned long.

The actual integer type is, of course, size_t. But since that is merely a
type definition, it must be the same as one of the unsigned integer types.
The largest of the unsigned integer types is unsigned long. Q.E.D.

But watch out when you subtract two pointers. True, the type of the
result is ptrdiff_t, but the result can still overflow when represented as
that type. On a machine with 16-bit pointers, you can sometimes declare
50,000-byte character arrays. The difference between pointers pointing at
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the beginning and end of such an array cannot be properly represented as
a 16-bit signed integer. You can trust that you can represent the result
of sizeof, but you cannot always represent the difference between two
arbitrary pointers.

8. The type qualifiers const and volatile modify only lvalues.

(Brodie also discusses this matter in a separate paper in this issue.) Ac-
tually, the type qualifiers squat midway between the universe of types
and that of storage classes. There are good reasons why Standard C in-
troduces them as type qualifiers, but that can still be confusing. Just
assume that const int becomes int when you replace an lvalue by its
stored value, in an rvalue context.

9. const (and volatile) data objects occupy the same address space
as unqualified data objects.

I have given all the reasons why this must be true above. I state the
(apparently) obvious here for emphasis. Compelling as it is to think you
can tuck your read-only tables in with your read-only code, it ain’t always
safe. Make sure that you never have to develop an address to store in a
pointer data object. Or if you do, make sure that the address will support
proper read accesses to the data object. This is one of the unfortunate
consequences of the weaker semantics for pointer to const that X3J11
settled on at the eleventh hour.

10. Pointers to the same data object (or function) must compare
equal.

This is true even if the two pointers are not bitwise identical. The 8086
family offers boundless opportunities for the kind of aliasing that can make
pointer comparisons horrendously expensive. X3J11 decided, however,
that the semantic price was too high to allow cheap comparisons to fail.
An implementation must either not traffic in multiple representations for
the same address, or it must do the extra work during comparisons to get
the correct answer.

11. Pointers to different data objects (or functions) must compare
unequal.

Naturally.
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Conclusion

It’s a strange world out there, in the land of computer architectures. Standard C
has not succeeded in embracing all popular architectures with its rather flat
addressing model. But then, few members of X3J11 hoped to do so. I believe
we did a good job of identifying the most sensible existing rules, and of codifying
existing practice rather more clearly than in the past.
What we need to do now is gather more experience with the extensions

that people have felt moved to add to C’s addressing model. Perhaps we can
still tame NEAR and FAR pointers and bring them into the fold. The recent
meeting of the Numerical C Extensions Group demonstrated that aliasing issues
are far from resolved, or dead. Newer chips such as digital signal processors are
demanding accommodations from C so that it can serve as the base language
for their special needs.
It will be fun to see what the conventional wisdom evolves to for addressing

in C five years from now.

P.J. Plauger is a Chief Engineer for Intermetrics Inc. He also serves as
secretary of X3J11, convener of the ISO C working group, and as Technical
Editor of The Journal of C Language Translation. Dr. Plauger can be reached
at uunet!aussie!pjp.

∞



2. Numerical C Extensions Group Status

Rex Jaeschke
NCEG Convener

Introduction

When I conjured up the idea for an ad hoc group to define numerical extensions
to C earlier this year, I had no idea as to what the reaction would be. The
evidence is now clear that this endeavor is seen as being very worthwhile. Not
only have more than 90 people asked to be added to the contact database, but
30 of them attended the one-and-a-half day meeting at Cray Research on May
10–11.
The backgrounds of the attendees were diverse. The supercomputing indus-

try was represented by Cray, Convex, Supercomputer Systems, and Thinking
Machines. The IEEE community was well represented by Hough (from Sun),
Cody (from Argonne Labs), and Thomas (from Apple.) Other organizations
represented included Unisys, Microsoft, Digital Equipment Corporation, H-P,
CDC, IBM, Solborne, Farance, University of Minnesota, Intermetrics, and In-
formation and Graphics Systems. The digital signal processing industry was
represented by Analog Devices. LLNL, Army BRL, and Polaroid Corporation
represented the user community. Dennis Ritchie from AT&T also participated.
There was no real sentiment that we deliberately go against the direction

established by ANSI C. In fact, quite the contrary. However, it was recognized
that some of ANSI C’s constraints may impede our activities and result in
possible conflicts. The whole issue of errno and formatted I/O of NaNs and
infinity are examples.

The Issues

The main purpose of the meeting was to identify and prioritize the principal
technical issues. The group then voted on each topic, indicating high or medium
(or no) priority. The high priority votes were weighted twice as much as the
medium, and the following list of priorities resulted.

9
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Main Numerical Issues
Topic Priority

aliasing 29
vectorization 27
complex 27
variably dim arrays 25
IEEE issues 24
exceptions/errno 24
float/long double library 23
parallelization 22
ANSI <math.h> 21
array syntax 19
extra math functions 17
aggregate initializers 15
inter-language issues 15
wide accumulators 10
math function precision 9
non-zero-based arrays 8
numerical representation 6
new data types 4
new operators 4
function overloading 4

Another topic, “Arrays as first class objects” had a high priority (21) but
after considerable debate was dropped from the list. It was agreed that its
addition would likely cause great confusion among existing C programmers.

Formation of Subgroups

The bulk of the agenda time was then given to the top ten topics, each getting
20–30 minutes. For each of these topics, attendees volunteered to be primary
and alternate coordinators.
The intent is that the real technical work will go on between meetings and

be coordinated by the leaders of each subgroup. Then, at the following meeting,
each subgroup will present the results of its work and make formal proposals
as appropriate. This way, the committee can focus on the final, distilled issues
rather than everyone getting involved at all levels. It will also significantly
reduce the amount of paper in the mailings.
If you wish to participate in any of these subgroups it is your responsibility

to contact the leaders and identify yourself, your concerns, and how you can
help. If your area of interest is not listed here let me know.
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Mailings and Submissions

Most people interested in NCEG appear to have an e-mail address, which should
make each subgroup’s job much easier in coordinating various viewpoints and
proposals. However, all formal distributions will be by paper mail. Since meet-
ings are to be once every six months, there will be two mailings between meet-
ings. The first will occur within 4–6 weeks after a meeting and will contain
minutes, new papers, and other appropriate correspondence. The second will
occur about 4–6 weeks prior to the following meeting. The cut-off date for
formal submissions for the September meeting is August 11.
Forward all correspondence to me (either by mail or via uunet!aussie!rex )

and I will assign it a document number. (Note that I do not have a troff
formatter.) However, do that only if your paper is concerned with issues other
than those being handled by the subgroups. For subgroup issues, forward papers
to the subgroup coordinators so they can include it in their submissions to me.
The intent is to avoid excessive duplication of points and to allow the short
meeting time to be used more effectively. The more formal documents we have,
the slower it will go.
Tom MacDonald at Cray Research has agreed to do the mailings, at least for

the interim. Frank Farance of Farance, Inc., has volunteered to be the redactor
of the group’s working document. Thanks to Tom and Frank. (Thanks also
to Randy Meyers from DEC, who acted as meeting secretary, and to Cray for
hosting the meeting.)

Formal Affiliation

There was a consensus that we become affiliated with a recognized standards
organization. The final proposal was that we become a working group within
X3J11. If we follow that route, it will result in our publishing a Technical
Report, a non-binding report on our findings and recommendations. Getting
our extensions adopted as a standard is also possible, in the long term. At
this stage, I plan to ask for agenda time at the next X3J11 meeting to discuss
admitting us as a working group.
In the interest of economy, the next two meetings are scheduled in the same

location and week as those of ANSI C’s X3J11. These NCEG meeting dates
are September 19–20 (Salt Lake City, Utah), and March 7–8, 1990 (New York
City.)

∞



3. A Solution to Name Space Pollution

Sue Meloy
Hewlett-Packard

19447 Pruneridge Ave.
Cupertino, CA 95014

Abstract

This article describes some of the problems that the ANSI C name
space guarantees cause for implementers. Hewlett-Packard required a
solution that preserves backwards compatibility for old code, and allows
conformance to superset standards such as POSIX and X/Open. H-P’s
solution for the various name space pollution problems is presented.

The Problem

ANSI C reserves certain names for the implementation: external names defined
in the “Library” section of the Standard, all names beginning with _[_A-Z],
and all external names beginning with . All other names are available to users
for their own variable, function, and macro names.
UNIX has traditionally been extremely cavalier about polluting the user

name space. Since our operating system, HP-UX, is UNIX-based, it has many
of the same problems. The challenge was to find a solution that would conform
to ANSI requirements, still allow users to access the extra symbols if they want
to, require no source or makefile changes for backward-compatibility mode, and
not require support for multiple versions of libraries.

Examples

The following examples demonstrate some of the common name space conflicts.

Header Files

The first problem concerns symbols contained in the standard headers that are
not defined in ANSI C. There are several aspects to this problem. They are:

12
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• Symbols defined by POSIX that are not defined by ANSI.

• Symbols defined by X/Open that are not defined by POSIX.

• Symbols defined by HP-UX that are not defined by any of the other
standards.

• Internal symbols which conflict with ANSI name space guarantees.

For example, the internal name _iob in <stdio.h> was inherited from
UNIX. By itself, this symbol is not in the user name space. Identifiers be-
ginning with a single _ are reserved for the implementation as external names.
However, the stdin, stdout, and stderr macros reference this name, so it
could conflict with a user local variable name. For example,

#include <stdio.h>

main()
{

static float _iob[] = {1.1, 2.2, 3.3, 4.4, 5.5};

fprintf(stdout, "Hello, world");
}

With the original version of <stdio.h>, the stdout reference in the example
above will pass the address of the second element of the local _iob (2.2) as the
first parameter to fprintf. This is likely to cause mysterious behavior.
Another problem is when names that are part of the ANSI user’s name

space are defined in a superset standard. For example, POSIX defines the
fdopen function. This declaration must be present in <stdio.h> for POSIX,
but must not interfere with a user name in a strictly conforming ANSI program.
Similarly, X/Open defines P_tmpdir and popen, which are not defined in POSIX
or ANSI, and HP-UX defines ctermid, which is not defined in X/Open, POSIX,
or ANSI.
We solved this problem by checking various macros, which are defined de-

pending on which standard is desired. These macros are:

• _HPUX_SOURCE: Default for backwards-compatibility mode; includes ev-
erything.

• _XOPEN_SOURCE: User-defined; includes ANSI, POSIX, and X/Open sym-
bols.

• _POSIX_SOURCE: User-defined; includes ANSI and POSIX symbols.

• __STDC__: Default for ANSI mode; only ANSI symbols are defined.
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Libraries

One example of library name space pollution involves the fopen function, which
has traditionally been implemented by calling open. If the user runs the pro-
gram shown in in the next example on a system with a polluted name space, it
will not behave as required by the ANSI standard.

#include <stdio.h>

struct {
FILE *fd;
/* ... */

} file_info1;

main()
{

open("file1");
process();
close();

}

open(f1)
char *f1;
{

file_info1.fd = fopen(f1, "r");

/* ... */
}

However, we still must allow users to access the system open if they want
to, for backwards compatibility and conformance with other standards such as
POSIX. The program shown next must continue to work.

#include <fcntl.h>

int file_info1;

main()
{

file_info1 = open ("file1", O_RDONLY);
process();
close (file_info1);

}
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The solution we decided to implement was to provide “secondary defini-
tions” for all conflicting names in the standard library. A secondary definition1

specifies an additional name that another symbol can be known by, but which
will not cause a duplicate definition error if the user has already defined it.
The library routines refer to the primary definition (containing a leading

underscore). When _open is linked in, such as by a reference from fopen, the
secondary name open will not be automatically added to the linker symbol
definition table. It will be added only if unresolved references to it currently
exist. Since the library routines all refer to the primary name _open, there will
only be unresolved references to open if the user referenced it without providing
a definition.
Data symbols create another set of problems. For example, take environ.

This name is a data symbol which is defined by POSIX, but not by ANSI C. The
symbol environ is used by the getenv function, which is defined in ANSI C,
however. POSIX users must be able to set and reference this variable, while
ANSI C users must be able to use this name for their own purposes.
Problems really arise when a user declares this name at file scope without

an extern storage class specifier or initializer: should the name be considered
a common symbol that would link to the library definition, or should it be a
definition of a user name? In ANSI mode, it must be a user definition. However,
lots of existing code uses this coding style. In order to allow this code to work
as it did before, the implementation must “read the user’s mind” to determine
which interpretation is desired. In the next example, does the user want to
affect the getenv function, or not?

char **environ;
main()
{

char *language;
environ = malloc(2 * sizeof(char *));
environ[0] = "mystuff";
language = getenv("LANG");
/* ... */

}

Secondary definitions cannot be attached to common data, so all library
data we wished to make visible to users was changed to be explicitly initialized.
The problem of “mind reading” for user-declared common data was solved by
fiat: uninitialized file-level data declarations with no storage class specifier are
presumed to be user names, in ANSI mode. A special bit is set in the symbol
information so the linker will not resolve that reference to a secondary definition.
A user who wishes to reference library data from ANSI mode must declare it
extern.

1The concept of secondary symbols is taken from some non-UNIX linkers, such as for the
SDS/Xerox Sigma computers of the late ’60s and early ’70s.
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One final problem has to do with matherr. The previous examples dealt
with symbols that the user references that may need to be defined in the library.
matherr is a symbol that the library references that may need to be defined
by the user. In the next example, ANSI requires that sin should not call the
user’s matherr. Backwards compatibility requires that it should.

#include <math.h>
int result;
double dres;

void matherr()
{

result = 99;
}
main() {

result = 5;
dres = sin(HUGE_VAL);
/* ... */
if (x + y > 32) matherr();

}

The matherr problem has no good clean solution. The POSIX 1003.2
Draft 8 contains a mechanism for deciding which of two math libraries to
search. -lM causes the “ANSI” math library to be searched, while -lm causes
the “backwards-compatibility” math library to be searched. This does not fit
in well with our goal of having only one version of the libraries, but we had
little choice in the matter.
Most of the code in the two versions of the math library is identical, only

the matherr symbol is named differently. The name difference can be handled
by a simple macro definition when compiling to create the ANSI version.

Summary

The name space pollution problem has several different aspects, requiring mul-
tiple solutions. While the effort to solve these problems was not insignificant,
we feel we have implemented a solution that meets the requirements of the
various standards, provides for backwards compatibility, and is maintainable.

Sue Meloy is a software design engineer in the Hewlett-Packard California
Languages Lab, and has been an active member of X3J11 for several years. She
can be reached electronically at hplabs!hpda!sue or sue%hpda@hplabs.hp.com,
or by telephone at (408) 447-5768.
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4. ANSI/ISO Meeting Report

Jim Brodie

Abstract

This article covers recent events in the standardization process for
the C language. It discusses the major national and international issues
which were discussed at the joint ANSI/ISO meeting held recently. It also
covers the current status of the standardization process and the directions
being taken by the ANSI standards committee.

This article will bring you up to date on the latest happenings on the C lan-
guage standard front.

X3 Secretariat Vote

Prior to the last X3J112 meeting an X3 ballot was taken on the current draft of
the C standard. The results were very encouraging. The vote was 34 in favor
of the standard, 0 against, and 2 abstentions. The X3 ballot is usually the
last technical hurdle before the acceptance of an American National Standard.
However, because of an administrative problem, another X3 ballot may be
required. (More on this in a moment.)

ANSI Meeting Report

X3J11 met jointly with WG14, the International Standards Organization (ISO)
committee which is responsible for the C language, on April 10–11 in Seattle
Washington. The major topics of the meeting ranged from addressing a lost
public review comment to discussing the objections which the British and Dan-
ish standards organizations had to accepting the current X3J11 draft of the
C standard as an ISO standard. In addition, the committee decided not to
take on the standardization of the C++ language. (This will be left to another
committee, if it is to happen.)
One of the first orders of business for the meeting was to deal with a “lost”

second public review commentary letter. This letter was either lost in the mail
or within the X3 Secretariat and unfortunately never got as far as X3J11. A
copy, however, was received by ANSI (American National Standards Institute).

2X3J11 is the technical committee charged with the task of developing the American
National Standard for the C language.
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The ANSI rules for standards formation require that every letter received during
the public review periods must be given a response. ANSI will not accept
a document for consideration as a standard until this requirement has been
satisfied.
During the meeting, an 8 member subcommittee spent about 4 hours re-

viewing and writing responses to the lost letter. The letter writer, Russel Hans-
berry, attended the subcommittee meeting. After the review by the subcommit-
tee several issues were brought before the committee, at Hansberry’s request.
These issues included a request that the precedence of the bit-wise operators
be changed to higher than the relational operators (or at least a warning be
placed in the document that this may happen in the future), a somewhat nebu-
lous request that interrupt handling from C be included in the standard, and a
request that the ordering of declarations with the register storage class specifier
be used as a guide for the actual allocating of physical registers. After some
discussion, none of these changes was accepted by the committee.
At this point, each issue for which Mr. Hansberry does not accept the X3J11

response will be distributed to the X3 membership (along with the committee’s
response). A 20-day ballot will be held to to see if any X3 members would
like to change their votes based on these issues alone. If no votes are changed
(which is the expected outcome) the document will be sent up to ANSI for the
final processing to become an American National Standard. We are hopeful
that we will have an approved American National Standard by July
of this year.

ISO Meeting Report

On the international front, X3J11 and WG14 spent considerable time discussing
the concerns that the British Standards Institute had concerning the current
draft of the standard.
It turned out that the primary difference is one of philosophy on how a

standard should be written. The issue has to do with how “undefined behavior”
is indicated in the document. An example of an undefined behavior is the
program behavior when an arithmetic computation overflows. Although X3J11
enumerates some common undefined behavior situations in the draft, in general,
it falls back on a blanket statement: if a behavior is not explicitly defined within
the standard, it is undefined (and cannot be relied upon in a portable program).
The British position is that every case of known undefined behavior should be
explicitly stated in the document.
A potential compromise was worked out. The British will develop a com-

mentary document (which is not a formal part of the standard, but which is
included for further clarification of the standard). This document will list all
of the cases of undefined behavior which the British feel should be explicitly
identified. This document, after review by both WG14 and X3J11, will be
presented for inclusion with the standard.
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The committees were less successful in dealing with a proposal from the
Danish standards committee. The Danes would like to see some changes to
provide more readable alternatives to trigraphs. While there is considerable
sympathy for those programmers who will need to use trigraphs (it is widely
accepted that they are not very readable), all of the proposals put forth so
far, including the one presented during the meeting, have been unacceptable to
X3J11.
The Danes did not gain any support for their proposal from the other coun-

tries represented by WG14 attendees. At this point, no changes were made
in the X3J11 draft standard document and the Danes have gone home hoping
to muster additional support for their proposal from the other Scandinavian
countries. If they are able to gain enough support, they could delay or block
the acceptance of the American standard as an ISO standard. Stay tuned.

Future of X3J11

X3J11 is now in transition to becoming an interpretations body. Assuming
that the American National Standard for C is approved without any further
hitches, the work load of the committee should be reduced significantly. X3J11
will begin meeting only once every six months. During these meetings requests
for interpretations and clarifications of the C standard will be addressed. A
large majority of the current members of the committee indicated that they
were planning to remain active during the interpretations phase. Users of the
standard can use requests for interpretations as a forum for getting C standards
questions answered.
At this point, there is no support for beginning another standards activity

(e.g., no one will be working on an Extended C standard).
Unless superseded by a later standard, the current C standard will be in

force until 1999. In about 5 years, the committee will begin the formal process
of reaffirming the current C standard or developing the next C standard (if this
is necessary). It must achieve one of these goals within 10 years.
The next scheduled X3J11 meeting is in Salt Lake City, Utah on September

21–22, with DECUS hosting. Correspondence to X3J11 should be addressed to
Tom Plum, Vice Chair, at Plum Hall, 1 Spruce Avenue, Cardiff, NJ 08232.

Jim Brodie is the convener and Chairman of the ANSI C standards commit-
tee, X3J11. He is also President of Brodie and Associates, a consulting company
based in Phoenix, Arizona. He has coauthored books with P.J. Plauger and Tom
Plum and is the Standards Editor for The Journal of C Language Translation.
Jim can be reached at (602) 961-0032 or uunet!aussie!jimb.
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5. Adding Complex Arithmetic to C

Tom MacDonald
Cray Research, Inc.
1345 Northland Drive

Mendota Heights, MN 55120

Abstract

The addition of a complex type to C requires examination of all as-
pects of the language. A new keyword is proposed to permit declarations
of this new arithmetic type. Type conversion of complex values to and
from other arithmetic types is examined. Several methods for creating
complex constants are proposed, including an i suffix and an operator.
The new operator can be used to create a complex value out of two
floating-point values, one representing the real part and the other repre-
senting the imaginary part, thus permitting complex constants to exist.
Finally, a number of complex library functions are defined.
Cray Research has investigated the impact of adding a complex type

to C. The following is a discussion based upon that research.

One of the reasons C is not used for numerical applications is the absence
of a complex type. The motivation for adding complex arithmetic to C is to
make the language more appealing to numerical and scientific programmers.
For the most part, providing a complex extension is fairly straightforward.
Although the following discussion describes the entire extension, it is focused
on controversial decisions that need to be made.

Adding a New Keyword

A new keyword is needed to indicate a complex type. The obvious choice is
complex, but that introduces a compatibility problem. C programs already
exist that contain a typedef defined something like the following:

typedef struct { double real, imag; } complex;

Adding a new keyword that is spelled complex breaks existing standard
conforming code.
The ANSI Standard gives implementers a set of names that they can use to

extend C. These names must begin with two underscores or an underscore
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and an uppercase letter, leading to the following two obvious possibilities:
__complex and _Complex. However, neither of these names is especially ap-
pealing because neither conforms to the style of other keywords.
Two possible solutions to this problem are: a compile time option and a

typedef name. The compile time option approach permits the complex spelling
but inhibits access to the new type unless the option is specified. The compiler
classifies the token complex as a keyword if the option is specified, otherwise
it remains an ordinary identifier. The typedef name approach assumes the
presence of a new header, <complex.h>, that contains a declaration similar to
the following:

typedef _Complex complex;

along with function prototypes for several new library functions discussed later.
This approach assumes that anyone wanting to use this new type is willing to
include the <complex.h> header in their C source file. It also means that the
implementation does not have to specify the actual spelling of the new keyword.
Since compile time options that change the behavior of lexical analysis are error-
prone and confusing, the typedef name approach is appealing. This allows
existing portable programs to continue working because the new <complex.h>
header will not be present.

A New Arithmetic Type

The new complex type is an arithmetic type but not a floating type. However,
both the real and imaginary parts of a complex type are floating-point numbers.
The next implementation decision is to define the underlying type of the

real and imaginary parts. Ideally, there would be three complex types: float
complex, double complex, and long double complex. However, this requires
extensive library and code generation support that is hard to justify when
experimenting with a new type. The decision was made initially to implement
only a double version as the underlying type of the real and imaginary parts.
Type double is the default floating type, in that floating constants default to
type double, and the default promotion of a float argument is to double
(where applicable). complex implies double complex. However, the design
should permit the logical evolution to multiple complex types. The following
are several declarations that use the new type:

#include <complex.h>

complex cx;
complex acx[10];
complex cxsum(complex *cxp);
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There must be some way of creating complex constants, to permit complex
initializers. One approach is to expand upon the existing suffix notation used
currently to create float, long double, unsigned and unsigned long con-
stants. That is, a constant such as:

2.1i

has complex type. The imaginary part has the value 2.1 and the real part has
the value zero (0). This permits an expression such as:

3.4 + 2.1i

to create a complex value with 3.4 for the real part and 2.1 for the imaginary
part. An example of a complex initializer using this approach is:

#include <complex.h>

complex cx = 3.4 + 2.1i;

There is also a need to create a complex number out of two floating-point
values. The i suffix approach does not provide any way to create a complex
value out of two arbitrary expressions. Other possibilities are a new operator,
a new keyword, or a library function. These possibilities are examined further.

The Complex Operator

The complex operator creates a complex number out of two floating-point val-
ues. Several different approaches are possible. For example:

cmplx(real, imag) /* new keyword */
<real, imag> /* grouping */
real %% imag /* infix */

New keywords are, again, controversial because of the potential to break
existing code. However, both the grouping and infix approach can be made to
work fairly easily.

c1 = c2 + <2.1, 3.4>;
c1 = c2 + 2.1 %% 3.4;

A problem with the infix approach, however, is that it forces the use of
parentheses in certain situations. For example, in:
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c1 = c2 + <2.1 + x, 3.4>;
c1 = c2 + (2.1 + x) %% 3.4;

assuming that %% has precedence just below the unary operators. However, the
grouping approach forces the use of parentheses in macro calls. For example:

MAC(<x, y>) /* two args */
MAC((<x, y>)) /* one arg */

Another implication of the grouping approach is that an operand that uses
the comma operator can only appear inside a parenthesized expression. (It may
also cause parsing problems.)

c1 = c2 + <(x++, 2.1), 3.4>;

The grouping approach, however, does not introduce any operator prece-
dence issues because the <> pair groups identically to the () and [] pairs.
This operator can also be used to create a complex constant expression

which can be used in an initializer.

complex c1 = <2.1, 3.4>;

Since one of the goals is to permit future extensions to multiple complex
types, the behavior when the types of the real or imaginary parts is not double
needs to be discussed. The following rules are defined:

• First, all integral operands are converted to double.

• Then neither operand can have type long double or complex.

• Then, at least one operand must have type double.

• Then, if only one operand has type double the other operand is converted
to double.

• Then, the real part is assigned the value of the first operand.

• Then, the imaginary part is assigned the value of the second operand.

These rules permit the semantics of the complex operator to be enhanced
in the future to include float complex, and long double complex.
As with most operators, the order of evaluation of the operands is unspeci-

fied.
Since there already is some pressure to add an aggregate constructor to C,

the following method should also be considered as a way to create a complex
number out of two floating-point numbers:
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double x = 4.5, y = 6.7;
complex cx;

cx = (complex) {2.1, 3.4}; /* real 2.1, imag 3.4 */
cx = (complex) {x, y}; /* real 4.5, imag 6.7 */

Complex Type Conversions

Conversions to and from complex values are easily defined in terms of the exist-
ing arithmetic conversion rules. Essentially, when a complex value is converted
to a floating or integral type the imaginary part is discarded and the real part
is converted as if converting a value of type double. Similarly, when an integral
or floating value is converted to complex, the real part is assigned the value
obtained after converting it to type double and the imaginary part is assigned
the value zero (0).

#include <complex.h>

complex cx = <2.1, 3.4>;
double d;
int i;

d = cx; /* d == 2.1 */
i = cx; /* i == 2 */
cx = 5.6; /* cx == <5.6, 0.0> */
cx = i; /* cx == <2.0, 0.0> */

These conversion rules permit complex values to be assignment compatible
with other arithmetic types.
The usual arithmetic conversions must also be enhanced to cover complex

operands. The following conversion rule permits complex operands to be mixed
with other arithmetic operands:

If either operand has type complex, the other operand is converted
to complex.

All of the following expressions have type complex:

#include <complex.h>

complex cx;
double d;
int i;

d + cx
cx - i
<2.1, 3.4> * d
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Complex Expressions

The following arithmetic operators can have complex operands:

unary: + - ++ --
binary: * / + -

Since the ! operator is a logical operator whose result has type int, it
seems innocuous to also permit the other logical operators && and || operators
to have complex operands. In all cases the complex operand is compared to
zero (0).

#include <complex.h>

complex cx1 = <2.1, 3.4>;
complex cx2 = 0;

/* ... */

!cx1 /* FALSE */
!cx2 /* TRUE */
cx1 && cx2 /* FALSE */
cx1 || cx2 /* TRUE */

if (cx1 && !cx2) /* TRUE */

while (cx1) /* loops until cx1 == 0 */

The first operand of the conditional ?: operator can also have a complex
type since it behaves like the logical operators. (Of course, both the second
and third operands of the conditional operator are also permitted to have type
complex.)
As with all arithmetic types, casts to type complex are also permitted.
The relational operators <, <=, >, and >= cannot have complex operands.

However, the equality operators == and != are well defined for complex operands
with the result still having the value one (1) or zero (0) and type int.
Discussions at the first NCEG meeting indicate that there is no support for

conforming to the FORTRAN requirement that

sizeof(complex) == 2 * sizeof(double)

Furthermore, the committee felt that the order of the real and imaginary
parts should not be specified.
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The Complex Library Header <complex.h>

There are some differences between the behavior of the functions defined here
and those defined under the <math.h> header. Nothing is defined that corre-
sponds to the HUGE_VALmacro, and in general, the treatment of error conditions
is left unspecified. This means that no defined relationship exists between the
following functions and the expression errno. There is no requirement that
these functions execute as if they were a single operation without generating
visible exceptions!

The header <complex.h> declares several mathematical functions and one type.
The type is:

complex

which represents an object with a real and imaginary part. Both parts have
type double.
These functions take double or complex arguments and return double or

complex values.

The csin function

Synopsis

#include <complex.h>

complex csin(complex x);

Description

The csin function computes the sine of the complex number x (measured in
radians).

Returns

The csin function returns the sine of x.
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The ccos function

Synopsis

#include <complex.h>

complex ccos(complex x);

Description

The ccos function computes the cosine of the complex number x (measured in
radians).

Returns

The ccos function returns the cosine of x.

The cexp function

Synopsis

#include <complex.h>

complex cexp(complex x);

Description

The cexp function computes the exponential function of the complex number x.

Returns

The cexp function returns the exponential of x.

The clog function

Synopsis

#include <complex.h>

complex clog(complex x);
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Description

The clog function computes the natural logarithm of the complex number x.

Returns

The clog function returns the natural logarithm of x.

The cpow function

Synopsis

#include <complex.h>

complex cpow(complex x, complex y);

Description

The cpow function computes the complex number x raised to the complex
power y.

Returns

The cpow function returns the value of x raised to the power y.

The csqrt function

Synopsis

#include <complex.h>

complex csqrt(complex x);

Description

The csqrt function computes the square root of the complex number x. The
sign of the imaginary part of the root is the same as the sign of the imaginary
part of x.
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Returns

The csqrt function returns the square root of x.

The cabs function

Synopsis

#include <complex.h>

double cabs(complex x);

Description

The cabs function computes the absolute value of a complex number x.

Returns

The cabs function returns the absolute value of x.

The cimag function

Synopsis

#include <complex.h>

double cimag(complex x);

Description

The cimag function computes the imaginary part of the complex number x.

Returns

The cimag function returns the imaginary part of x.



30 The Journal of C Language Translation – June, 1989

The cmplx function

Synopsis

#include <complex.h>

complex cmplx(double x, double y);

Description

The cmplx function computes the complex number that has a real part repre-
sented by x and an imaginary part represented by y.

Returns

The cmplx function returns the complex number with a real part of x and an
imaginary part of y.
Note that the cmplx function cannot be implemented as a macro unless a

complex operator exists.

The conj function

Synopsis

#include <complex.h>

complex conj(complex x);

Description

The conj function computes the conjugate of the complex number x by negating
the imaginary part of x.

Returns

The conj function returns the conjugate of x.
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The creal function

Synopsis

#include <complex.h>

double creal(complex x);

Description

The creal function computes the real part of the complex number x.

Returns

The creal function returns the real part of x.

I/O of Complex Values

One area that is conspicuously absent in this discussion is I/O. Since the func-
tions creal and cimag allow access to the real and imaginary parts, they can
be printed in any format. Similarly, two floating-point values can be read in
and converted to a complex value by using the complex operator or the cmplx
function. Sufficient machinery already exists to handle the general problem of
converting complex values to decimal representation and back again.

Conclusion

A complex extension seems to fit into C without affecting any existing portable
code. However, there is no substitute for an actual implementation discovering
hidden problems. Several issues raised by this paper were presented at the
first Numerical C Extension Group (NCEG) meeting in May. My hope was
that that committee should assist in resolving these issues, allowing an actual
implementation to benefit from that insight. The outcome of this proposal will
be presented in a future issue.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is Cray’s representative to X3J11 and a major contributor
to the floating-point enhancements made by the ANSI standard. He spe-
cializes in the areas of floating-point, vector, array, and parallel processing
with C language and can be reached at (612) 681-5818, tam@cray.com, or
uunet!cray!hall!tam.
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6. Pragmania

Rex Jaeschke

Introduction

Welcome to the first installment of this column. I had little trouble coming up
with an appropriate column title since I had already installed several compilers
that understood numerous pragma directives. It seemed that, before long,
everyone would be jumping on a (different) pragma wagon.
At a first, and maybe even a second or third, glance, it seems most unusual

to have something in a language standard whose syntax and semantics are
implementation-defined. However, once an implementer lays back and thinks
of the possibilities, some pretty abstract ideas can arise. Many of these are
being implemented. I refer to pragmas as the “Pandora’s Box of ANSI C.”
(If you remember your Greek mythology, when Pandora opened her box all
evils were released. Only hope remained. You can decide for yourself whether
pragmas represent the evil or the hope. I think they are a mixed blessing.)
Now I don’t mind the concept of the pragma directive. In fact, I strongly

endorse it. However, I do have one problem and that has to do with the following
sentence in the Draft Standard.

“Any pragma that is not recognized by the implementation is
ignored.”

Just what does “recognized” mean? Specifically, can an implementer diag-
nose a misspelled pragma really intended for it? For example, if the following
pragma is defined for a given implementation,

#pragma ABCD stuff

can the following directives be diagnosed by that implementation or are they
“not recognized?”

#pragma ABDC stuff
#pragma ABCD stuxx

Actually, there are two problems one can encounter with pragmas. The
first involves a misspelled use of a pragma directive actually intended for the
translator that ignores it. The second involves porting code containing pragmas
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where the target translator does not ignore the pragmas. Rather, it gives them
semantics other than originally intended. Perhaps the first type of problem will
be more common; but both, no doubt, will occur.
Just what is a reasonable solution to this issue? Without any standard

pragmas it is difficult if not impossible to generalize an approach. Certainly,
we could specify just how many preprocessing tokens should match before you
accept a directive as actually being “intended for me but misspelled,” but that
would involve some sort of policing of leading token name space and it would
require every pragma to have at least that many tokens.
It seems to me that most implementers will have to provide some mecha-

nism to report “quality of implementation” messages. The pragma issue could
be handled that way. Specifically, I would like to see a translator write a warn-
ing (or, possibly, informational) message to stderr for every pragma that it
accepted or rejected. That is the only way the programmer can reliably detect
pragma misspellings or misinterpreted “foreign” pragmas. As someone who
much more closely fits the profile of a user than an implementer, I urge de-
velopers to seriously consider this proposal. Without it, debugging a pragma
directive containing transposed characters could be expensive, particularly if
the pragma was supposed to subtly alter the way code was being generated.

Public Commentary

During a recent electronic exchange with Richard Stallman, Chief GNUisance at
the Free Software Foundation, he asked if I would be interested in his opinions
on #pragma. I was, so here they are.

“I consider it nearly useless, because it can’t appear in macros.
Almost any extension that is useful is useful in macros, so I design
it in terms of something other than #pragma. The only pragma I
have implemented is #pragma once, which is used in a header file
to say that duplicate #includes should be suppressed.
Also, the semi-standardness of pragma is of no help. Since you

can’t tell what #pragma foo will mean in some other compiler, it is
in practice no more standard than anything else you might invent.”

Reserving Pragma Name Spaces

I recall that way back when the #pragma directive was added to the proposed
C Standard, that many ANSI C members (at least privately) said it would be
a good idea for each vendor to have a unique prefix for its own pragmas. Of
course, vendors then went and implemented pragmas without following their
own advice. Whether this is simply a lack of thought, discipline, or perhaps
even an ego trip by some (since their pragmas were obviously so innovative that
everyone else should adopt them as spelled) remains to be disclosed.
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In any event, of the many implementations that I have come across that
are providing pragmas, I have seen only one that is using some sort of unique
company or product naming scheme. That is the Eco-C88 compiler for DOS,
from Ecosoft. All their pragmas begin with the token eco. Now, Hewlett-
Packard of Cupertino, California, is boldly taking the plunge. By the powers
vested in them by the State of California (and this publication), HP hereby
reserves the name space of all pragmas beginning as follows:

#pragma HP *
#pragma _HP *

for use by their compilers. Any vendor found violating this name space will be
sentenced to writing all their source using trigraphs.
If you have adopted some rational pragma naming conventions, please let me

know so I may similarly “reserve” that name space for you in this publication.

WATCOM’s V7 DOS Compiler

WATCOM has been implementing C language translation tools for a number
of years, primarily on IBM mainframes. However, a couple of years ago they
entered the already crowded MS-DOS marketplace with version 6 of their com-
piler. The most interesting aspect of this product, from this column’s point of
view, is the extent to which WATCOM has embraced the notion of pragmas.
The following information is reprinted with permission from WATCOM Sys-

tems, Inc. This material is extracted from their manual Optimizing Compiler
and Tools User’s Guide 2nd Edition, and is copyright c©1989 by WATCOM
Publications Limited. Except for minor editorial changes, the material pre-
sented here is taken verbatim from the above-mentioned manual. The original
text has been considerably shortened by omitting many DOS-specific examples
of code generation and other information that is neither central to the purpose
of this column nor necessary to understand the extract. Great care has been
taken so that the extracted material is not printed out of context.

Introduction

There are essentially four classes of pragmas:

1. pragmas that specify options

2. pragmas that specify default libraries

3. pragmas that describe the way structures are stored in memory

4. pragmas that provide auxiliary information used for code generation
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Using Pragmas to Specify Options

Currently, there are two options that can be specified with pragmas. They are,
unreferenced and check_stack.

unreferenced controls the way WATCOM C handles unused symbols. For
example,

#pragma on (unreferenced);

will cause WATCOM C to issue warning messages for all unused symbols. This
is the default. Specifying

#pragma off (unreferenced);

will cause WATCOM C to ignore unused symbols. Note that if the warning
level is not high enough, warning messages for unused symbols will not be issued
even if unreferenced was specified.

check_stack controls the way stack overflows are handled. For example,

#pragma on (check_stack);

will cause stack overflows to be detected and

#pragma off (check_stack);

will cause stack overflows to be ignored. When check_stack is on, WATCOM C
will generate a run-time call to a stack-checking routine at the start of every
routine compiled. This run-time routine will issue an error if a stack overflow
occurs when invoking the routine. The default is to check for stack overflows.
Stack overflow checking is particularly useful when functions are invoked recur-
sively. Note that if the stack overflows and stack checking has been suppressed,
unpredictable results can occur.
It is also possible to specify more than one option in a pragma as illustrated

by the following example.

#pragma on (check_stack unreferenced);

Using Pragmas to Specify Default Libraries

Default libraries are specified in object module comment records. These spe-
cial records are recognized by the WATCOM Linker and the library names
extracted. When unresolved references remain after processing all object files
specified in a linker FILE directive, these default libraries are searched after all
libraries specified in a linker LIBRARY directive have been searched.



36 The Journal of C Language Translation – June, 1989

By default, that is if no library pragma is specified, the WATCOM C com-
piler generates, in the object file containing main, default libraries corresponding
to the memory model used to compile the file. For example, if you have com-
piled the source file containing main for the medium memory model, references
to the libraries clibm and mathm will be placed in the object file.
If you wish to add your own default libraries to this list, you do so with a

library pragma. Consider the following example.

#pragma library (mylib);

The name mylib will be added to the list of default libraries specified in the
object file.
If the library specification contains characters such as \, :, or , (i.e., any

character not allowed in a C identifier), you must enclose it in double quotes as
in the following example.

#pragma library ("c:\watcomc\lib\graphics.lib");

If you wish to specify more than one library in a library pragma you must
separate them with spaces as in the following example.

#pragma library (mylib "c:\watcomc\lib\graphics.lib");

Pack Pragmas

The pack pragma can be used to control the way in which structures are stored
in memory. By default, WATCOM C aligns all structures and their fields on a
byte boundary. The following form of the pack pragma can be used to change
the alignment of structures and their fields in memory.

#pragma pack ( n );

where n is 1, 2, or 4 and specifies the method of alignment.
If n is 1, all subsequent structures and their fields are aligned on a byte

boundary. This gives the most compact use of storage.
If n is 2, all subsequent structures and their fields are aligned on a word

boundary. The size of the structure is rounded up to a multiple of 2.
If n is 4, all subsequent structures and their fields are aligned on a double

word boundary. The size of the structure is rounded up to a multiple of 4.
If no value is specified in the pack pragma, a default value of 1 is used.

(Note that the default value can be changed with the zpWATCOM C compiler
command line option.)



Pragmania – Jaeschke 37

Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

Specifying a Symbol’s Attributes

Auxiliary pragmas are used to describe a symbol’s attributes. All symbols have
default attributes as defined by WATCOM C. Initially, these default attributes
are assigned to all symbols. When an auxiliary pragma refers to a particular
symbol, you are changing its default attributes. Alternatively, if default is
specified for the symbol name, the attributes specified by the auxiliary pragma
becomes the default for all symbols. For example,

#pragma aux MyRtn ...;

sets the attributes for the symbol MyRtn while

#pragma aux default ...;

sets the default attributes for all symbols.

Alias Names

An alias name can also be specified with the symbol that the auxiliary pragma
refers to. When specified, the symbol referred to by the auxiliary pragma
assumes the attributes of the alias name in addition to the attributes specified
in the auxiliary pragma. Consider the following example.

#pragma aux MS_C "_*" \
parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];

#pragma aux (MS_C) Rtn1;
#pragma aux (MS_C) Rtn2;
#pragma aux (MS_C) Rtn3;

The routines Rtn1, Rtn2 and Rtn3 assume the same attributes as the alias
name MS_C. The alias name MS_C defines the calling convention used by Mi-
crosoft C. Whenever calls are made to Rtn1, Rtn2, and Rtn3 the Microsoft C
calling convention will be used.
Note that if the attributes of MS_C change, only one pragma needs to be

changed. If we had not used an alias name and specified the attributes in each
of the three pragmas for Rtn1, Rtn2 and Rtn3, we would have to change all
three pragmas. This approach also reduces the amount of memory required by
the compiler to process the source file.
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Special Symbols

Three symbols are treated in a special way by the WATCOM C compiler. If
you use one of the keywords cdecl, fortran, or pascal in a function declara-
tion, the calling conventions used for that function will be those defined by the
corresponding auxiliary pragma.
For example, if we define a pragma for the symbol cdecl then any function

that is declared with that keyword will be called using the method described
by the pragma.

#pragma aux cdecl ...;

The actual definitions for these pragmas are included in the header file
stddef.h in the WATCOM C package. The cdecl pragma that is provided
by WATCOM C defines the calling conventions used by WATCOM Express C
[WATCOM’s interactive development environment].

Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping
of a symbol from its source form to its object form.

#pragma aux symbol name object name ;

where

symbol name is any valid C identifier

object name is any character string enclosed in double quotes.

When specifying object name, the * character has a special meaning; the
asterisk is replaced by symbol name.
In the following example, the name MyRtn will be replaced by MyRtn_ in the

object file.

#pragma aux MyRtn "*_";

This is the default for all function names.
In the following example, the name MyVar will be replaced by _MyVar in the

object file.

#pragma aux MyVar "_*";

This is the default for all variable names.
The default mapping for all symbols can also be changed as illustrated by

the following example.
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#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and
suffixed by an underscore ( ).

Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a
function is to be called.

#pragma aux function name far;
or

#pragma aux function name near;
or

#pragma aux function name = {constant} ;

where constant is a valid C integer constant.
In the following example, WATCOM C will generate a far call for all calls

to the function MyRtn.

#pragma aux MyRtn far;

Note that this overrides the calling sequence that would normally be gener-
ated for a particular memory model. In other words, a far call will be generated
even if you are compiling for a memory model with a small code model.
In the following example, WATCOM C will generate a near call for all calls

to the function MyRtn.

#pragma aux MyRtn near;

Note that this overrides the calling sequence that would normally be gen-
erated for a particular memory model. In other words, a near call will be
generated even if you are compiling for a memory model with a big code model.
In the following example, WATCOM C will generate the sequence of bytes

following the = character in the auxiliary pragma whenever a call to Mode4 is
encountered. Mode4 is called an in-line function.

void Mode4( void );
#pragma aux Mode4 = \

0xB4 0x00 /* mov AH,0 "set mode" function */ \
0xB0 0x04 /* mov AL,4 mode 4 */ \
0xCD 0x10 /* int 10H BIOS video call */ \
modify [ AH AL ];
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The above example demonstrates how to generate BIOS or DOS function
calls in-line without writing an assembly language function and calling it from
your C program. The C prototype for the function Mode4 is not necessary but is
included so that we can take advantage of the argument type checking provided
by WATCOM C.

Describing Argument Information

Using auxiliary pragmas, you can describe the calling convention that WAT-
COM C is to use for calling functions. This is particularly useful when inter-
facing to functions that have been compiled by other C compilers or functions
written in other programming languages such as FORTRAN.
The general form of an auxiliary pragma that describes argument passing

is the following.

#pragma aux function name parm [caller or routine]
[reverse] {reg set} ;

where reg set is called a register set. The register sets specify the registers that
are to be used for argument passing. A register set is a list of registers separated
by spaces and enclosed in square brackets.

Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers
that are to be used to pass arguments to a particular function.

#pragma aux function name parm {reg set} ;

where reg set specifies the registers that are to be used for argument passing.
Register sets establish a priority for register allocation during argument list

processing. Register sets are processed from left to right. However, within a
register set, WATCOM C is free to choose registers in any order. Once all
register sets have been processed, any remaining arguments are pushed on the
stack.
Note that regardless of the register sets specified, WATCOM C will only

select certain combinations of registers for arguments of a particular type.
[The details of how register passing is implemented are specific to the Intel

chips and have been omitted.]
The following example shows the specification of two register sets.

#pragma aux MyRtn parm [AX BX CX DX] [SI DI];

An empty register set is permitted. All subsequent register sets appearing
after an empty register set are ignored; remaining arguments go on the stack.
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Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you want a
routine, say MyCopy, that copies data from the default data segment (pointed
to by segment register DS) to far memory (memory outside of the default data
segment). The first argument is the source and is of type “near pointer.” The
second argument is the destination and is of type “far pointer.” The third
argument is the length to copy and is of type int. If we want the first argument
to be passed in the register SI, the second argument to be passed in the register
pair ES:DI and the third argument to be passed in register CX, the following
auxiliary pragma can be used.

void MyCopy( char near *, char far *, int );
#pragma aux MyCopy parm [SI] [ES DI] [CX];

Note that you must be aware of the size of the arguments to ensure the
proper mapping.

Passing Arguments to In-Line Functions

For functions whose code is generated by WATCOM C and whose argument
list is described by an auxiliary pragma, WATCOM C has some freedom in
choosing how arguments are assigned to registers. Since the code for in-line
functions is specified by the programmer, the description of the argument list
must be very explicit. To achieve this, WATCOM C assumes that each register
set corresponds to an argument. Consider the following in-line function called
ScrollActivePgUp.

void ScrollActivePgUp(char,char,char,char,char,char);
#pragma aux ScrollActivePgUp = \

0xB4 0x06 /* mov AH,6 select "scroll up" */ \
0xCD 0x10 /* int 10H BIOS video call */ \
parm [CH] [CL] [DH] [DL] [AL] [BH] \
modify [AH];

When passing arguments, WATCOM C will convert the argument so that
it fits in the register(s) specified in the register set for that argument. For
example, in the above example, if the first argument to ScrollActivePgUpwas
called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required
its argument in the register pair DX:AX and the argument was of type int, the
argument would be converted to long int before assigning it to the register
pair DX:AX.
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In general, WATCOM C assigns the following types to register sets.

• A register set consisting of a single 8-bit register (1 byte) is assigned a
type of unsigned char

• A register set consisting of a single 16-bit register (2 bytes) is assigned a
type of unsigned int

• A register set consisting of two 16-bit registers (4 bytes) is assigned a type
of unsigned long int

• A register set consisting of four 16-bit registers (8 bytes) is assigned a
type of double

Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack
arguments that were passed on the stack.

#pragma aux function name parm caller or routine ;

caller specifies that the caller will pop the arguments from the stack;
routine specifies that the called routine will pop the arguments from the stack.
If caller or routine is omitted, routine is assumed unless the default has
been changed in a previous auxiliary pragma, in which case the new default is
assumed.

Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed
in the reverse order. That is, the rightmost argument is processed first and the
leftmost argument is processed last.

#pragma aux function name parm reverse;

Normally, arguments are processed from left to right.

Describing Function Return Information

Using auxiliary pragmas, you can describe the way functions are to return val-
ues. This is particularly useful when interfacing to functions that have been
compiled by other C compilers or functions written in other programming lan-
guages such as FORTRAN.
The general form of an auxiliary pragma that describes the way a function

returns its value is the following.
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#pragma aux function name value [reg set]
[struct return] ;

struct return ::= struct [float] [struct]
[routine or caller] [reg set]

Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers
that are to be used to return a function’s value.

#pragma aux function name value reg set ;

Depending on the type of the return value, only certain registers are allowed
in reg set.

[The specific register allocation scheme has been omitted.]

Returning Structures

Typically, structures are not returned in registers. Instead, a pointer to the
structure is returned in a register. By default, the caller allocates space on
the stack for the structure return value and sets register SI to point to it. The
following form of the auxiliary pragma can be used to specify the register which
points to a structure return value.

#pragma aux function name value struct
(caller or routine) reg set ;

caller specifies that the caller will allocate memory for the return value.
The address of the memory allocated for the return value is placed in the register
specified in the register set, by the caller, before the function is called.

routine specifies that the called routine will allocate memory for the return
value. Upon returning to the caller, the register specified in the register set will
contain the address of the return value.

[The specific register details have been omitted.]
The following form of the auxiliary pragma can be used to specify that

structures whose size is 1, 2, or 4 bytes are not to be returned in registers.
Instead, the caller will allocate space on the stack for the structure return value
and point register SI to it.

#pragma aux function name value struct struct;

The following form of the auxiliary pragma can be used to specify that
function return values whose type is “single” or “double” are not to be returned
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in registers. Instead, the caller will allocate space on the stack for the floating-
point return value and point register SI to it.

#pragma aux function name value struct float;

A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function
that does not return to the caller.

#pragma aux function name aborts;

For such functions, WATCOM C generates a JMP instruction instead of a
CALL instruction.

Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe a function
that does not modify any memory (i.e., global or static variables) that is used
directly or indirectly by the caller. This pragma causes the code generator to
omit the updating of in-memory copies of variables across function calls.

#pragma aux function name modify nomemory;

The preceding auxiliary pragma deals with routines that modify memory.
Let us consider the case where routines reference memory. The following form of
the auxiliary pragma can be used to describe a function that does not reference
any memory (i.e., global or static variables) that is used directly or indirectly
by the caller.

#pragma aux function name parm nomemory modify nomemory;

You must specify both parm nomemory and modify nomemory.

Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers
that a routine will use without saving.

#pragma aux function name modify [exact] reg set ;
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Specifying a register set informs WATCOM C that the registers belonging
to the register set are modified by the function. That is, the value in a register
before calling the function is different from its value after execution of the
function. Hence, if necessary, code will be generated to save and restore the
contents of that register.
Registers that are used to pass arguments are assumed to be modified and

hence do not have to be saved and restored by the called routine. If necessary,
the caller will contain code to save and restore the contents of registers used to
pass arguments. Note that saving and restoring the contents of these registers
may not be necessary if the called routine does not modify them. The following
form of the auxiliary pragma can be used to describe exactly those registers
that will be modified by the called routine.

#pragma aux function name modify exact reg set ;

The above form of the auxiliary pragma tells WATCOM C not to assume
that the registers used to pass arguments will be modified by the called routine.
Instead, only the registers specified in the register set will be modified. This
will prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to
the 80x87 [floating-point processor]. The discussion in this chapter assumes that
the “7” option is used to compile functions. The following areas are affected by
the use of the “7” option:

• passing floating-point arguments to functions

• returning floating-point values from functions

• which 80x87 floating-point registers are allowed to be modified by the
called routine

Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed in 80x87 floating point registers.
Only four floating-point registers are used to pass floating-point arguments.
When these floating-point registers are exhausted (more than four floating-point
arguments are passed), the remaining floating-point arguments are passed on
the stack. The 80x86 registers are never used to pass floating-point arguments
when a function is compiled with the “7” option. However, they can be used
to pass arguments whose type is not floating-point such as arguments of type
int.
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The following form of the auxiliary pragma can be used to describe the
registers that are to be used to pass arguments to functions.

#pragma aux function name parm {reg set} ;

reg set can contain 80x86 registers and/or the string "8087".
If an empty register set is specified, all arguments, including floating-point

arguments, will be passed on the 80x86 stack.
When the string "8087" appears in a register set, it simply means that

floating-point arguments can be passed in 80x87 floating-point registers. If the
string "8087" was not specified in the register set, all floating-point arguments
would be passed on the stack.

Using the 8087 to Return Function Values

The following form of the auxiliary pragma can be used to describe the way a
function return value is returned.

#pragma aux function name value reg set ;

If the register set contains the string "8087", floating-point values will be
returned in 80x87 floating-point register ST(0). If "8087" is not specified in
the register set, floating-point values will be returned on the stack. The caller
will allocate space on the stack for the return value and point register SI to it.
No 80x86 registers will be used to return floating-point values when a function
is compiled with the “7” option.

Preserving 80x87 floating-point Registers Across Calls

Four of the eight 80x87 floating-point registers are used for a function’s local
variables. These four floating-point registers are known as the 80x87 cache.
When a function is called, the registers in the 80x87 cache must be preserved.
The following form of the auxiliary pragma specifies that the floating-point
registers in the 80x87 cache may be modified by the specified function.

#pragma aux function name modify reg set ;

reg set is a register set containing the string "8087".
This instructs WATCOM C to save any local variables that are located in

the 80x87 cache before calling the specified routine.
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Submit Details of Your Pragmas

In future installments I’ll be looking at interesting and useful pragmas from
various MS-DOS compilers, DEC’s VAX C V3, and the new Cray Standard C
compiler, among others.
If you would like your favorite pragmas discussed, either send me details via

e-mail or mail a copy of the user manual. Perhaps you even have a proposal for
some new pragmas you would like to see implemented. For example, anyone
out there interested in something like #pragma lint ...?

∞



7. Standards Forum: Type Qualifiers

Jim Brodie
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Abstract

This article looks at the type qualifiers, const and volatile. It pro-
vides a brief background on why they were included into the language.
It then discusses the issues which an implementer must deal with when
introducing them into a conforming translator.

Introduction

As you begin or continue the process of upgrading your translator to support the
C language as defined by the upcoming ANSI C standard, you will be confronted
with some important changes that may have a wide-ranging impact. One of
these changes is the introduction of the type qualifiers const and volatile.
In this article we will explore the const and volatile type qualifiers and the
impact that their addition has on a translator implementation.

Background

The const type qualifier was originally borrowed from C++, although similar
concepts and facilities are available in other languages, such as Pascal. The
const qualifier allows the programmer to state that the value of a data object
should be unchanging. With this information, the translator is expected to help
detect and diagnose (presumably accidental) attempts to change the value.
In addition, the translator can use this information to help it make various
optimization decisions (e.g., to avoid unnecessary loads).
The volatile type qualifier is a creation of the committee. volatile al-

lows programmers to inform the translator that most optimizations are not
appropriate when generating code that accesses a particular data object.
The volatile qualifier is used when a programmer needs to indicate that

a memory location has special properties. The standard says:

“An object that has volatile-qualified type may be modified in
ways unknown to the implementation or have other unknown side
effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine.”

48
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The abstract machine is a hypothetical environment where every operation
is performed exactly as described in the standard. (Issues of optimization are
irrelevant.)

volatile-qualified types can be used with memory-mapped I/O locations
such as exist in a microprocessor-based system. For example, in most Motorola
MC680x and MC680x0 processor based systems, communications with devices
is performed by mapping certain memory addresses to physical device control
registers rather than to real memory. A program communicates with devices
by performing what appears to the processor to be normal loads and stores
of memory. These loads and stores, however, cause special actions such as
resetting device states or instituting data transfers.
The protocols for handling these devices often include what, to a program

working with normal memory, may seem to be unnecessary operations.
A C program that is interacting with a memory mapped device may include

fragments such as:

volmem = 0;
volmem = 0;

or

for (i = 1; i < num; i++)
{
volmem = 1;
a[i] = volmem2;
}

In most situations a programmer would want the translator to detect oppor-
tunities for speeding up the code by eliminating “extraneous” stores and loads
of memory. There are several opportunities to perform these optimization in
the above code fragments. Unfortunately, if these optimizations are performed
when accessing a memory mapped I/O device, the program will no longer work.
Memory mapped I/O is not the only case where data object values may

change in ways unknown to the implementation. Similar problems can also
arise when memory locations are used to communicate between two executing
processes.
These situations, and others like them, make dangerous certain optimiza-

tions, such as using a previously fetched value which still resides in a register.
Perhaps another process has changed the value since the last access.
Translators that address markets where these special situations arise have

been caught between a rock and a hard place. Their customers always want very
efficient, highly optimized code, except when they don’t (because it will break
the program). Prior to volatile, there was no standard way of distinguishing
these two cases in a C program.
It is interesting to note that the real importance of volatile is that im-

plementers can perform more aggressive optimizations when it is not present.
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If the object’s type is not volatile-qualified, an implementer can assume that
they have complete control and know all of the ways a data object will be
modified.
Although the primary reason for using the volatile type qualifier is to con-

trol optimizations, the full inclusion of the const and volatile type qualifiers
will require that you make a variety of changes. You must, of course, accept
the new keywords const and volatile in declarations and casts, and modify
your optimizer. You must also change the type information that you save, how
you perform certain type checking operations, and possibly how you perform
code generation. Let’s look at some of these required changes.

Type Information Changes

One of the first changes an implementation will need to make is to save, along
with the current type information, whether the const and volatile type qual-
ifiers have been specified. This can be done in as little as a pair of one-bit
flags. Notice, however, that the type qualifiers are not a global property of a
complex type. Rather, they are associated with base type and/or the pointer
to decorations. There is a significant difference between:

int *const cpi = &a; /* const ptr to int */
const int *pci; /* ptr to a const int */
const int *const cpci = &x; /* const ptr to const int */

In the first case (cpi) the pointer is unchanging, in the second (pci) the int
object pointed to is unchanging, and in the third (cpci) both are unchanging.
The requirement to save volatile and const type qualifier information with
each pointer to decoration for a type may break various type information pack-
ing schemes where the array of, pointer to, and function returning attributes of
a type are packed as a series of small bit-fields in a word. (This approach has
its roots in the Ritchie and PCC compilers out of Bell Labs.)
Only the pointer type requires the volatile and const attributes. With

arrays, the qualifier is applied to the elements of the array, not the array type.
const and volatile have undefined effect on a function type.
Another issue that you need to deal with is how the type qualifiers interact

when type information is merged to create a new composite type. This occurs
when a second or later declaration for an external data object is encountered
in a translation unit. The type information from the multiple declarations is
used to determine the composite type.
Type merging may also occur when dealing with the second and third

operands of the conditional operator (?:). A translator must allow the sec-
ond and third arguments to be pointers which point to differently qualified
types (assuming that they are otherwise compatible). The information from
the two types is used to determine the resulting composite pointer type of the
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expression.
In both of these cases the type qualifiers are additive. If a type qualifier

appears in either of the types being merged, then the resulting composite type
includes the qualifier. For example, if the second argument for the conditional
operator has the type pointer to const int and the third argument has the
type pointer to volatile int, the type of the conditional operator result will
be pointer to const volatile int.
Types which include the const or volatile type qualifiers are distinct from

the types without these qualifiers. However, the standard requires that the
qualified and unqualified versions of a type have the same representation and
alignment requirements. This implies interchangeability of data objects with
qualified and unqualified types in situations such as arguments to functions,
return values from functions, and members of unions.
Type qualifiers deal only with the way data objects are accessed. Because

of this, type qualifiers do not have any effect on the type of an rvalue result
of an expression. The type information associated with rvalues never carries
along the type qualifiers. For example, after the declarations:

const int j = 3;
volatile int k = 4;

the resulting type of the expression

j + k

is simply int (not const volatile int).
There are several other areas where the type qualifiers are essentially ig-

nored. A translator must allow the comparison of pointers which point to
differently qualified types (assuming that they are otherwise compatible). A
translator must also allow the subtraction of pointers which point to differently
qualified types, assuming that they both point to elements within the same
array.
After looking at all of these places where an implementation needs to ignore

the type qualifiers, let’s look at a few places where the type qualifiers are taken
into account.

Type Checking Changes

Several changes must be made to the way an implementation checks types when
dealing with lvalues in expressions.
An implementation has always had to check that an lvalue on the left hand

side of an assignment (or an operand to an increment or decrement operator)
does not have an array type. Now an additional check must be made to ensure
that the lvalue does not have a const-qualified type. If a structure assignment
is being performed, none of the members of the structure addressed by the
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lvalue may have a const qualified type. You must, of course, test for const
members in structures within structures. An implementation needs to produce
a diagnostic if these restrictions are violated.
The assignment compatibility rules are also modified with respect to the

type qualifiers. A pointer with type pointer to type T may be assigned to a
pointer with type pointer to qualified version of type T. However the reverse
is not allowed. A pointer with type pointer to qualified version of type T may
not be assigned to a pointer with type pointer to type T. For example, you can
assign a pointer to char to a pointer to const char but you cannot assign a
pointer to const char to a pointer to char. Some other examples are:

const char * pcc;
char * pc;
volatile char *pvc;

pcc = pc; /* OK */
pc = pcc; /* INVALID, produce a diagnostic */
pc = pvc; /* INVALID, produce a diagnostic */
pcc = pvc; /* INVALID, produce a diagnostic */

The implementation is not required to diagnose indirect attempts to modify
a data object with a const-qualified type. For example:

const int ci = 5;
int *pi;

pi = (int *)&ci;
*pi = 7; /* INVALID, no diagnostic required */

Code Generation Changes

As discussed previously, the most dramatic impact of type qualifiers is in the
area of code generation and optimizations.
When a data object is defined with a const-qualified type, it may be placed

into read-only memory (ROM). Particularly in embedded system, this can be
a very useful option to have. The const qualifer also helps the optimizer make
less pessimistic assumptions about function calls. For example, common subex-
pressions which contain const global objects are not killed by subroutine calls;
and passing the address of objects with no qualifiers to functions whose formal
parameters are declared pointer to const type means the optimizer can assume
the function does not kill those objects via the formal parameters.
The biggest impact of the type qualifiers is the change that the volatile

type qualifier has on code generation. The standard puts severe limitations on
what optimizations can be performed in code that references data objects with
volatile-qualified types. The standard says:
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“At sequence points, volatile objects are stable in the sense that
previous evaluations are complete and subsequent evaluations have
not yet occurred.”

This rule prevents many common optimizations (e.g., code motion or com-
mon sub-expression elimination across sequence points). It may require changes
both in an implementation’s initial code generation algorithms and in its peep-
hole or global optimizer (if they are included).
Sequence points, by the way, occur at the end of the first operand in the logi-

cal AND (&&), logical OR (||), conditional (?:), and comma (,) operators. The
call to a function, after all of the arguments and the function designator have
been evaluated, is also a sequence point. A sequence point also occurs at the
end of a “full expression,” which is an expression that is not a sub-expression.
Full expressions include the expression in an expression statement, the selection
expressions in the if and switch statements, the controlling expression in the
while and do statements, the three expressions in the control portion of the
for statement, and the optional expression in the return statement.
While there are restrictions on any movement of expression evaluation in-

volving access of a data object with a volatile-qualified type, there still re-
mains some limited opportunities for optimization within the interval between
two sequence points. For instance, you can still use the rearrangement of com-
mutative operators in expressions such as:

7 + vol + 22

to obtain (in the absence of concerns about introducing overflow):

7 + 22 + vol and with constant folding, to 29 + vol

The revised expression saves a run-time addition. You could also convert:

1 * vol

to simply:

vol

When X3J11 initially considered the addition of the volatile keyword,
many members assumed that it would mean that there would be some fixed
rules for the number of accesses which could be made to volatile objects. For
example, there must be exactly one access per reference in an expression. After
some study it was realized that this was simply not practical. There are too
many limitations which arise in real world hardware. For example, on word-
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oriented hardware (which always accesses memory multiple bytes at a time)
it may not be possible to avoid accessing a volatile location immediately
adjacent to another data object, even when it is not being referenced in the
current expression. Depending on the size and current alignment of a data
object, it may not be possible to access an entire data object in a single load
operation.
An implementation is given a lot of leeway when deciding how and when

volatile data objects will be accessed. It is, however, required to detail in
its documentation what constitutes an access to a data object with volatile-
qualified types. This information can then be used by the programmer to select
the correct type for his programming needs. Note, however, that you cannot
write a program that reliably accesses volatile data objects across multiple
implementations.
When doing optimizations within an interval bounded by two sequence

points, an implementation needs to ensure that the optimized code satisfies
the rules for the number and types of accesses (loads and stores) described
in the documentation. How much leeway they have depends on what will be
acceptable to their customer base.

Conclusion

The addition of the new type qualifiers const and volatile is not a trivial ex-
ercise. There are numerous changes in several places in almost any translator.
However, the addition of this facility gives the programmer a way to supply use-
ful information to the translator. The const and volatile type qualifiers are
important new tools which will allow C translators to produce very high quality
code without compromising the programmer’s ability to effectively perform low
level tasks from within C.

Jim Brodie is the convener and Chairman of the ANSI C standards com-
mittee, X3J11. Jim is also President of Brodie and Associates, a consulting
company based in Phoenix, Arizona. His latest book Standard C: A Quick Ref-
erence Guide was coauthored with P.J. Plauger and was published by Microsoft
Press. Jim is the Standards Editor for The Journal of C Language Translation.
He can be reached at (602) 961-0032 or uunet!aussie!jimb.

[Editor’s note: We would like to use this column to discuss issues related to,
and problem areas in, the C standard. If you have any issues or problems which
you would like to see addressed, contact Jim at shown above.]

∞



8. Parallel Programming: Linda Meets C, Part I

Jerrold Leichter
Yale University

and
Digital Equipment Corporation

Abstract

Linda is a programming model for developing explicitly parallel pro-
grams. It is radically different from such familiar models as message
passing and remote procedure call. Linda is not a complete programming
language; it is designed to be injected into existing languages like C, thus
making them parallel.

Introduction

There is broad agreement that the future of computing will involve the use of
parallel, sometimes physically distributed, machines. How are those machines
to be programmed?
Various approaches have been suggested. Some advocate leaving the prob-

lem to the compiler, whether an automatically parallelizing compiler for a tra-
ditional language like FORTRAN, or one for a super-high-level functional lan-
guage. Others advocate making the raw communications hardware visible to the
application programmer, whether it is a message-passing network or a shared
memory. Still others build higher-level models, whether new ones like monitors
or extensions of old ones like remote procedure calls.
Linda falls into this last group. It is a programming model for parallel com-

putation. It differs from other models in significant ways, ways we believe make
it more flexible and effective. Linda’s programming model is at a higher level
than many, and as a result is implementable across a broad range of machines,
from shared-memory multiprocessors to distributed “machines” consisting of
nodes on a network. But it is low enough in level so that these implementa-
tions can be efficient. In this way, it is philosophically close to C: It is intended
to provide the programmer with power without saddling him with unnecessary
and expensive machinery.
Linda is not a programming language; it is a set of objects, and operations

on those objects, which can be “injected” into an existing sequential language to
transform it into a parallel programming language—that is, a language in which
process creation and coordination are supported in the same way that sequential
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operations like looping are supported in traditional languages. Because of the
similar approaches they take to the programming problem, an injection of Linda
into C is natural. Although some work on versions of Linda in other sequential
languages has been done, most of our efforts at Yale have centered on C.
In this and subsequent articles, we’ll discuss the Linda programming model,

the issues that arise in trying to fit it into C, and the languages that have
resulted. We’ll also discuss some of the implementation issues that arise.

The Linda Programming Model

The Linda programming model was first proposed by David Gelernter in his
doctoral dissertation3 about five years ago. He coined the name generative
communication to describe it. Gelernter’s original work envisioned a complete
programming language. Over the years, the essence of generative communica-
tion has been distilled out of the original proposal, and has evolved into the
language-independent model we will describe.

Fundamental Objects

Linda is based on two fundamental objects: tuples and tuple spaces.
Tuples are collections of fields. Fields have fixed types associated with them;

the types are drawn from the underlying language. A field can be a formal or
an actual. A formal field is a place-holder—it has a type, but no value. An
actual field carries a value drawn from the set of possible values allowed for
that type by the underlying language.
If we take C as a concrete example, then:

〈1int, 1.5float, 2int〉

is a tuple with three fields: Two integers, 1 and 2, and a floating point value,
1.5. It is essential to distinguish it from the tuple:

〈1int, 1.5float, 2float〉

which differs in the type of its third field.
The previous two tuples contain only actual fields. The tuple:

〈
1int, float

〉

contains an integer actual, and a float formal.
The definition of the Linda language places no a priori restrictions on what

types are allowed. Any type from the underlying language is allowed. In the
3“An Integrated Microcomputer Network for Experiments in Distributed Computing”,

State University of New York at Stony Brook, 1982. See also, his paper “Generative Com-
munication in Linda”, TOPLAS, Volume 7, number 1, January 1985.
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case of C, arrays, structs, and pointers, among others, might be reasonable.
We’ll see later that, in practice, we want to be somewhat more restrictive.
Tuples, in turn, live in tuple space, which is simply a collection of tuples. It

may contain any number of copies of the same tuple. In mathematical terms,
it is a bag, not a set. Tuple space is the fundamental medium of communica-
tion in Linda. Linda processes communicate through tuple space: All Linda
communication is a three-party operation—Sender interacts with tuple space,
tuple space interacts with Receiver—rather than a two-party operation as in
traditional models.
Tuple space is a global, shared object—all Linda processes that are part of

the same Linda program have access to the same (logical) tuple space. In fact,
it is access to this shared object that defines what processes constitute a single
Linda program.

The Operators

The out operator inserts a tuple into tuple space. For example, if f is a float
variable with value 1.5, and i is an int variable with value 2, then:

out(1,f,i)

would insert into tuple space the tuple we saw earlier, 〈1int, 1.5float, 2int〉 .
The in operator extracts tuples from tuple space. It finds tuples that match

its arguments, in a sense we will describe shortly. However, equal tuples match,
so the tuple of the previous paragraph could be extracted by the operation:

in(1,1.5,2)

Formal fields are denoted by a question mark prefix. What should follow a
question mark is language-dependent. The intent is that it should be “anything
that can go to the left of an equal sign.”
When a formal is used in an in, any actual in a tuple in tuple space will

match. The operation

in(1,?f,1)

might extract the same tuple as our earlier operation, 〈1int, 1.5float, 2int〉 . In
addition to removing the tuple, it would bind (assign) 1.5 to f. Note that the
type of f is significant—for this match to be possible, f must have type float.
If f has any other type, even double, the match will not succeed.
After an in operation, the tuple matched is removed from tuple space.

The rd operator is similar to in, but leaves the matched tuple in tuple space
unchanged. It is used for its side effects—bindings and synchronization.
The “?” prefix may be used with out as well. The tuple

〈
1int, float

〉

could be produced by:
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out(1,?f)

The eval operation is a variation on out. Like out, it inserts a tuple into
tuple space. However, the tuple is inserted in unevaluated form. Suppose g is
a function producing a float. Then the operation:

eval(g(x)+5.)

produces an active tuple:
〈g(x)+5.float〉

An active tuple cannot be matched by any in or rd operation. It begins
evaluating as soon as it is created. In our example, when g completes execution
and returns (if it ever does), the active tuple becomes an “inactive” tuple,
specifically,

〈(g’s value + 5.)float〉
This tuple can be matched in the usual way; for example, it might be matched
by

in(?f)

where f is a float variable.

Tuple Matching

The in and rd operators are defined in terms ofmatching. Call the tuple defined
by the fields in an in or rd a template. A template M matches a tuple T in
tuple space if:

• M and T have the same number of fields;

• Corresponding fields have the same types;

• Each pair of corresponding fields FM and FT match as follows:

– If both FM and FT are actuals, they match if and only if their
respective values are equal, where equality is defined by the base
language for objects of this type;

– If FM is a formal and FT is an actual, they match; the value of
FT may eventually be bound. No binding takes place unless all the
fields match, however.

– If FM is an actual and FT is a formal, they match unconditionally.
The value of FM is discarded.

– If both FM and FT are formals, they never match.

If no matching tuple can be found in tuple space, in and rd block, and the
process waits for a tuple to appear. If there is more than one matching tuple,
in and rd choose one non-deterministically.
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Examples

Some simple examples illustrate the uses of the Linda constructs. While we
haven’t yet discussed how to embed the Linda operations in C, in these examples
we will stick to constructs whose meaning should be clear.
Simple message passing can be accomplished quite easily. Suppose that the

sending process has executed:

out("Node 1",3.14159);

After the receiver process (Node 1) completes

in("Node 1",?val);

the value of variable val will be 3.14159, and the two operations will have
effected the transfer of a floating-point value from the sender to Node 1.
Many parallel computations can be organized as a master and a group of

workers. Suppose the master requires the results of one hundred computations,
and these computations may be performed in parallel. The outline of the master
process is then:

for (i = 0; i < 100; i++)
out("Do this",i);

for (i = 0; i < 100; i++)
{ in("Result",?j,?result);

result_vec[j] = result);
}

The corresponding workers have the form:

while(1)
{ in("Do this",?job);

result = do_the_job(job);
out("Result",job,result);

}

The traditional fork/join constructs for creating and waiting for a parallel
process are easily implemented. We implement fork as an eval of a tuple
consisting of the code to be forked, and join as an in of the final value of that
tuple. The value to which the forked expression evaluates is available to the
code which does the in. It might be a status value if one is desired, or it may
be some meaningless value which can be discarded
Finally, the unlikely-seeming ability to place formals in tuples is rarely

needed, but is present to allow for possibilities like the following. Imagine that
we have a number of equivalent servers—for concreteness, say printer servers.
We are willing to start a communication with any of them, but having started
with one we must continue with it. Suppose my_id contains some kind of unique
identifier in each process. Servers execute
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in("Request",my_id,?client,?params);

to wait for work. Clients execute

out("Request",?server,my_id,params);

to contact any server. The server that receives a tuple replies with a tuple
containing its own identity:

out("Response",client,my_id);

which the client retrieves using

in("Response",my_id,?server);

From then on, the client may reach its particular server by executing out’s of
the form:

out("Request",server,my_id,params);

Summary of Current Status

Two different embeddings of Linda in C have been implemented at Yale. We
will talk about them in subsequent articles.
Well over a dozen papers about Linda have appeared in the literature, but

except for the Supercomputing ’88 paper, which deals with the VAX network
system, most earlier articles about Linda are out of date. If you want current
reports or users’ manuals, drop us a line.
Linda has been used for a pretty wide variety of purposes, ranging from

numerical codes to simulation, theoretical parallel algorithm design, biological
applications, and on-line intelligent monitoring.
There is a Linda user’s mailing list on the Internet. To be added to the list,

send a subscription request to any of the following addresses:

linda-users-request@cs.yale.edu
linda-users-request@yalecs.bitnet
[ucbvax!]decvax!yale!linda-users-request

Jerrold Leichter is completing his doctoral research, which includes an im-
plementation of Linda for shared-memory and networked VAXes, at the Yale
University Department of Computer Science. He is also a long-time employee of
Digital Equipment Corporation, whose Graduate Engineering Education Pro-
gram supported him during some of his work. He may be reached electronically
as leichter-jerry@cs.yale.edu.

∞



9. Miscellanea

compiled by Rex Jaeschke

A Note on wchar_t Support

When the multibyte stuff was proposed in ANSI C, quite a few members bought
in to the idea on the understanding that it “really wouldn’t cost them much” if
they didn’t care to sell to that marketplace. Some vendors are now finding out
what that “small” cost is, thanks in part to Plauger’s article in the sample issue.
At least one of these vendors had (incorrectly) assumed they could simply ignore
the L preceding a wide character constant, treating it as a “normal” character
constant. The standard states:

“A wide character constant has type wchar_t ... which is an
integral type ...”

which means wchar_t can be a char type. If an implementation chooses to
equate wchar_t and char then:

sizeof(wchar_t) == sizeof(L’x’) == sizeof(char)

Therefore, the standard now allows an integer constant to have type char.
(Previously, all integer constants had type int or greater.) This means an
implementation cannot just ignore the L prefix on a character constant because
'x' has type int while L'x' has type char. (If you map wchar_t to int, then
string literals of the form L"abc" become arrays of int.)
Apparently, the Plum-Hall test suite has a check of the form

if (sizeof(wchar_t) != sizeof(L’x’))
complain();

Another reason the leading L cannot be ignored has to do with the stringize
preprocessor operator #. For example,

#define M(a) #a

char *pc = M(L’a’);

61
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The string produced by expanding the macro will be "’a’" if the L is ignored
when it should be "L’a’".
Note too, that you can use the token pasting operator ## to construct a

wide character constant as well as a wide character string literal. That is, the
L prefix can be pasted onto a string during preprocessing.

Questionnaire Results

In December, 1988, the first promotional literature for this publication was
mailed to about 1,300 people world-wide. Enclosed was a questionnaire con-
taining a list of more than 60 topics against which respondents were asked to
identify their interests. 90 people responded and the results are summarized
below. While the primary targets of the mailing were known implementers
of C language translation tools and libraries, several hundred knowledgeable
applications programmers were also included.
The interest in the items listed follows, with topics shown in descending

order of frequency.

Questionnaire Results
Count Topic
61 Optimization
59 Standards conformance and test suites
55 Inter-language calling conventions
54 In-line functions
54 Classes (ala C++)
54 Aliasing issues
53 Standards activities
53 C++ and other prior art
52 Concurrency support (parallel processing)
51 Quality of implementation issues
50 Prototypes
45 Floating-Point issues in general
43 Preprocessor issues in general
42 Headers, macros and library functions
41 Arrays as first class objects
40 Environment control (OS, machine, etc.)
39 RISC architectures
39 Pragmas
39 Namespace pollution lists
39 International issues
39 Anonymous unions (as in Pascal variant records)
39 Address space pointers – near/far pointers
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Questionnaire Results (cont)
Count Topic
38 Vector support
38 Floating-point IEEE issues
37 void * experiences
37 Semantics for register in prototypes
36 Strong enum typing
36 Semantics for shared file access
36 Includability of a header
35 volatile
35 yacc and ANSI C
35 Cardinal/unsigned arithmetic issues
35 Benign typedefs and tags
35 Automatic aggregate initializers
34 const
33 typeof() operator
33 case ranges
33 alignof() operator
33 Line-oriented comments (as in C++)
32 constructors
32 External names – spelling and length
32 Common shared regions
31 ASM – in-line assembler
31 Screen I/O control (as in curses)
31 Initializer repeat counts
31 Default parameter values in functions
30 Teaching ANSI C – terminology and issues
30 Preprocessor I/O (#in, #out)
29 long double
29 errno
29 Word architectures
29 Representation control (e.g., Integer*4)
29 Embedded environments
28 Zero-sized aggregates
27 Complex arithmetic
27 Charize (stringize for characters)
26 Named parameter association
26 Functions to inspect/report on heap state
26 Embedded SQL
25 #exit [message]
22 Permit statements to precede declarations
21 Flushing input streams – discarding scanf input
19 Large device support issues
16 Echo of stdin to stdout
14 Trigraphs
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• 47 respondents use an object-oriented language.

• 85 have been following the activities of the ANSI C committee.

• 66 use some flavor of UNIX, 39 use MS-DOS, 22 use VAX/VMS, 14 use
a Macintosh, and 20 ran on other hosted systems.

• 6 worked in free-standing environments.

• 45 were actually implementing C compilers, compiler development tools
or tools that generated C source. 16 developed support libraries and tools.

In addition to the topics listed above, more than 50 extra topics were iden-
tified by the respondents, with quite a few new topics being suggested multiple
times.
As a result, the editorial staff now has a better direction in which to focus

their efforts. Of course, if you have other suggestions please let us know. A
number of the “hot” topics will certainly be on the agenda at future meetings
of the Numerical C Extensions Group (NCEG) announced in the sample issue.
One particular editorial decision that has been made is that The Journal

will not be a C++ publication. Certainly, C++ has had, and may continue to
have, an influence on C. We may reflect that in an occasional article. However,
there is a sufficient number of publications providing editorial space for C++,
and there are plenty of other C-related issues for us to discuss. Also, there
are those among us who would suggest that C and C++ are quite separate
languages.

Electronic Polls

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results in the issue following. Examples of topics planned for the first poll are:

• What pragmas do you support?

• What predefined macros do you have?

• What structure member packing options do you provide, if any?

• If you support case ranges, what syntax do you use?

If you have any topics to add to a poll please send them to me. I will provide
the responses to you as soon as they arrive, as well as collating them for future
publishing. You don’t need to have an e-mail address to propose topics, only
to be polled.
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Calendar of Events

• July 10–14,Writing Fast Compilers – Provides broad coverage of com-
piler technology at an elementary level. Topics include language descrip-
tion, scanning, macro definition and expansion, parsing, symbol tables,
generators, code emitters, object modules, linkers, loaders, and debuggers.
Also, the theory of LALR parser generation and use.

Participants need no previous experience in compiler writing, but should
know C. The course leaders are Dr. William McKeeman and Gary Pollice.
Wang Institute of Boston University, 72 Tyng Road, Tyngsboro, MA
01879. (508) 649-9731. Cost is $1,475.

• August 7–11, Stanford University, Compiler Construction and Pro-
gramming Language Translation – State of the art methods for con-
structing compilers for modern high-level languages. Students will work
with compiler writing tools on a project. No compiler experience required.

Seminar leaders are Dr. Susan L. Graham, Dr. John L. Hennessy, and
Dr. Jeffery D. Ullman. The text will be Compiler Design: Principles,
Techniques, and Tools by Aho, Sethi and Ullman. Cost is $1,175. (916)
873-0575. (See the August 14–18 entry too.)

• August 8–12, International Conference on Parallel Processing.
Held at Pheasant Run resort in St. Charles, Illinois. The day before
and after the conference proper there will be tutorials offered. Contact
Dr. Peter M. Kogge, MS 0302, IBM Corporation, Route 17C, Oswego,
NY 13827, (607) 751-2291 or owego@IBM.COM.

Topics of interest from the advanced program include: software tools,
sorting and searching, compilers, algorithmic potpourri, languages, graphs
and trees, compilers – data dependences, and program transformations.
A tutorial called “Parallel Languages and Parallelizing Compilers” is also
being offered.

• August 14–18, Stanford University, Code Optimization and Code
Generation – A follow-on option from the previous week, run by the
same leaders. Cost is also $1,175, or $2,100 for both weeks.

• September 19–20, Salt Lake City, Numerical C Extensions Group
(NCEG) meeting – The second meeting will be held to consider pro-
posals by the various subgroups formed at the Minneapolis meeting in
May. It will precede the X3J11 ANSI C meeting being held at the same
location later that week. Contact Rex Jaeschke at (703) 860-0091 or
uunet!aussie!rex. The third meeting is scheduled for March 7–8, 1990, in
New York City.

• September 21–22, Salt Lake City, ANSI C X3J11 meeting – Spon-
sored by DECUS. This one-and-a-half day meeting will handle questions
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from the public, interpretations and other general business. Address cor-
respondence or enquiries to the vice chair, Tom Plum, at (609) 927-3770
or uunet!plumhall!plum. The following meeting is scheduled for March
5–6, 1990, in New York City.

• October 10–12, Frontiers of Massively Parallel Computation – To
be held at George Mason University, Fairfax, Virginia. Cosponsored by
IEEE. Conference chair is James Fischer at NASA, (301) 286-9412.

News, Products and Services

• A newC language validation suite has been announced. It is a joint ef-
fort by HCR Corporation of Toronto, Canada and ACE Associated Com-
puter Experts bv of Amsterdam, The Netherlands. They will jointly
market the C Test super-suite starting in the third quarter of 1989. For
more information contact Marco Roodzant at ACE, (31) 20 6646416 or
marco@ace.nl, or Heather Grief at HCR, (416) 922 1937. Validation suites
are also available from Plum Hall, (609) 927-3770 or uunet!plumhall!plum,
and Perennial, uunet!sun!practic!peren!beh or (408) 727-2255.

• In the market for a generic version of lint in source form? Gimpel Soft-
ware of Collegeville, PA is selling a generic version of their popular DOS
product PC-Lint. OEM enquiries are welcome. Call Anna at (215) 584-
4261.

• If you implement tools in the MS-DOS environment you might want
to take a look at LALR a parser generator from LALR Research of
Knoxville, TN. LALR V3.0 is a complete LALR(1) parser generator.
The $99 package includes grammars for Ada, BASIC, Turbo Pascal, and
Turbo C. Parser skeleton and error recovery source is provided, as is
source for a lexical scanner and syntax checker. 60-day money back guar-
antee. Hard to beat at that price. (615) 691-5257.

• METAMORPHOSIS is a generic utility that aids transformation of
syntactically reducible character-oriented files to any other form while
preserving the synonymy thereof. For example, it can translate Fortran
to Ada, Jovial to Ada, and any language to C. It also functions as a
custom compiler, assembler, macro processor, query language processor,
and report generator. Requires MS-DOS. J. H. Shannon Associates, Inc.,
PO Box 597, Chapel Hill, NC 27514. (919) 929-6863.

• Need to translate Pascal to C? Intermetrics, Inc., is now selling source
code to the seasoned product from Whitesmiths, Ltd. It supports ISO
Pascal (Level 1) plus numerous extensions, and comes with a Pascal run-
time library written all in C. Intermetrics, (617) 661-1840.
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• ANSI NEWS: Graphics folks may be interested in the Programmer’s Hi-
erarchical Interactive Graphics System (PHIGS), dpANS X3.144-198x,
which specifies a language-independent nucleus of a graphics system. A
C language binding was available for public comment through January 9
of this year.

Embedded SQL also has a proposed standard. It’s called X3.168-198x
and is dependent upon the SQL Standard X3.135-1986. The X3H2 Chair
is Donald Deutsch, at (301) 340-4580.

Copies of proposed and final ANSI standards (including our own X3J11
ANSI C effort) are available from:

Global Engineering Documents, Inc.
2805 McGaw Avenue
Irvine, CA 92714
(800) 854-7179
(714) 261-1455
Telex: 62734450

• IPT of Palo Alto, CA is shipping lint-PLUS, a static analysis tool for C
on VAX/VMS. Program trace and debugging options are also available.
(415) 494-7500.

• Need IEEE floating-point libraries in source form? US Software of
Portland, Oregon is shipping FPAC/DPAC for numerous Intel, Zilog, and
Motorola processors and microcontroller chips. (800) 356-7097 or (503)
641-8446.

• GeoMaker is shipping SymTab and PTree for DOS systems. SymTab
provides symbol table management capabilities, while PTree is a parse
tree manager. $49 and $69, respectively. (415) 680-1964 in Concord,
California.

∞



10. Books and Publications

We receive a continuous stream of C-specific and other books and publica-
tions. Those that make it through the filtering process will either be of interest
to C implementers or to their customers. Many product documentation sets
include “Recommended Reading” sections where further information can be
obtained about C, or ANSI C in particular. As such, some of the books we
review will make suitable additions to these lists.

Theory of Computation
Formal Languages, Automata, and Complexity

J. Glenn Brookshear
1989 Benjamin/Cummings

$37.95, 322 pages
ISBN: 0-8053-0143-7

reviewed by Rex Jaeschke

“I designed this book to serve as a text for a one-semester introductory
course in the theory of computation ... My goal in writing this book was to
present the foundations of theoretical computer science in a format accessible to
undergraduate computer science students. I wanted students to appreciate the
theoretical ideas as the foundation on which real problems are solved, rather
than viewing them as unusable abstractions.”
The main topics covered are: regular, context-free, and general phrase struc-

ture languages along with their associated automata; computability in the con-
text of Turing machines, partial recursive functions, and simple programming
languages; and complexity theory with an introduction to some of the open
classification problems relating to the classes P and NP.
The introduction provides a review course in set theory, the grammatical

basis of language translation, and some historical background.
The five main chapters cover: Finite automata and regular languages; Push-

down automata and context-free languages; Computability; Complexity; and
Turing machines and phrase-structure languages. The five appendices include
discussions on the construction of LR(1) parse tables, some important unsolv-
able problems, and the string comparison problem.
Each chapter is concluded with a set of review problems. However, no

answers are provided.
Numerous transition diagrams, tables and figures complement the well-

written text which reads quite easily. It’s appropriate for a refresher course
or for those just breaking into the implementation world.

68
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ANSI C: A Lexical Guide
c©1988 Mark Williams Company

Prentice-Hall
$35.00, 565 pages
ISBN: 0-13-037814-3

reviewed by Rex Jaeschke

According to the introduction, “ANSI C: A Lexical Guide describes the
American National Standards Institute (ANSI) standard for the C programming
language. It discusses in clear English every library function, every macro, and
every technical term that appears within the Standard. All entries are fully
cross-referenced internally to the Standard and to the second edition of The
C Programming Language; many are illustrated with full C programs.”
“In this book, Mark Williams Company presents a reading of the ANSI C

Standard, based both on our participation on the committee that wrote it,
and on our experience as writers of C compilers and operating systems. This
book contains all the information you need to write strictly conforming C pro-
grams that can be compiled and run on every computer for which a conforming
implementation of C exists.”
Certainly, the use of the terms all and every indicate some marketing license

since the front cover boldly states “Based on Draft-Proposed ANSI C” and that
as of this writing (early May 1989) there is still not yet an official standard.
Also, page 3 reads “Both [ANSI and ISO] felt that the greatest benefit would
be wrought if the two standards synchronized, and in final form, were identical.
This goal has been achieved.” [Ed: Not yet it hasn’t, but I’m hoping it will be
as I’ve just accepted the role of X3J11’s International Representative to ISO.]
Actually, the book was completed in March 1988 and there have been two

X3J11 meetings and one public review period since. Fortunately, the only sig-
nificant changes that have resulted since the book was published are the removal
of the noalias keyword, the change from CLK_TCKS to CLOCKS_PER_SEC, and
some tightening up of wording.
The book is a collective effort by employees of Mark Williams Company.

(They remain nameless since there are no credits or acknowledgements listed.)
This company has been developing and selling compilers and operating systems
to the mini- and micro-computer marketplace since 1976.
The book is aimed at programmers who want a detailed guide to the ANSI C

language, preprocessor, and run-time library arranged in alphabetical order, in
one place. From that point of view, the book is quite successful. It contains
some 580 entries each organized as: name, syntax (if applicable), description,
example, and cross-references. While most entries take up a third to a half a
page, many are quite small. Some take up several pages.
I found it strange that a book organized essentially as an alphabetically or-

dered glossary had a cross-reference index as large as 26 double-column pages.
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Certainly, the index is extensive and, along with the cross-references accompa-
nying each entry, lets you navigate the book from pretty much any point.
When I look at a new book about “modern” C, the first thing I look for is

whether it uses modern C terminology. Things like “storage duration,” “object-
and function-like macros,” “file position indicator,” and “modifiable lvalue.” In
this respect the book excels—it appears to have all the terms introduced or
made popular by X3J11.
The book does indeed cover every operator, punctuator, keyword, function,

macro, and type in ANSI C. It also provides a credible overview of the locale and
multibyte additions. And, unless the draft Standard is significantly rearranged,
all references to specific section numbers should remain intact for the final
version of the standard.
As a text for the average C programmer (its intended audience), ANSI C: A

Lexical Guide is very good. I have no reservation in recommending that you add
it to your customer “Recommended Reading” lists. It does contain, however,
many rough edges. These involve lack of precision and care with detailed and
complicated corners of the language, rather than outright technical errors or
misleading statements. As such, these problem areas (many of which are quite
subtle) are unlikely to cause most readers any problem.
A few examples of the problem spots should demonstrate my point.

• define is continually called a keyword—it is not one.

• “When parentheses precede an identifier and enclose a typename alone,
then they function as a cast operator. Here, the type of the identifier
is changed, or cast, to the type enclosed within parentheses.” The term
identifier is often used instead of expression. Also, the type of an identifier
cannot be changed.

• “If a pointer points to an array, then the result of addition will point to
another member of the same array ...” confuses pointers to arrays and
pointers to elements of an array.

• The discussion of the dot operator claims that the left operand must name
a structure or union when, in fact, it can be any expression that designates
a structure or union.

• Quite a few entries have disorganized, weak, or incomplete discussions.
These include: the [] operator, const, function prototypes, and sequence
points. The discussion of lvalues, on the other hand, is quite good.

The only out-and-out error I found was the implication that only one macro
in float.h, FLT_ROUNDS, was a compile-time constant. There is only one, but
it is FLT_RADIX.
Before the next printing, the book could stand a thorough review by someone

outside the company who is intimately familiar with the ANSI C Standard.
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With some tightening of terminology the book’s rating would rise from “very
good” to “great”.

Standard C: Programmer’s Quick Reference Guide
P.J. Plauger and Jim Brodie

1989 Microsoft Press
$7.95, 207 pages

ISBN: 1-55615-158-6

reviewed by Rex Jaeschke

According to the introduction, “This quick reference guide for the Stan-
dard C programming language provides all the information you need to read
and write programs in Standard C. It describes all aspects of Standard C that
are the same on all implementations that conform to the standard for C.”
The book is divided into three parts: language, library, and appendices.

The language part is further divided into the topics Characters, Preprocess-
ing, Syntax, Types, Declarations, Functions, and Expressions. The library part
has an introduction and one section for each of the 15 standard headers. Ap-
pendix A contains eight pages of information about the “hot spots” involved
in porting code and Appendix B lists all standard names alphabetically, giving
their parent headers and attributes (where applicable). For example, fpos_t
resides in stdio.h and is an “assignable type definition;” stderr is in stdio.h
and is a “pointer to FILE rvalue macro;” putc is in stdio.h and is a “function
or unsafe macro.” Future reserved words are also listed.
Syntax diagrams replace the commonly used formal grammar specification,

making it much easier for the lay reader to build valid constructs.
Both authors are intimately involved with the ANSI and ISO C standards

efforts, and have been from the beginning. In fact, Brodie convened the ANSI C
committee while Plauger is the ISO C convener. This involvement shows, as the
text reflects all the definitions and terminology introduced in these standards.
The text is crisp, correct, and with no fat—all typical Plauger traits. In fact,
Plauger was directly responsible for much of the new terminology added to the
draft.
The sections are generally quite small “bite sized” chunks and contain ref-

erences to other sections as appropriate. The 11 pages of cross-reference index
are adequate.
The book reflects the most recent draft of the ANSI C standard, produced

at the September 1988 meeting. It also includes the last minute modification to
time.h, CLOCKS_PER_SEC. Since there is every expectation that this version of
the draft will become the final ANSI Standard without change, the book should
not need any technical revision when the standard is finally approved.
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While many C books get “most of it right,” Standard C does that and more.
In particular, it excels in the following complex areas:

• Phases of translation

• Preprocessor macro handling

• Incomplete, compatible, and composite types

• Linkage

• Type conversion

• Grouping

• Side effects and order of evaluation

In conclusion, this small book is not only a lay person’s guide to the ANSI C
Standard, it’s a very useful and coherent distillation of the formal standard that
would suit C language implementers, particularly those who have not been
active within the X3J11 committee.
And to those of you struggling to write a Standard C language manual for

your compiler, you might want to consider distributing this book instead.
I’ve placed this book in the #1 slot on the list of C language reference texts

I recommend to my many C seminar students. A must buy for introductory
and advanced C programmers alike.

∞


