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23. Diagnosing Quiet Changes

P.J. Plauger

Abstract

Special diagnostic tools have a long tradition in C. Indeed, the advent
of lint under UNIX arguably offset much of C’s bad reputation as an
unsafe language. Additional diagnostic modes can aid the conversion of
existing code to Standard C. Of these new modes, the most important
is one that diagnoses the “quiet changes” between existing C dialects
and Standard C. This paper explores some of the issues that must be
addressed when diagnosing quiet changes.

Introduction

Everyone likes lint. It provides a way to keep project managers happy without
getting in the way of programmers. You don’t have to incur the extra checking
overhead each time you recompile. You just ask for more meticulous checking
of your program from time to time to keep it reasonably honest. And you can
tailor the checks to suit your particular needs.

One way to tailor lint is to have it check for potential portability problems.
A C program can be perfectly valid, yet have little or no chance of surviving
a move to another machine. If you intend the program to be machine specific,
however, you don’t want to hear about portability lapses. Such gripes just
obscure any legitimate complaints that you want to see.

Another way to tailor lint is to have it check for questionable practices. This
is a way of making C a more strongly typed language without ruining the fun
for everyone. It is well known that you can write all sorts of nonsense and stay
within the sometimes lax rules of C. Unless you are being intentionally clever,
you want to know about the nonsensical usages.

It has become common practice for some shops to mandate the use of lint.
A typical guideline is to specify exactly the options that lint should be run with,
then mandate that such a run produce no messages of any kind. You learn to
spot the idioms (such as gratuitous (void) type casts) that programmers use
to stifle some of the lint idiosyncrasies.

The process of conversion to Standard C introduces a whole new set of
opportunities for special diagnostics. For example, you might have code written
for an older dialect that has certain extensions. Compile it with a Standard C
compiler and you get all sorts of diagnostics that miss the mark. A classic
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extension is to tolerate the old-style assigning operators, at least where their
usage is unambiguous, as in:

int f(i, p)
int i, *p;
{
i=**p;

Here, only one interpretation of the character sequence =* makes sense, as
the multiply assign operator. Better your new compiler should check explicitly
for the older dialect and produce targeted diagnostics. (A really useful tool
might even be able to automate some of the more obvious dialect conversions.)

If the extension is pretty unmistakable, you could make the check for it a
standard part of your new compiler. If not, then you probably want the check
turned off by default. A new generation of programmers endeavoring to write
Standard C should mimic the extension only by accident.

The above example written by modern C programmers probably contains
an error in the number of levels of indirection on a pointer. It has nothing to do
with the previous existence of an alternate way to write multiply assign. You
don’t want to confuse programmers by accusing them of using a feature they
shouldn’t even know about!

The biggest conversion worry is not likely to be the elimination of past ex-
tensions, however. Much more worrisome is the introduction of “quiet changes.”
A quiet change is a place where at least one popular dialect of C tolerates a cer-
tain construct. It accepts it with no complaint and does something well defined.
Standard C also tolerates the same construct. It accepts it with no complaint
and does something well defined. The only problem is, the “something” is
different.

A classic example of a quiet change occurred when C reversed the old way
of writing the assigning operators. When the multiply assign operator changed,
as shown above, the change was quite noisy. You can’t write an expression that
is valid both with and without the old spelling of the operator. The subtract
assign operator is quite a different story, however:

int f(i, p)
int i, *p;
{
i=-*p;

This has two distinct meanings before and after the change. In the old
days, it decremented the value stored in i by the value stored in *p. Now, it
assigns the negated value stored in *p to i. Even though this particular change
occurred many years ago, it is documented as a quiet change in the Rationale.
(See below.)

No project leader wants to hear that the introduction of a new compiler is
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going to require that code be converted. Just recompiling everything, reading
the diagnostics, and making the obvious changes can be a significant effort.
Besides, it increases the risk that some of those changes will inadvertently
introduce errors.

Now tell the project leader that the new compiler is going to change program
behavior in some places and it won’t tell you when or where it makes the changes.
That’s grounds for a plea of justifiable homicide in some states.

You can see where a new kind of lint is sorely needed. If you have any code
that might suffer quiet changes when stuffed through a Standard C translator,
you have a serious conversion problem. At the least, you must put your original
designers and senior programmers on the job. At the worst, you must dispatch
a horde of testers on the converted product. In the latter case, you can only
hope that you catch the errors before your customers do.

You want a special checking option that looks for quiet changes and makes
them noisy. As with the extension checking I described above, you want to be
able to turn such checking on and off. When converting old code, you most
definitely want to check for quiet changes. When checking converted or new
code, you probably want to turn off such checks.

I can envision one situation where you might want to check for quiet changes
indefinitely. If you have a product that must work under a mix of old and new
translators, the dialect clash doesn’t go away. Until the world (or your part of
it) converts completely to Standard C, you must be careful of quiet changes.
(The realists among us know that that day may never come.)

The purpose of this article is to alert you to the quiet changes. I have
copied the descriptions almost verbatim from the Rationale that accompanies
the C Standard. For each quiet change, I discuss how you can go about diag-
nosing its occurrence. (In some cases, you can only diagnose them to a certain
degree.) Whether you are producing a modern lint or simply beefing up your
in-house compiler, you should give serious thought to adding these checks as an
option.

The Quiet Changes

• Programs with character sequences such as ??! in string constants, char-
acter constants, or header names will now produce different results.

This one is easy. If the translator detects any trigraph in an old program,
it is a quiet change.

• A program that depends upon internal identifiers matching only in the
first (say) eight characters may change to one with distinct objects for
each variant spelling of the identifier.

In principle, this is easy. Simply perform two lookups for each new name.
One lookup uses the full name (or at least 31 characters of the full name)
in the proper fashion. The other lookup uses only the prefix used in the
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old dialect, but checks it against all names in scope. If you match any
additional names over the first lookup, complain.

In practice, you can significantly slow down a translator with this check.
Name lookup is often a significant contribution to translation execution
time. You should profile your translator to determine if you need to retune
name lookup as a result of this check.

• A program relying on file scope rules may be valid under block scope
rules but behave differently—for instance, if d_struct were defined as
type float rather than struct data in the following example:

typedef struct data d_struct {
/* ... */ };

first() {
extern d_struct func();
/* ... */
}

second() {
d_struct n = func():
}

You have to maintain a file scope symbol table in addition to the usual
table that reflects nesting of scopes. Lookup any symbol with linkage
(external or internal) in both tables. If the symbol is not present in the
file scope table, install it. If it is present, complain if the types or linkages
are incompatible. The file scope table can be used only to complain, not
to provide information useful to the program.

• Unsuffixed integer constants may have different types. In K&R, unsuf-
fixed decimal constants greater than INT_MAX, and unsuffixed octal or
hexadecimal constants greater than UINT_MAX, are of type long.

In principle, you simply determine the type by both old and new rules
and complain if you get different answers. In practice, this approach will
generate a lot of noise. You must check enough context to see if the
change in type is likely to make a difference in program behavior. For
assignment and many arithmetic operations, it will not. The biggest area
of concern is where the size in bytes of an argument changes. (For old
code, there will probably be no prototype to coerce the argument to the
proper type.)

• A constant of the form '\078' is valid, but now has different meaning.
It now denotes a character constant whose value is the (implementation-
defined) combination of the values of the two characters '\07' and '8'.
In some implementations the old meaning is the character whose code is
078 == 0100 == 64.
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Look for any one or two digit octal escape followed by an 8 or 9. It is
bound to cause trouble.

• A constant of the form '\a' or '\x' now may have different meaning.
The old meaning, if any, was implementation defined.

Look for any undefined escape sequence, not just these, and complain.

• A string of the form "\078" is valid, but now has different meaning.

Same as above for character constants.

• A string of the form "\a" or "\x" now has different meaning.

Same as above for character constants.

• It is neither required nor forbidden that identical string literals be rep-
resented by a single copy of the string in memory; a program depending
upon either scheme may behave differently.

This is a tough one. The kinds of expressions that you can easily test
for this change are not ones that a programmer is likely to write. The
kinds that a programmer is likely to write can easily evade even the most
sophisticated of flow analysis.

Some programs want string literals to be unique so they can be separately
modified. You may be able to track down a store into a string literal.
Standard C doesn’t make this easy, however. For a variety of historical
reasons, string literals do not carry the type qualifier const. Once again,
you are reduced to flow analysis.

• Expressions of the form x=-3 change meaning with the loss of the old-style
assignment operators.

In principle, you just scan for the old style operators and complain if you
see any. In practice, you need worry only about add assign and subtract
assign. It is impossible to pun on any of the others. Since this is such an
old dialect, however, you may want to control it as a separate checking
option.

• A program that depends upon unsigned preserving arithmetic conversions
will behave differently, probably without complaint. This is considered the
most serious semantic change made by the Committee to a widespread
current practice.

Once again, the direct approach is almost certainly too noisy. (That was
one of the justifications for accepting value preserving rules—they almost
never alter the result of expression evaluation.) You must, of course,
type each expression from the bottom up by both unsigned preserving
and value preserving rules. Where they differ, one operator will have an
unsigned type and the other will have a signed type of the same size in
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bytes. That means you need set aside only a single bit to record whether
a potential change exists.

Even so, you should check context carefully. Most differences disappear
quickly before their effects can be felt. Problems typically arise when the
subexpression with changed type is an operand of a divide, remainder,
right shift, or comparison operator (other than equality or inequality).
Even if you diagnose all doubtful situations, you should find that the
message seldom occurs. (Encourage the addition of type casts to disam-
biguate expressions whose meaning could possibly change.)

• Expressions with float operands may now be computed at lower preci-
sion. The Base Document specified that all floating point operations be
done in double.

Again, you must type the expression tree both ways and look for changes.
If there is a difference, one tree has type double and the other has type
float. So again you need add only a single bit to track the change.

Filtering out diagnostics is a bit trickier than for some of the quiet changes
described earlier. Floating point arithmetic is notoriously perverse, par-
ticularly when you start reducing the precision you retain for intermediate
results. It is hard to determine statically (for any operands other than
floating literals) that the loss of precision will have no significant effect.
Expressions of the form a = b op c, where all the operands have type
float, are the safest to disregard.

You may wish to key this check to a separate option. Barring that, you
should probably warn of all possible changes.

• A program that uses #if expressions to determine properties of the exe-
cution environment may now get different answers.

This one is a little tough. Never underestimate the cleverness of a Berkeley
undergraduate. They have produced some pretty audacious expressions
in their zeal to get the preprocessor to reveal its arithmetic properties.
(They also rashly assume that preprocessor arithmetic is the same as
target machine arithmetic. Not so.)

You should be diagnosing overflow in translation time arithmetic. That
will make many of the clever expressions go from quiet to noisy. If you
also look for overflow in unsigned arithmetic, at least in #if expressions,
you will generate even more useful noise. (This effectively replaces modu-
lus arithmetic with truly unsigned arithmetic.) Diagnose any conversion
of a negative signed value to unsigned and you can probably generate a
bleat for every extant trick. Naturally, you should also disallow charac-
ter constants in #if expressions if you want to warn of potential quiet
changes.

• The empty declaration struct x; is no longer innocuous.
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I have trouble believing that many programs have such declarations lying
about. You may want to diagnose them all as likely deadwood. Otherwise,
just complain if the declaration is effective in its new role. It is supposed
to isolate the structure tag from any declarations in containing blocks.

• Code which relies on a bottom-up parse of aggregate initializers with
partially elided braces will not yield the expected initialized object.

Here again, you may be better off diagnosing essentially all aggregate ini-
tializers that are missing internal braces. The opportunities for ambiguity
are ample. Only if that approach proves too noisy for your customers
should you look at pruning the cases. I recommend, however, that you
not try to parse the initializer two different ways and look for differences
in interpretation. Better to err on the noisy side.

• Type long expressions and constants in switch statements are no longer
truncated to int.

You can probably diagnose all switch statements whose control expression
has type long or unsigned long. If that proves to be too noisy, you can
eliminate all such diagnostics if the target has the same representation for
int and long.

Don’t forget to look also for case values that truncated in the past but
not in Standard C.

• Functions that depend on char or short parameter types being widened
to int, or float to double, may behave differently.

Here is another case where you don’t want to diagnose every instance
of a function declared with suspect argument types. They occur far too
often and are generally innocuous. Look for assignments to the arguments
that may now truncate values but did not do so in the past. And pay
close attention to anyplace the program takes the address of a suspect
argument. It is almost certain to cause trouble. Just filtering for these
cases will eliminate many spurious diagnostics.

• A macro that relies on formal parameter substitution within a string literal
will produce different results.

All you have to do is parse string literals within macro definitions just
like in the old days. If any contain “identifiers” that match parameter
names, complain. Remember, however, that this convention was far from
universal in the past. You may want to control it with a separate checking
option.

• A program which relies on size-0 allocation requests returning a non-null
pointer will behave differently.

Here is another tough one. Chances are, the code contains no explicit
malloc(0) calls. The most sophisticated flow analysis is not likely to
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catch all possible zero value arguments at translation time. It is easy
enough to diagnose this change at runtime, but that takes you beyond
the traditional realm of lint.

Conclusion

Fortunately, nearly all of the quiet changes can be detected at translation time.
The exceptions are few:

• Assumptions about string literals being identical (or unique) can be very
difficult to diagnose.

• Arithmetic in #if expressions can make subtle environment checks.

• Allocating an object of zero size can occur at runtime but evade checks
at translation time.

All of these practices have long caused portability problems, however, since
they differ among popular implementations. Even if you make no attempt to
catch these particular trouble makers, diagnosing all the rest can be a real aid
to upgrading C code.

If you want to read more about the quiet changes, see the Rationale. You
can also read three of the “Standard C” columns I have written for the C Users’
Journal. These are “Standard C Promotes Types According to Value Preserv-
ing Rules,” August ’88; “Quiet Changes, Part I,” February ’90; and “Quiet
Changes, Part II, March ’90.

P.J. Plauger serves as secretary of X3J11, convener of the ISO C working
group, and as Technical Editor of The Journal of C Language Translation. He
can be reached at uunet!aussie!pjp.
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24. Pragmania

Rex Jaeschke

Macro Expansion Revisited

In my last installment I incorrectly stated “The ANSI Standard says nothing
about the expansion of macros in pragmas.” As was pointed out by two re-
spondents to the current electronic survey, the standard states in no uncertain
terms what should happen. §3.8 page 87, line 15, of the December 88 draft
states “The preprocessing tokens within a preprocessing directive are not sub-
ject to macro expansion unless otherwise stated.” §3.8.6 Pragma directive
on page 94 does not indicate that macros are expanded so we must conclude
they are not.

Having said all this I still think the idea of expanding macros in pragmas
is worth considering, given some of the things implementers are, or plan to be,
using pragmas for.

As I understand it, in strictly conforming mode, a pragma cannot change
the outcome of a program. That is, the program must have the same semantics
both with and without the pragma. This requirement provides very little cre-
ative latitude when inventing pragmas. On the other hand, many implementers
having pragmas clearly require compilers to be run in “extended mode” for
pragmas to have their desired affect. (Examples are pragmas that alter struc-
ture padding or argument passing due to language interface requirements.)

In any event, if you expand a macro in a pragma and you claim ANSI
conformance, how could the formal validation suite ever tell? Clearly it cannot
without a test specific to your implementation, and that’s not what validation
suites do.

Since I first proposed macro expansion privately early in 1989, I have had
significant discussions with vendors on its benefits. However, the biggest prob-
lem presented thus far came from Walter Murray at Hewlett-Packard. It’s one
of namespace pollution. For example, assume an implementer provides the
following pragma forms:

#pragma OPTIMIZE OFF
#pragma OPTIMIZE ON

If macros are expanded, then OFF or ON (or even OPTIMIZE) would be re-
placed by unexpected (and therefore unrecognized) text if they were currently
defined as macros. You could even have the situation that in some scopes these
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macros would not be defined and in other places they would be, leading to the
pragma sometimes being ignored and sometimes not. At the very least, such
an implementation must warn about unrecognized pragmas.

The problem then is that all identifiers in a pragma whose names are in the
user namespace are at risk of being expanded. To force implementers to protect
such names, I think, is unacceptable. To do so would require something like:

#pragma _OPTIMIZE _OFF
#pragma _OPTIMIZE _ON

And the naming conflict comes not only from the source and headers pro-
vided by the user, it also comes from all the third-part library headers he
includes as well.

One vendor suggested they might expand only certain identifiers inside par-
ticular pragmas. I suspect that will make their implementation more compli-
cated, but since the pragma in question actually generates code conditionally,
it’s already being handled specially.

It seems this proposal is not yet settled, so I encourage you to let me know
your thoughts. From this point on, though, I suggest we assume this proposal
is restricted to being an extension.

One final thing. If macros were expanded, what if no macro ON (or OFF)
was currently defined? Would you want the default value to be zero as in #if
expressions, or null? Whichever, how could you tell which identifiers in the
pragma are, or can be, macros? Those without leading underscores? I think
you would want the preprocessing token left as is with no expansion to a default
value.

DEC’s VAX C Version 3.0

Various parts of this section are extracted from DEC’s manual, Guide to VAX C,
c© Digital Equipment Corp., 1989.

Intrinsic Function Recognition

#pragma builtins
#pragma nobuiltins

These directives enable or disable access to predefined functions. When
enabled, these functions do not result in a reference to a function in the run-
time library or in your program. Instead, the compiler generates the machine
instructions necessary to carry out the function directly at the call site.

About 30 VAX instructions can be accessed directly in this manner. They
include operations for: bit searching, queue manipulation, character searching,
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block move, and read and write specific general and other registers. Apart
from a family of general purpose functions, there are some that are specific to
systems programming on the VAX. An example of an inline block move follows.

#include <stdio.h>

#pragma builtins

main()
{

static char name[30];

printf("name contains: >%s<\n", name);
_MOVC3(10, "More Text", name);

/* Instruction generated is: movc3 #10, ..., ... */

printf("name contains: >%s<\n", name);
}

By default, builtins are not recognized as such.
An interesting aspect of builtins is that some of them have more than one

form of argument list, yet each form has its own implicit prototype in scope at
each call. That is, you must call such functions with any one of the formats
expected for that function. For example, the block move instruction MOVC3
is accessed in any one of the following ways:

void _MOVC3(unsigned short length, const char *src,
char *dest);

void _MOVC3(unsigned short length, const char *src,
char *dest, char **endsrc);

void _MOVC3(unsigned short length, const char *src,
char *dest, char **endsrc, char **enddest);

Since these builtins behave much like keywords, DEC has wisely spelled
them with a leading underscore and capital letter.

Parallel Programming Directives

You can tell the compiler that the specified variables within the next encoun-
tered for or while loop should not inhibit the decomposition of that loop.
(Decomposition is DEC’s name for parallelization.) The pragma format is:
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#pragma ignore_dependence (id, ...)

This pragma affects only the next for or while loop and does not affect
nested loops. id must be a previously declared pointer variable and the paren-
theses are optional if the list contains only one identifier.

The safe_call pragma tells the compiler that the specified function call
(or calls) does not introduce data dependencies that prevent decomposition of
a for or while loop. If you specify this directive outside of a function body, the
functions named in the directive are globally safe in all for and while loops
from the occurrence of the directive to the end of the source file. When specified
inside a function body, only the next for or while loop is affected.

The format of the pragma is:

#pragma safe_call (id, ...)

where id is a function name or function pointer that is already declared.
This pragma should not be used if the function does any of the following:

• Has side effects that introduce data dependencies.

• Is not reentrant.

• Calls longjmp, or otherwise modifies the normal flow of control.

• Changes the executing process in some way.

• Takes an address as an argument, and that address points to memory
that is not shared.

Loop decomposition can be disabled using the following directive:

#pragma sequential_loop

This pragma suppresses decomposition for the next for or while loop only.

Inline Code Generation

The inline pragma suggests to the compiler that it provide inline expansion
of selected functions. By default, VAX C attempts to provide inline expansion
for all functions. The compiler also uses the following function characteristics
to determine if it can provide inline expansion: size, number of times called,
and absence of various restrictions, as discussed below.

For a function to be expanded inline, the function definition must reside in
the same source file as the calls to that function. The definition may appear
either before or after the calls to it. Functions cannot be expanded inline if
they perform any of the following tasks:
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• Take the address of an argument.

• Use an index expression that is not a compile-time constant in an array
that is a member of a structure argument. (An argument that is a pointer
to a structure is not so restricted.)

• Use varargs.h or stdarg.h to access the function’s arguments.

• Declare an exception handler.

The format of the pragma is:

#pragma inline (id, ...)
#pragma noinline (id, ...)

where id is a function identifier.
Inlining can also be enabled and disabled using a compiler option.

Structure Member Alignment

By default, VAX C does not align structure members; they are stored on byte
boundaries (with the exception of bit-field members). However, you can use
the following pragma to specify member alignment.

#pragma member_alignment

When this pragma is used, the compiler aligns structure members on their
natural boundaries. (The user can chose either no or full alignment only.)

Specifying the Warning Level

Some standard headers contain VAX C-specific keywords, and since the pre-
processor does not distinguish between system and user headers, it produced a
portability warning. Such messages can be suppressed using the following pair
of pragmas:

#pragma nostandard
#pragma standard

∞



25. Design of a FORTRAN to C Translator, Part I

Fred Goodman
PROMULA Development Corporation

Columbus, Ohio

Abstract

Waite and Goos in Compiler Construction [1] define a compilation as “a
sequence of transformations (SL,L1), (L1,L2), ..., (Lk,TL) where SL is the
source language and TL is the target language.” This article describes
and motivates the design of PROMULA.FORTRAN, a compiler whose
source language is FORTRAN, whose intermediate language is a reverse
polish pseudo-code, and whose target language is C.

The major objectives of the design are: (1) that the C output produce
the same results as the FORTRAN original, (2) that the user be able to
modify the FORTRAN dialect description, and (3) that the user be able
to modify the look of the C output.

The bulk of the paper deals with objective (3). A surface-form de-
scription language is presented along with an example translation. Given
that objective (1) above must always be met, there are three possible
views of the C output: that it be as efficient as possible to compile, that
it be as C-like as possible, and that it be as much like the original FOR-
TRAN as possible. These views are discussed along with their impact on
the design of the runtime library. Finally, surface-form representations
are given for each in terms of the example translation.

Introduction

In the November/December 1987 Micro/Systems Journal, A.G.W. Cameron
reviews a FORTRAN to C translator. In that review, he takes the position
that the only difference between a translator and a compiler should be that
the compiler translates the source code into assembly code while the trans-
lator takes it to a higher level language. This article discusses a FORTRAN
to C translator, PROMULA.FORTRAN, which takes precisely this approach
to translation. First, it compiles the FORTRAN source code into a low level
pseudo-code, much like the pseudo-code produced by the first pass of contempo-
rary compilers. Second, it optimizes that code, again using the same techniques
as would be used by a conventional compiler. Third, it does code generation.
But the code generated is not machine code, it is C.
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What Cameron does not discuss, however, is that though the processes
of translation and compilation are largely the same, the objectives of users
of translators are much more varied than those of compiler users. The user
of a compiler does not care what the output code looks like—it is merely an
intermediate step. Though some users of PROMULA.FORTRAN also view
the output C merely as an intermediate step, most view it as a final step.
They care very much what the C looks like, because they intend to discard
the FORTRAN original once the translation is completed. In general, users of
PROMULA.FORTRAN can be divided into three broad classes:

1. Those who want to continue using their present FORTRAN dialect as
their programming language. For these users the C output is of no im-
portance as such. It should be designed to compile as quickly as possible.

2. Those who are presently FORTRAN programmers, but who want to be-
come C programmers. For them the C output should be as close to the
original FORTRAN as possible to ease the transition.

3. Those who are C programmers who must now take over a FORTRAN
code. For them the C output should look as much as a standard C program
as possible.

The techniques used to produce the target language are based on the work
done in the area of re-creation of source code. In particular, P.J. Brown [2]
discusses the re-creation of source code from reverse polish notation. This paper
reviews that work and shows how it can be easily extended via a surface-form
description language to allow not only for the surface-form variation needed
to accommodate different user biases, but also to give the final user of the
translator the ability to tailor the translation to his own needs. To motivate
the discussion of the surface-form description language, a brief discussion of the
history and design objectives of PROMULA.FORTRAN is given.

The discussion is presented in journalistic style. The purpose of the presen-
tation is to describe how a translation is achieved, with emphasis on the output
side. This emphasis is chosen because most readers of this article will already
be familiar with computer language input processing. Each section becomes
increasingly detailed. However, the basic ideas are presented early for those
who only want an overview of the approach.

Background

PROMULA.FORTRAN has been under development since 1982. It was a child
of necessity. The original FORTRAN compilers available for microcomputers
were pathetic by comparison to their mainframe ancestors. This was not true
of the early C compilers though, especially after large memory model versions
became available. We are consultants, and were often asked to migrate main-
frame FORTRAN codes to the PC. This migration task proved much easier
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to achieve via translation to C. Given this need to actually use the transla-
tor as a substitute for the existing FORTRAN compilers, our first design goal
was that the translated version had to produce the same results as the original
FORTRAN version. Our original view of the C output was that it was merely
an intermediate step. It had to be efficient and readable, but not necessarily
maintainable.

The initial version of PROMULA.FORTRAN took the approach of examin-
ing each FORTRAN statement in the source program and then producing from
it an equivalent statement, or statements, in C. Our view of translation was
that it was basically a string manipulation problem—it was nothing like com-
pilation. Given constructs like implied DO loops, assigned GOTO statements, and
the hiding of characters in FORTRAN 66, it became clear that if any degree of
completeness were to be achieved, then the program units had to be processed
as a whole and then examined. Statement by statement processing simply did
not suffice. The resultant C codes either would not compile at all or did not
give the correct results.

Our second approach was based on the UCSD p-System [3], only with C as
the base and not Pascal. If we could not compile our FORTRAN using existing
FORTRAN compilers, and if we could not use the available C compilers directly,
then perhaps we could design a C-based pseudo-machine. The FORTRAN codes
could be compiled into a pseudo-code—a stack-oriented reverse polish notation.
This pseudo-code could then be executed via C. This approach worked. By
going to pseudo-code, it was possible to correctly process FORTRAN codes.
The system produced the right results, but it was agonizingly slow. And since
the entire runtime library had to be linked with the p-machine the executable
was very large—this was not the way to go.

The solution came when we discovered the discussion in [2] about the re-
creation of source code from reverse polish notation. Using this approach we
could compile our codes using the p-machine compiler developed above, and
then we could re-create its source code. Only the source code re-created was
now C and not FORTRAN.

The Origins of the Approach

The approach taken in the current version of PROMULA.FORTRAN is based
on the standard theories of compiler design. Waite and Goos in [1] define a
compilation as “a sequence of transformations (SL,L1), L1,L2), ..., (Lk,TL)
where SL is the source language and TL is the target language.” The languages
L1 .. Lk are referred to as intermediate languages. PROMULA.FORTRAN,
then, is a compiler whose source language is FORTRAN, whose intermediate
language is a reverse polish pseudo-code, and whose target language is C.

The problem with the standard theories of compiler design is that though
there is ample discussion of how to do the conversion from the source language
to the intermediate language, there is little discussion of how to move from an
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intermediate language to a higher level target language such as C. For com-
pilers, the target language is always a low-level machine code. Fortunately,
there has been some work done in the area of the re-creation of source code
from intermediate code. Many BASIC interpreters need to be able to execute
BASIC statements efficiently, while still giving the user access to the source
code. This is a problem also faced by contemporary spreadsheet systems. The
re-creationists solve this problem by compiling the source statements into a
reverse polish notation and then rewriting the source code from that internal
notation. An excellent discussion of this work can be found in [2].

The technique of source code recreation from reverse polish notation hinges
on the observation that executing such notation via a stack-oriented pseudo-
machine is identical to writing and combining the character sequences that
perform those operations in some target language via a stack-oriented string-
manipulation machine! The above can best be understood via a simple example.

Consider the following statement which we wish to both execute via a p-
machine and re-create:

A = B * C + D

The intermediate form of this statement might be as follows:

PUSHADR A
PUSHADR B
GETVAL
PUSHADR C
GETVAL
MULT
PUSHADR D
GETVAL
ADD
PUTVAL
EOS

where for the execution pseudo-machine:
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Op Code Meaning
PUSHADR push the address of the variable onto the stack.
GETVAL pop the address from the stack, obtain the value

at that address, and push it onto the stack.
MULT pop the top two values from the stack, multiply

them together, and push the result onto the stack.
ADD pop the top two values from the stack, add

them together, and push the result onto the stack.
PUTVAL pop the value and address from the stack and then

store the value at the address.
EOS end the current statement.

And for the string-manipulation machine:

Op Code Meaning
PUSHADR enter the notation for a pointer to the variable

onto the stack.
GETVAL pop the top string from the stack, convert it to

the notation for a value at the indicated address,
and push that string back onto the stack.

MULT pop the top two strings from the stack, concatenate
them with the symbol ‘*’ in the middle, and push
that string back onto the stack.

ADD pop the top two strings from the stack, concatenate
them with the symbol ‘+’ in the middle, and push
that string back onto the stack.

PUTVAL pop the top two strings from the stack, convert
the lower one to a value string, concatenate the two
strings with the symbol ‘=’ in the middle, and push
the resultant string onto the stack.

EOS write the current string.

Let us execute these two machines and watch the symmetry between them.
Assume that A is stored at address 45, that B is at address 50 and has value 2.0,
that C at 55 has value 3.0, and D at 60 has value 4.0. It is both exciting and
interesting to note that these address and value assumptions are needed for the
execution pseudo-machine only. Alternately, the string-manipulation machine
needs access to the symbol table, which the execution-machine does not.
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Instruction Execution Stack String-Manipulation stack
PUSHADR A 45 “&A”
PUSHADR B 45, 50 “&A”, “&B”
GETVAL 45, 2.0 “&A”, “B”
PUSHADR C 45, 2.0, 55 “&A”, “B”, “&C”
GETVAL 45, 2.0, 3.0 “&A”, “B”, “C”
MULT 45, 6.0 “&A”, “B*C”
PUSHADR D 45, 6.0, 60 “&A”, “B*C”, “&D”
GETVAL 45, 6.0, 4.0 “&A”, “B*C”, “D”
ADD 45, 10.0 “&A”, “B*C+D”
PUTVAL “A=B*C+D”
EOS

Though this simple example only shows how to translate A = B * C + D
back into itself, its extension to approximately 200 pseudo-operations, and its
generalization via a surface-form notation, allowed us to construct a very fast
and sophisticated translator. With a single extension for dealing with operator
hierarchies, to be discussed below, the above is all that PROMULA.FORTRAN
does. It produces pseudo-code and a symbol table from the source code, sim-
plifies the code by using an execution machine, and then writes the code back
out in user-definable C form via a string manipulation machine.

A serious problem faced by the re-creationists is that the production of
the output string is completely independent of the original input made by the
user. Though the original and the result mean the same thing, they might
look very different. Fortunately, in the application to translation this is not
a problem. The user wants semantic and not syntactic identity. The greatest
weakness of the re-creation approach becomes the greatest strength of PRO-
MULA.FORTRAN.

The Problem with Parentheses

A problem that was ignored in the above example has to do with parentheses
or operator precedence. The reason reverse polish notation is typically used
as an intermediate language, and even in the design of contemporary machine
languages, is that it uses no parentheses. Consider the statement: A = B
* (C + D) in which the addition operation is to be performed prior to the
multiplication. Using the same notation as above the intermediate form of this
statement would be as follows:
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PUSHADR A
PUSHADR B
GETVAL
PUSHADR C
GETVAL
PUSHADR D
GETVAL
ADD
MULT
PUTVAL
EOS

Note that the effect of the parentheses in the intermediate form was simply
to reorder the operations.

Using the same execution and string-manipulation rules as before, the fol-
lowing would result:

Instruction Execution Stack String-Manipulation stack
PUSHADR A 45 “&A”
PUSHADR B 45, 50 “&A”, “&B”
GETVAL 45, 2.0 “&A”, “B”
PUSHADR C 45, 2.0, 55 “&A”, “B”, “&C”
GETVAL 45, 2.0, 3.0 “&A”, “B”, “C”
PUSHADR D 45, 2.0, 3.0, 60 “&A”, “B”, “C”, “&D”
GETVAL 45, 2.0, 3.0, 4.0 “&A”, “B”, “C”, “D”
ADD 45, 2.0, 7.0 “&A”, “B”, “C+D”
MULT 45, 14.0 “&A”, “B*C+D”
PUTVAL “A=B*C+D”
EOS

Obviously the execution result of 14.0 is correct, but the string-manipulation
result of A = B * C + D , which is identical to the previous result, is wrong.
The parenthesis have been omitted. The re-creationists solve this problem by
entering special markers into the intermediate notation to indicate where the
parentheses occurred. This technique obviously does not work in the translation
application, because the placement of the parentheses in the target language
is a function of the operator precedence of the target language and not of the
source language.

The solution taken in PROMULA.FORTRAN is quite simple and general.
Each rule in the string-manipulation machine has associated with it a prece-
dence code. Whenever the output of an operation is written to the string-stack,
the precedence code of the rule that produced the output is also written. When-
ever an element is combined within a rule, if its precedence code is nonzero and



Design of a FORTRAN to C Translator, Part I – Goodman 173

lower than the code of the rule, then that element is enclosed in parentheses as
it is concatenated into the new output.

Applying this extension to the example above, the precedence codes for the
various operations are as follows:

Operation Precedence
PUSHADR 0
GETVAL 0
MULT 2
ADD 1
PUTVAL 0

Note that operations not involved in evaluations have a precedence of zero.
MULT has a higher precedence then ADD because in C multiplication is higher
in precedence than addition. Using the precedence rule from above we can
again run the string-manipulation machine on the intermediate form of A = B
* (C + D). The rule and stack precedence codes are shown in parentheses.

Instruction String-Manipulation stack
(0) PUSHADR A (0) “&A”
(0) PUSHADR B (0) “&A”, (0) “&B”
(0) GETVAL (0) “&A”, (0) “B”
(0) PUSHADR C (0) “&A”, (0) “B”, (0) “&C”
(0) GETVAL (0) “&A”, (0) “B”, (0) “C”
(0) PUSHADR D (0) “&A”, (0) “B”, (0) “C”, (0) “&D”
(0) GETVAL (0) “&A”, (0) “B”, (0) “C”, (0) “D”
(1) ADD (0) “&A”, (0) “B”, (1) “C+D”
(2) MULT (0) “&A”, (2) “B*(C+D)”
(0) PUTVAL (0) “A=B*(C+D)”

EOS

The critical point in the above occurs when the output of the ADD opera-
tion, which has a precedence code of 1, is combined via the MULT operation
which has a precedence of 2. Since 1 is nonzero and less than 2, the string C+D
is enclosed in parentheses as it is entered into the output string of the MULT
instruction.

The Translation Algorithm

To understand the surface-form description language, an overview of the entire
translation algorithm is first needed. This algorithm has three requirements:
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1. The source language must be translatable into an intermediate language
all of whose operators are expressed in reverse polish notation and—be
they unary, binary, ternary, etc.—produce either a single result or no
result.

2. In the target language every n-ary operator can be expressed as an arbi-
trary but fixed concatenation of its operands and of other fixed character
sequences.

3. It must be possible to gain access to all operations performed in the source
language via the target language.

The first two requirements are easy to achieve via almost any contemporary
language. The third is the killer. We were asked at one time, for example, if
we could translate C into FORTRAN. The answer was No because C pointer
operations cannot be expressed in FORTRAN.

The actual application of the requirements will become clearer in the follow-
ing, though emphasis will be placed on target language production. Remember
also that the world is not perfect. The algorithm works, but there are places
where special processing is needed, especially in the area of the data definition
component. PROMULA.FORTRAN is not a universal translator—it is a trans-
lator from FORTRAN to C. It is sufficiently general, however, to give the wide
range needed to deal with the many FORTRAN dialects and the many user
output biases.

The Components of a Translation Definition

A complete translation definition contains seven major components, of which
the first five are general and accessible to the end-user and two are hardwired
in the translator. They are as follows:

1. A definition of the basic operation codes which make up the pseudo-
machine. These definitions form the glue which ties the other components
together.

2. A definition of how the expressions of the language are broken down into
operation codes. This component contains five subcomponents:

• The operations needed to perform type conversions

• The promotion hierarchies used when deciding what type conversions
to perform

• The unary operators

• The binary operators

• The functions available
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3. A definition of the actual statements in the source dialect. Within this
component statements are classified by type. Each type contains its own
additional information requirements. Both data definition and executable
statements are included in this component.

4. A description of the C surface-form to be taken by each operation. These
surface-form descriptions look much like the control strings used by the
C printf function, except that the conversion symbols refer to the ele-
ments on the translation stack.

5. A runtime library which performs those operations referenced in the target
language but not implemented directly.

6. A set of hard-wired functions built into the translator that process the
basic input structure of the source language and that build the various
symbol tables.

7. A set of hard-wired functions built into the translator that process the
basic output structure of the target language and that produce the needed
data definition statements from the symbol tables.

As was said above, the basic flavors of FORTRAN and C are built into
the translator via the last two components. These cannot be altered by the
end-user. It is this hard-wiring that makes the translator fast and compact.

When new users first look at the PROMULA.FORTRAN translation defi-
nition file, they are usually surprised to see what appears to be just a long list
of operation code identifiers. It is, however, in terms of these identifiers that
the entire translation process is tied together. All executable FORTRAN state-
ments are translated into these operation codes, and all executable C output
statements are described in terms of these codes. PROMULA.FORTRAN is
ultimately a pseudo-code compiler.

Via the second and third components, the user has considerable flexibility
in defining his FORTRAN source dialect. Not much will be said about the
notation used for describing the source dialect. It is interesting to note, how-
ever, that traditional language descriptions lump expression description in with
statement descriptions. We have found that processing is much more efficient
if the description of, and therefore processing of, expressions is separated from
statement description and processing. Thus, component (2) describes expres-
sions, while component (3) describes how those expressions are combined to
form statements.

Components (4) and (5) will be discussed throughout the remainder of this
paper. The actual surface-form description strings are contained in (4) and any
functions referenced via those surface form description strings are contained in
(5). Potential users of PROMULA.FORTRAN occasionally express surprise at
the runtime library. Why, if we are translating into C, do we need a runtime
library? To them it seems like cheating. Only C functions should be used if a
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true translation is achieved. Clearly, there are operations performed in FOR-
TRAN that are not directly accessible in C—complex arithmetic, FORTRAN
style formatted I/O, etc. These operations must be performed via runtime
functions, but the structure of these functions is largely determined by how the
translation is performed. Thus, components (4) and (5) are closely tied.

The Surface-Form Description Language

For each operation code in the intermediate language, there is an entry in
the surface-form description language. Each operation description has three
components which may vary by the user output bias type:

1. A specification of the number of operands associated with the operation—
that is, whether the operation is null, or unary, or binary, etc.—for the
particular output bias. Remember that all operations are reverse polish.
Therefore, when a given operation is encountered, its operand strings
have already been placed on the string-machine stack. The operands are
numbered starting with the oldest first. In other words, the operand
deepest on the stack is argument 1 and the operand at the top of the
stack is argument n, for an n-ary operator.

2. A specification of the precedence of the operator relative to others. As the
output production proceeds, it is necessary to enclose certain operations
in parentheses to achieve the proper order of evaluation. The current
precedence of each operand is maintained. When two operators of lower
precedence are combined via an operator of higher precedence, then they
are enclosed in parentheses.

3. A pattern string that specifies an arbitrary but fixed concatenation of
the operands and of other character sequences which can be described
via a linear pattern string. This pattern string is, of course, the actual
implementation of our re-creation algorithm requirement number (2) as
presented earlier. The pattern string describes not only how the operands
are combined but also how the various constants, symbol table entries,
and miscellaneous special-purpose conversion routines combine to form
the final output.

The bulk of the discussion below deals with pattern strings. They are de-
ceptively simple.

The Example Revisited

Earlier, a set of six operation codes was presented along with a description of
what each did when executed via the string-machine. This subsection presents
the identical information using the surface-form notation in order to introduce
the concept. The actual specification is as follows:
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SURFACE-FORMS
PUSHADR PATTERN 0, 0, "\v"
GETVAL PATTERN 1, 0, "%1i"
MULT PATTERN 2, 2, "%1d * %2d"
ADD PATTERN 2, 1, "%1d + %2d"
PUTVAL PATTERN 2, 1, "%1i = %2d"
EOS PATTERN 1, 0, "%1d\c"
END

The first number parameter specifies the number of arguments and the sec-
ond the precedence code. The string is the output pattern string. The basic
operation of the pattern strings is straightforward. The output processor moves
to the next pseudo-code in the intermediate language. It then looks up the pat-
tern information for that code. It removes as many operand strings from the
string stack as are specified in the first parameter of the specification. It saves
pointers to these operand strings and the current precedence associated with
each in a temporary buffer. Next, a new string is formed using the actual pat-
tern string as a guide. Finally, the result string is pushed onto the stack and
assigned the precedence specified in the second parameter.

Examining the pattern strings themselves, notice first that they resemble
those used by C to specify output conversions. This similarity is deliberate,
since the purpose of these strings is, in essence, the same. Within the pattern
strings there are three types of specifications:

1. Special operation parameters which consist of a backslash followed by a
letter. These parameters trigger special conversions. Thus, in the above
rule for PUSHADR the \v specifies that a pointer to a variable whose
symbol number is specified following the opcode is to be entered into the
output string at the indicated location. The \c notation in the EOS string
specifies that the current string stack is to be cleared and thus written to
the output file.

2. Operand conversion parameters, which consist of a percent sign, followed
by a numeric digit, followed by a conversion code. The numeric digit
specifies which operand is to be entered at this point in the string, and
the conversion code specifies any special operation to be performed. In
the above, the %1d which occurs in the MULT, ADD, and EOS strings
says “Enter the first operand without any additional editing other than
any precedence editing which may be needed into the output string.” The
%2d says the same thing for operand 2. The %1i specification in GETVAL
and PUTVAL says “Enter the string in instantiated form—that is, change
it from a pointer representation to the representation of the value pointed
to.”

3. Simple character specifications are any characters not forming one of the
two specifications above. Simple characters are entered into result strings
exactly as entered.
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This is basically all there is to know about pattern strings. There are obvi-
ously more specification codes; however, their description here is not important.
As can be appreciated, the above notation is extremely powerful, especially
when combined with the notion of user output bias.

Accounting for User Bias

As was discussed in the introduction, different users have different uses for the
output of the translator. In particular, some want optimized code, some want
C-like maintainable code, and some want FORTRAN-like code. This general
issue is referred to as the user bias. To deal with this problem, the surface-form
description language allows separate entries for each user bias. The next section
will deal with some input-output statements in great detail. To introduce the
topic let us look once more at the simple statement: A = B * (C + D). Let
us now pretend that under certain circumstances the variables A, B, C, and D
are complex. In this case, the complex functions cadd and cmul perform the
arithmetic operations. We will assign this complex condition a bias code of C.
Now, the surface-form description is as follows:

SURFACE-FORMS
PUSHADR PATTERN 0, 0, "\v"
GETVAL PATTERN 1, 0, "%1i"
MULT PATTERN

C 2, 0, "cmul(%1d, %2d)"
* 2, 0, "%1d * %2d"

ADD PATTERN
C 2, 0, "cadd(%1d, %2d)"
* 2, 1, "%1d + %2d"

PUTVAL PATTERN 2, 1, "%1i = %2d"
EOS PATTERN 1, 0, "%1d\c"
END

Whenever a given operation has an alternate form for one or more bias
codes, the separate entries are entered on separate lines, preceded by the bias
code. The ‘*’ code is always last and specifies the default pattern. Note that
the precedence codes are different between the two output biases. In a later
example, even the number of parameters will differ.

Executing the string-machine using these two alternate biases looks as fol-
lows:
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Instruction Complex Bias Default Bias
PUSHADR A “&A” “&A”
PUSHADR B “&A”, “&B” “&A”, “&B”
GETVAL “&A”, “B” “&A”, “B”
PUSHADR C “&A”, “B”, “&C” “&A”, “B”, “&C”
GETVAL “&A”, “B”, “C” “&A”, “B”, “C”
PUSHADR D “&A”, “B”, “C”, “&D” “&A”, “B”, “C”, “&D”
GETVAL “&A”, “B”, “C”, “&D” “&A”, “B”, “C”, “D”
ADD “&A”, “B”, “cadd(C,D)” “&A”, “B”, “C+D”
MULT “&A”, “cmul(B,cadd(C,D))” “&A”, “B*(C+D)”
PUTVAL “A=cmul(B,cadd(C,D))” “A=B*(C+D)”
EOS

Note that though the translations look quite different, the code generated
for the two biases is identical. The C output is controlled entirely via the the
surface-form description language.
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26. Numerical C Extensions Group

Rex Jaeschke
Convener

The second meeting of the Numerical C Extensions Group (NCEG) was
once again hosted by Cray Research at their Mendota Heights, MN facility.
The meeting took place for one and a half days on September 19–20 and was
attended by approximately 30 people. Several new companies were represented
as were various academic users.

With the organizational aspects having been dispensed with at the first
meeting, work started in earnest to propose, debate, and critique submitted
papers, and generally to work toward the long term goal of publishing a Tech-
nical Report (TR) through ANSI.

Reports were received from various informal liaisons NCEG has with other
groups: Parallel Computing Forum, IFIP TC2/WG 2.5 Numerical Software,
X3J11 and ISO C. Since then I have agreed to attend the first meeting of
X3J16 (ANSI C++) in Washington D.C. on December 15th.

Almost all of the technical agenda time was given to the following topics:
IEEE arithmetic, exceptions, aliasing, nonzero-based arrays, complex arith-
metic, variable dimensioned arrays, and vector and parallel support. To gather
user feedback as well as provide additional capability, at least one vendor is
known to be working on adding complex and variable dimensioned array sup-
port to their next release.

Wording for a formal project proposal was distributed and, with minor
changes, was agreed upon. This document will be circulated to X3J11 voting
members currently eligible to vote, along with a letter ballot. They will be
asked to vote on admitting NCEG as a working group within X3J11, tentatively
named X3J11.1. If they so approve, the vote and proposal will be forwarded to
X3 for processing. We hope this is all completed by the March 1990 meeting.
Since NCEG’s aim is to publish a report not a standard, no formal public review
period is required. In short, from an administrative point of view, a TR is much
simpler than a standard.

Many thanks to Cray for agreeing to host the meeting at short notice once
it was announced that the joint X3J11/NCEG meeting in Salt Lake City was
cancelled. The next meeting is scheduled in New York City, March 7–8, 1990
immediately following X3J11. The meeting after that is being proposed in the
Livermore, California area (an hour east of San Francisco) around September.

To submit a paper, call Tom MacDonald to get a document number. Please
put the document number and title at the top of each page. Deadline for the
final mailing for the March meeting is January 19.

For more information about NCEG, contact either Rex at (703) 860-0091
or uunet!aussie!rex, or Tom at (612) 681-5818 or tam@cray.com.

∞
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27. Parallel Programming: Linda Meets C, Part III

Jerrold Leichter
Yale University

Abstract

Linda is a programming model for developing explicitly parallel programs.
In earlier parts of this series, we introduced the model and discussed
several different “injections” of it into C, which in effect defined several
dialects of “Linda-in-C.” In this part, we discuss the implementation of
a compiler for our dialect, VAX LINDA-C.

Introduction

Since VAX Linda-C is mainly VAX C, with some extensions, the simplest
approach to compiling it is to preprocess VAX Linda-C code into VAX C
code.

Preprocessors vary greatly in complexity and sophistication. Many—C’s
native preprocessor, for one—are text-to-text transformers having little or no
understanding of the text they are processing. Others, such as RATFOR or
C++, are essentially compilers which just happen to produce FORTRAN or C,
rather than object code, as output.

LCC, the preprocessor for VAX Linda-C, falls somewhere in between. While
LCC leaves all the C code in its input unchanged, its transformation of the Linda
tuple operations requires that it be able to determine the types of arbitrary
expressions. This in turn requires a full parse of the code, including the ability
to understand declarators and expressions.

Overview of LCC

LCC must accept Linda-C programs as input and produce VAX C programs
as output. However, as we discussed in Part II, Linda-C programs may use
the newtype specifier to create new, globally-accessible types. The VAX C
programs that LCC produces as the result of separate compilations must, when
linked, resolve the various global new type references consistently.

Figure 1 illustrates the operation of LCC. In the Figure, three modules, A.L,
B.L and C.L, form parts of a single Linda program. They are compiled into
two distinct executable images, AB.EXE and C.EXE, which execute together.
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Figure 1: Overview of VAX Linda-C Compilation

The Type-Tuple Context

In the Figure, the two images AB.EXE and C.EXE are able to communicate
through tuple space because they share a common view of the type system and
thus of tuples built upon it. Yet it’s impossible for all Linda-C programs ever
written to share such a context. Independent programs will wish to use the
same names for different types.

The type-tuple context within which a Linda-C program is compiled defines
the name space within which its globally-defined new types are known. Further,
although this is not directly visible to the Linda-C programmer, it also defines
a set of numbers which uniquely identify the tuple type signatures which occur
in all tuple operations within the program. The type signature of a tuple is
simply the list of the types of its fields. Since matching depends on types, a
tuple and template cannot match unless they have identical type signatures. A
type-tuple context can extend across multiple source language modules. It can
also extend across multiple executable images.

In Figure 1, the type-tuple context is stored in the file ABC.TT. Each LCC
compilation reads the current version of this file and writes a new version con-
taining new information gleaned from the current compilation.

The type-tuple context must also be available at run time. The TTC program



Parallel Programming: Linda Meets C, Part III– Leichter 183

transforms the ABC.TT file into an object file, ABC.TT_OBJ, which is linked with
each image that is to execute within the “ABC” context. We will see later
that this object file actually contains executable code that will produce a run-
time representation of the type-tuple information for use by the actual tuple
operations.

Run-Time Support Code

Figure 1 shows one additional component, LINDASHR. This component is a
shareable image containing the support code which implements and supports
the tuple operations. There is another component as well, the Listener, which
does not appear in the Figure because it is a stand-alone program that need not
be linked into each Linda-C program. The Listener implements the interface
to an Ethernet, allowing a VAX Linda program to consist of images running
on multiple nodes on a local area network. We will not discuss the run-time
code except in passing; a description can be found in a recent paper.1 All the
details can be found in our dissertation.2

LCC

The code in LCC descends from the front end of a C compiler developed by David
Conroy. The original compiler supported standard C, essentially as defined in
Kernighan and Ritchie, with a few minor extensions.

LCC requires a separate C preprocessor. Unfortunately, in the version of the
compiler we worked with, VAX C’s preprocessor could not be used separately.3

Instead, we have used two different preprocessors with LCC. One, written by
Martin Minow, is an independent implementation compatible with the proposed
ANSI C standard. The other, RPP, is based on code provided to us by David
Elins. RPP operates by running the VAX C compiler and requesting a listing
file including the results of macro substitutions and conditional code and file
inclusion. RPP then reads the listing file and extracts the preprocessed code.

A major goal of LCC is to accept, as a base, exactly the dialect of the
C language that the VAX C compiler accepts. This allows most error messages
to be generated by LCC in reference to the programmer’s own code, rather than
leaving that job to VAX C, which would refer to LCC’s output. Conversely, it
ensures that correct VAX C programs are accepted. In developing LCC from
Conroy’s original code, we removed all of Conroy’s extensions, minor as they
were, and added code for the documented VAX C extensions to the language.

1“Implementing Linda For Distributed and Parallel Processing,” in Proceedings of ICS89.
Also available as Yale Department of Computer Science Technical Report TR-715, April 1989.

2“Shared Tuple Memories, Shared Memories, Buses and LAN’s—Linda Implementations
Across the Spectrum of Connectivity.” Available as Yale Department of Computer Science
Technical Report TR-714, July 1989.

3Since Version 3.0, VAX C has provided a “preprocess only” option. Unfortunately, it
appears to be impossible to get the preprocessor to retain comments.
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To retain the compatibility between LCC and VAX C, the preprocessor of
choice for LCC is RPP, which is inherently compatible with VAX C’s preprocess-
ing pass: It is VAX C’s preprocessing pass!

The VAX C compiler is a moving target. At the time LCC was written, the
current version was 2.1. VAX C has changed considerably since then. Starting
with version 2.2, it began evolving toward compatibility with the proposed
ANSI C standard—yet another moving target during the period in question.

The need for the programmer to interact with the generated code is often
the weak spot of preprocessing systems. Sometimes it is possible to make such
interactions very rare. In the case of LCC, we could not easily do that. Run-
time error messages and debugging information are keyed to the text of the
code eventually fed to VAX C for compilation. While it is possible to prevent
this in principle, it is quite a complex matter.

Since LCC cannot hide its output from the programmer in all cases, it at-
tempts to retain the structure of its input to the degree that it can. Indentation,
spacing, and comments are copied unchanged. Where the correspondence be-
tween line numbers may not be one to one—where a file has been included
or conditional code omitted, for example—a #line directive is inserted as a
guide.4

The Organization of LCC

The usual way to implement a pre-compiler is to parse the input text into some
internal form, typically a syntax tree; modify the tree; and finally convert it
back to textual form on output. This approach makes it difficult to retain the
textual structure of the input, and is not used by LCC. Instead, the tokenizer
has the responsibility for maintaining the correspondence between the textual
structures of the input and output.

The lexical analyzer was implemented “bare hands,” rather than using a
lexical analyzer generator. We don’t know Conroy’s reasons for doing this, but
it turned out to provide a good framework into which we could insert our own
code. It is not clear that the kind of processing we added could be easily added
to code generated by a lexical analyzer generator.

Figure 2 is a simplified picture of LCC. Linda-C program text enters at
the left side; VAX C code exits at the right. The line running from the top of
the tokenizer box represents a bypass around semantic processing; spacing and
comments flow through it.

The box labeled s represents the “current” token. Actually, the box has two
halves. The upper half is used only by the tokenizer; it contains the actual text
of the token, exactly as it appeared in the input. The lower half contains the
internal representation of the token, and corresponds to several variables whose
use is pervasive within LCC. Most important of these is s, which contains an

4This also causes any VAX C error messages to use a line number corresponding to the
original file. Unfortunately, it has no effect on run-time error reporting.
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Figure 2: Overview of LCC Data Flow

internal code for the token. Other variables contain additional information for
certain types of tokens, such as the value of an integer token.

The triangular shape to the right of the s box is a control point. Higher
levels of the code may use it to discard the current token, or to insert text at the
control point. Any such text appears in the output before the current token.
In practice this mechanism is generally used to replace the current token.

Text flowing out of the control point is conceptually on its way to the output.
However, another mechanism, the hold buffer, can intervene. Semantic process-
ing routines may request a hold on the output by calling hold. This allocates a
buffer (of unlimited size) and attaches it in front of the output stream. Figure 2
shows two hold buffers, though there can be any number. Usually, there are
none. Hold buffers are stacked; hold buffer hb1 in the figure was created by a
call to hold made before the call that created hb2.

Any text entering a hold buffer is retained there until unhold is called. At
that point, the text is copied to the next hold buffer in sequence, if there is one,
or to the output file.

When a hold buffer is active, the semantics processing code can insert text
into the next hold buffer “outward.” If there is no such hold buffer, the text
flows directly to the output. This capability is represented in the Figure by
the two lower arrows from the box labeled Analyzer. Because buffers nest, the
lighter arrow at the bottom is inaccessible while the inner hold buffer, hb2, is
active.5 The semantic routines can also erase the contents of the innermost
hold buffer.

5Actually, hold returns a value that can be used to designate a particular buffer, regardless
of subsequent nesting. This capability is not currently used.
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Parsing and Semantic Analysis

Parsing at the statement level is by recursive descent, implemented directly as a
series of C function calls. As they are recognized, expressions, declarators, and
initializers are passed to special-case sub-parsers. Expressions are parsed using
a precedence grammar. Declarators and initializers, with their idiosyncratic
syntax and semantics, are parsed using algorithms to match. In flavor they are
essentially recursive descent, however.

While Figure 2 shows separate Parser and Analyzer (semantic processing)
boxes, in a recursive descent parser parsing and semantic processing are closely
interwoven. There is no sharp line in the code corresponding to the two boxes,
though some modules unambiguously belong in the Analyzer box; the constant-
folding code is one example.

Common lore strongly recommends the use of parser generators, especially
in the development of experimental compilers for languages whose grammar is
subject to frequent change. Our experience is not consistent with this recom-
mendation. We found the recursive descent parser in LCC–which, recall, was
written by another programmer—extremely easy to understand and modify.
Adding semantic actions and generating error messages was simple. Debugging
was usually straightforward: The state of the parser is deducible from the point
at which execution is taking place. In general, making modifications was very
easy.

Of course, there is no denying that a parser generator would be useful in
other circumstances—in checking a proposed grammar for ambiguities, if noth-
ing else. Since we made only minor changes to C syntax, this was not an issue
for us. For larger-scale changes, it might be important.

Parser generators are also claimed to produce faster code. That may be true,
but in LCC parsing speed never became an issue. Since LCC was very fast—much
faster than the VAX C compiler, for example6 —we never saw any reason to do
a detailed timing analysis. It seems highly likely, however, that the best way
to speed up LCC is to re-implement the memory allocator, currently just a shell
around malloc and free, not to begin reorganizing the parser.

The hold buffer mechanism’s nesting action is consistent with the recursive
descent parser’s organization: When it is necessary to insert code dependent on
a syntactic element in front of that element, one calls hold after recognizing
the first token in the element, and unhold when the element is complete. The
cleanest example can be found in a function, readior, which processes in,
out, and rd statements into calls to the support routines k_in and k_out.
The calling sequence for either of these functions makes use of the standard
VAX representation of an argument list as a list of longwords, preceeded by
a count. We call such a list, with the successive longwords containing a flag
word; a type signature; a set of bits indicating the polarities of the fields,
that is, which are formal and which actual; and then the fields of a tuple; the
external representation of that tuple. By using a calling sequence to match, we

6Of course LCC doesn’t have to generate code, an expensive operation.
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hold(); /* Hold field */

if (readtyname(&attr)) /* A typename? */

{ typnm = TRUE; /* Remember that */

hberase(); /* Erase typename */

put(’0’); /* Use 0 in its place */
...

}
else ... /* Non-typename field */

unhold(); /* Release field */

Figure 3: Using the hold Function

get the compiler to build the external representation for us. A clever enough
compiler might even discover that the calling sequence is, say, a loop invariant
and construct it only once rather than at each iteration.

At least two of the first three arguments, and possibly all three, cannot
be known until the entire tuple has been parsed. Hence, readior calls hold
immediately after replacing the in, out, or rd token with the name of the
appropriate function. It can then proceed to parse each field specification,
building a record of field types and polarities.

It turns out to be necessary to call hold again for each field, since a field
consisting entirely of a type name is replaced with a constant 0. While this
could perhaps be accomplished by passing additional state information to the
readtyname function, which reads type names, using hold produces cleaner
code, as shown in Figure 3. The Figure has been considerably simplified by
omitting all the actual semantic routines, but it is an accurate illustration of
the code layout. The code in the Figure is, in effect, treating the entire type
name as a large token—a natural thing to do in a recursive descent parser.

The Type-Tuple File

In order to support separate compilation, LCC must maintain the type-tuple
file described earlier. Code within LCC maintains a secondary symbol table of
Linda types and tuple signatures. The table is initialized with some built-in
values and the data in the old type-tuple file. It is updated as new types are
declared and tuple operations are performed. Finally, a new version of the file
is written.

Type-tuple files are simple ASCII files—a more compact notation did not
seem called for, as they are likely to be small. The files are line oriented, with
each line specifying one of six operators, along with values to go with it.
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LCC At Work

To get a feel for what LCC does, we illustrate its operation on a simple example
program. The program consists of master and worker processes, implemented in
two separate files. The master places a request tuple in tuple space; the worker
eventually replies with a response tuple containing the factorial of the integer in
the request tuple. There is nothing inherently interesting about the program.
It was constructed to illustrate how LCC handles various constructions.

The figures on the following pages show the input code, the resulting C code
and type-tuple file produced by LCC, and finally the C code generated by TTC.

Translating From VAX LINDA-C To VAX C

Lines 1–12 of Figure 5 were created by LCC. Line 10, which describes the nchar
type, is completely synthetic. No such declaration ever appears in the input
to LCC: nchar needs special handling since string literals have type “array of
nchar.”

Line 11 makes the run-time type system available to the code.7 Both the
arrays declared here map a tuple type index to a tuple type number. The tuple
type index is a value that the compiler can determine, while the tuple type
number will not be known until run time. LINDA_TU maps “global tuple types:”
The types of tuples all of whose fields have globally-known types. LINDA_TU_0
maps tuple types at least one of whose fields is local to this module. The
trailing zero is a module number; the corresponding line in Figure 7 would
declare LINDA_TU_1 instead. As it happens, FACTMASTER.L contains no local
tuples, or types for that matter, so LINDA_TU_0 is never used.

Starting with line 13, Figure 5 is essentially a line by line translation of
Figure 4. Note how LCC preserves the format of the input file to the degree that
it can. Where it has rewritten the input text, LCC often leaves the original text
in the line as a comment. The newtype declarations on lines 3–5 of Figure 4,
corresponding to lines 13–15 in Figure 5, illustrate this practice. Because in-
cluding both input and output text causes the output lines to become unwieldy,
LCC does not follow this practice for the Linda operations. Enough of the line
is left unchanged that it is usually easy to understand.

An interesting special case can be seen in the lines just mentioned: A
newtype declaration is generally translated into a typedef. However, for no
particularly good reason, many C compilers, VAX C included, do not permit a
declaration of the form:

typedef void VOID;

LCC must therefore do something different when a void type is declared. One
possibility would be to declare the type as something else, say an int. However,

7The globalref storage class is a VAX C extension which is analogous to the extern. A
corresponding definition is made using globaldef, examples of which appear in Figure 9. We
used the VAX C extensions only because it makes generating the code in the latter Figure
simpler—there is no analogue to globaldef for externals.
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1 #ttcontext factorial

2

3 newtype void FACTORIAL;

4 newtype void FACTORIAL_RESULT;

5 newtype int PUBLIC;

6

7 LindaMain()

8 { PUBLIC n;

9 int result;

10

11 n = 6;

12 out(FACTORIAL,n);

13 in(FACTORIAL_RESULT,?PUBLIC,?result);

14 printf("6! = %d\n",result);

15 }

Figure 4: File FACTMASTER.L

1 /* Created by lcc version 00.01, 9-AUG-1988 19:19:54.18 */

2 /* Source file USERCS:[LEICHTER.THESIS]FACTMASTER.P;1 */

3 # 1 "USERCS:[LEICHTER.THESIS]FACTMASTER.L;5"

4 # 2

5

6 #module FACTMASTER

7 # 3

8

9 # 1 LINDA_LCC_PREAMBLE

10 /* newtype */typedef char /*varying(void) */ nchar;

11 globalref short LINDA_TU[], LINDA_TU_0[];

12 # 3 "USERCS:[LEICHTER.THESIS]FACTMASTER.L;5"

13 /* newtype void FACTORIAL; */

14 /* newtype void FACTORIAL_RESULT; */

15 /* newtype */typedef int PUBLIC;

16

17 LindaMain()

18 { PUBLIC n;

19 int result;

20

21 n = 6;

22 k_out(&0x40002,LINDA_TU[0],&0xFFFFFFFF,0,n);

23 k_in(&0x2,LINDA_TU[1],&0xFFFFFFF9,0,0,&(result));

24 printf("6! = %d\n",result);

25 }

Figure 5: File FACTMASTER.C
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1 #ttcontext factorial

2

3 newtype void FACTORIAL;

4 newtype void FACTORIAL_RESULT;

5 newtype int PUBLIC;

6 /*

7 * Compute factorial: <FACTORIAL,n> => <FACTORIAL_RESULT,n,n!>.

8 * In both cases, n has type PUBLIC; n! has type int.

9 */

10 LindaMain()

11 { newtype void PRIVATE;

12 int n, p;

13 PUBLIC input;

14

15 /*

16 * The outer loop reads request tuples, puts them into private

17 * format with an initial p value, and sends them on.

18 */

19 for (;;)

20 { in(FACTORIAL,?input);

21 out(PRIVATE,(int)input,1);

22

23 /*

24 * This loop does the calculation: We compute a recursive

25 * f(n) by computing F(n,p); p accumulates the result.

26 */

27 for(;;)

28 { in(PRIVATE,?n,?p);

29 if (n <= 1)

30 { out(FACTORIAL_RESULT,input,p);

31 break;

32 }
33 else

34 out(PRIVATE,n-1,p*n);

35 }
36 }
37 }

Figure 6: File FACTWORKER.L
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...
Fifteen lines omitted; see text.
...

1 /*

2 * Compute factorial: <FACTORIAL,n> => <FACTORIAL_RESULT,n,n!>.

3 * In both cases, n has type PUBLIC; n! has type int.

4 */

5 LindaMain()

6 { /* newtype void PRIVATE; */

7 int n, p;

8 PUBLIC input;

9

10 /*

11 * The outer loop reads request tuples, puts them into private

12 * format with an initial p value, and sends them on.

13 */

14 for (;;)

15 { k_in(&0x2,LINDA_TU[0],&0xFFFFFFFD,0,&(input));

16 k_out(&0x80002,LINDA_TU_1[0],&0xFFFFFFFF,0,(int)input,1);

17

18 /*

19 * This loop does the calculation: We compute a recursive

20 * f(n) by computing F(n,p); p accumulates the result.

21 */

22 for(;;)

23 { k_in(&0x2,LINDA_TU_1[0],&0xFFFFFFF9,0,&(n),&(p));

24 if (n <= 1)

25 { k_out(&0x80002,LINDA_TU[1],&0xFFFFFFFF,0,input,p);

26 break;

27 }
28 else

29 k_out(&0x80002,LINDA_TU_1[0],&0xFFFFFFFF,0,n-1,p*n);

30 }
31 }
32 }

Figure 7: File FACTWORKER.C
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1 ! TT file created by lcc version 00.01, 9-AUG-1988 19:19:54.18

2 ! TT file created by lcc version 00.01, 9-AUG-1988 19:20:03.80

3 P 5 2 1 20 0

4 T 1 0 13 18 0 FACTORIAL

5 T 2 0 13 17 0 FACTORIAL_RESULT

6 T 3 0 5 16 4 PUBLIC

7 T 4 0 5 5 4

8 T 0 C000 1 15 1 nchar

9 U 0 2 1:A 3:1

10 U 1 3 2:A 3:A 4:A

11 M FACTWORKER 1 1 1

12 T 0 0 13 20 0

13 U 0 3 80000000:A 4:B 4:F

14 M FACTMASTER 0 0 0

15 E

Figure 8: File FACTORIAL.TT

since no objects can be declared with a void type, and the void type itself will
never appear in a translated Linda operation, LCC can take the simpler approach
of just omitting the declaration from the output entirely.

The first argument to k_out or k_in contains some flags and possibly a
length field when the compiler can determine the total length of the tuple. All
the Linda operations in the examples have tuple lengths that LCC can compute,
so the bottom hex digit of the value passed in the generated calls always has the
bit with value two set to indicate that the high-order 16-bit value (the high-
order four hex digits) contains a length. For example, the out on line 12 of
Figure 4 creates a tuple containing a 0-byte void field and a 4-byte int. The
resulting length of 4 bytes can be seen in the first argument in the corresponding
call to k_out, line 22 of Figure 5.

In all cases, the second argument to k_in or k_out is a member of LINDA_TU
or LINDA_TU_xx, where xx is the current module’s number. An example of the
use of a local tuple type can be seen in line 21 of Figure 6, which translates to
line 16 of Figure 7.

The third argument to k_in or k_out is a set of bits, one per field, indicating
whether the corresponding field is formal or actual. Using a VAX C extension,
it always appears as the address of a constant.

The remaining arguments are straightforward translations of the input fields
specified. Where the input field is simply a typename, a value of zero is passed.
For a formal passed to k_in, this will lead the binding code to skip the field.

The Type-Tuple File

Figure 8 illustrates the type-tuple file produced by LCC after compiling the
code in Figures 4 and 6, in that order. Line 3 declares several global parameters,
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such as the number of distinct global types and tuples seen so far. It also marks
the beginning of a series of records that define global types and tuples.

The T records that follow declare global types. The information stored for
a global type includes its type index, which once assigned can never change;
the underlying “basic type,” which essentially corresponds to one of the scalar
types in C; modifiers, such as “pointer to” or “array of;” the length; and the
name, if any. Lines 4–6 declare the global types created as a result of the
newtype declarations in the code; line 7 declares a type that corresponds to
int, needed for the result tuple. Note that this type is anonymous. However,
LCC can determine that it is a built-in type from additional information on the
line.

In general, LCC creates declarations in the type-tuple file only for types it
actually needs. However, nchar is again an exception: A declaration is always
created for it. Line 8 in the Figure is an example. (The third field, C000, is the
hexadecimal representation of the varying(void) attribute.)

The two U records on lines 9 and 10 declare global tuple types. A U record
consists of a tuple type index, an arity, and a set of field values. Each field value
is a type index, a colon, and a set of flags indicating how this field is used.

An M record, such as line 11, introduces a module. Each module compiled
in a particular type-tuple context will be represented by a single M record in the
type-tuple file. Any local types or tuples are declared following the M record,
using the same T and U records we have already examined. The only novelty
can be seen in line 13, which declares the tuple type corresponding to the tuple
operations on lines 21, 28, and 34 in Figure 6. Since a local tuple type can
contain fields with a mixture of local and global types, it is necessary to mark
the fields appropriately. The top bit of the type index, a 16-bit value stored in
a 32-bit integer, is used for this purpose. Hence, the first field of the tuple being
declared is local type 0, which corresponds to PRIVATE in the source code, and
not global type 0, which corresponds to nchar.

As LCC reads a type-tuple file it discards the previous M record for the mod-
ule being compiled and all declarations associated with it. It re-creates the
local records, and all the global records, from its internal symbol tables. The
M records and associated declarations for other modules are copied unchanged.

TTC’s Translation of the Type-Tuple File

Figure 9 shows the result of applying TTC to the type-tuple file of Figure 8. The
code consists of a basic shell within which a series of declarations and calls to
the run-time type system are inserted. The call to Linda_init initializes the
run-time support code. It also parses, interprets, and removes from the argv
vector any command line options intended for it.

Line 10 creates the LINDA_TU vector used to map global tuple indices to
tuple type numbers. It is initialized by lines 22–25. First, however, run-time
types must be created to pass to the NewTupleType function. This is done in
lines 13–21. All these lines are essentially direct translations of lines in the
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1 /* Created by ttc version 00.01, 9-AUG-1988 19:20:47.23 */

2 /* TT file USERCS:[LEICHTER.THESIS]FACTORIAL.TT;2 */

3 #module LINDA_MAIN_PROGRAM

4 #include "LINDA_LIBRARY:linda.h"

5 main(argc,argv,envp)

6 int argc;

7 char **argv;

8 char *envp;

9 { globaldef TYPE LINDA_T[5];

10 globaldef TYPE LINDA_TU[2];

11

12 argc = Linda_init(argc,argv,envp);

13 LINDA_T[1] = NewType(TYPE_IMMEDIATE|TYPE_FIXED,0,

14 "FACTORIAL");

15 LINDA_T[2] = NewType(TYPE_IMMEDIATE|TYPE_FIXED,0,

16 "FACTORIAL_RESULT");

17 LINDA_T[3] = NewType(TYPE_IMMEDIATE|TYPE_FIXED,4,

18 "PUBLIC");

19 LINDA_T[4] = NewType(TYPE_IMMEDIATE|TYPE_FIXED,4,"");

20 LINDA_T[0] = NewType(TYPE_IMMEDIATE|TYPE_FIXED,1,

21 "nchar");

22 LINDA_TU[0] = NewTupleType(

23 LINDA_T[1],LINDA_T[3]);

24 LINDA_TU[1] = NewTupleType(

25 LINDA_T[2],LINDA_T[3],LINDA_T[4]);

26 { /*** Module FACTWORKER ***/

27 TYPE LINDA_T_[1];

28 globaldef TYPE LINDA_TU_1[1];

29

30 LINDA_T_[0] = NewType(

31 TYPE_IMMEDIATE|TYPE_FIXED, 0,"");

32 LINDA_TU_1[0] = NewTupleType(

33 LINDA_T_[0],LINDA_T[4],LINDA_T[4]);

34 }
35 { /*** Module FACTMASTER ***/

36 TYPE LINDA_T_[1];

37 globaldef TYPE LINDA_TU_0[1];

38

39 }
40 return(LindaMain(argc,argv,envp));

41 }

Figure 9: File FACTORIAL.TT_C
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type-tuple file. However, where the type-tuple file was language independent,
the output of TTC is specific to C. For example, the type-tuple file encodes the
fact that PUBLIC corresponds to a four-byte integer TTC, in generating lines 17
and 18 of Figure 9, adds the information that, in C, such objects are passed by
immediate value.

Each M record, together with the declarations that follow it, translates to a
block of code in TTC’s output. The block creates the LINDA_TU_xx vectors that
individual modules use to map local tuple type indices to tuple type numbers.

Local types are stored in vectors local to each module block, since they will
never be needed again once the block is complete. Global types are stored in
the globally-known vector LINDA_T. This is a historical artifact—no reference
to LINDA_T is ever made outside of the code generated by TTC.

Conclusions

We consider our implementation for LCC as generally successful. While ideally
we would prefer a full compiler rather than a preprocessor, the code generated
by LCC is generally easy to understand when necessary.

We’ve also found that LCC itself is reliable and easy to modify and extend.
Much of the credit must go to David Conroy, who defined the overall structure
of the code. While we were working on LCC, we watched others painfully mak-
ing analogous changes to a LEX- and YACC-based compiler. We came away
convinced of the virtues of a carefully designed hand-built lexer and, even more
so, of a recursive-descent parser.

Availability

Our implementation of Linda-C for VAXes has been made available to several
laboratories on an experimental basis. We are beginning the development of a
commercial version and hope for an initial release early in 1990. Contact the
author for further information.

Jerrold Leichter has recently completed his doctoral research, which includes
an implementation of Linda for shared-memory and networked VAXes, at the
Yale University Department of Computer Science. He was a long-time em-
ployee of Digital Equipment Corporation, whose Graduate Engineering Educa-
tion Program supported him during some of his work. He may be reached elec-
tronically as leichter-jerry@cs.yale.edu; at 24 Old Orchard Lane, Stam-
ford CT 06903; or by phoning (203) 329 0921.

∞



28. Electronic Survey Number 2

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an e-mail report on the results.)

The following six questions were posed to 52 different people, with 14 of
them responding. Since some vendors support more than one implementation,
the totals in some categories may exceed the number of respondents. Also,
some respondents did not answer all questions, or deemed them ‘not applica-
ble.’ I have attempted to eliminate redundancy in the answers by grouping
like responses. Some of the more interesting or different comments have been
retained.

Expanding Macros in Pragmas

Do you expand macros in pragmas? If not, any reason not to?

• 3 – Yes

• 9 – No

• Comments:

1. No. First, the pANS implies that this does not occur. (§3.8, page 87,
lines 15–16.) Second, if macros were allowed to “monkey” with
#pragma directive contents, they wouldn’t be as safe to use. In other
words, something like

#pragma __DATE__ = "May 5 1887"

would be unsafe if macro replacement occurs.

2. I ignore pragmas. If and when I recognize them, I will expand macros
in them.

3. No. We only have one pragma.

4. Currently no. See no reason not to though.

5. Not yet but we plan on doing this in the next release.

196
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6. No. Pragmas are currently ignored.

7. I do expand macros in pragmas. I think unrecognized pragmas
should elicit a warning, and recognized ones should elicit one at the
user’s request. This would prevent strange things from happening
when pragmas and macros are mixed. I don’t think doing macro
expansion makes pragmas any more dangerous then they already
are.

8. I think they should be expanded, to allow convenient configuration
parameterization. For example, Orca/C has a pragma for specifying
the slot number in the Apple IIGS in which a floating-point acceler-
ator is installed. This obviously should be parameterizable.

9. The fact is that we do currently expand macros in pragmas and have
been thinking of it as a desirable feature. For reasons I won’t go into,
however, one of our compiler labs recently suggested that we should
stop doing it and, upon investigation, I came to the conclusion that
our current behavior is wrong. ANSI §3.8: “The preprocessing tokens
within a preprocessing directive are not subject to macro expansion
unless otherwise stated.”
So to me it looks as though macro expansion in pragmas is clearly a
non-conforming thing to do. Do you know of any arguments to the
contrary? I am curious why the question came up on your survey.
I haven’t been on X3J11 long enough to know whether this subject
was debated there.
I came up with one reason not to expand. Suppose I have written a
program which uses:

#define OFF 0
#define ON 1

Now I want to port to a system where, in order to invoke the opti-
mizer on a per-function basis, I have to write:

#pragma OPTIMIZE ON

If I want to use this pragma, and if macros are expanded in pragmas,
I have a problem.
I would appreciate any light you can shed on the question, since we
plan to make a decision soon on whether to change our behavior.
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Predefined Macros

What predefined macros do you have? What is their purpose? I’m mostly
interested in those that conform with regard to namespace requirements (i.e.,
begin with __ or such).

_ADDR32 __FUNCTION__
_CRAY __GNUC__
_CRAY1 __GNU_LIBRARY__
_CRAY2 __m88000__
_KCCsymfnd(a, b) __m88k__
_KCCsymval(a, b) __mc68000__
_MV __ORCAC__
_RELEASE __RAND__
_UNICOS __sparc__
__company__ __STRICT_ANSI__
__machine __unix
__CLASSIFY_TYPE__ __unix__
__COMPILER_KCC__ __vax__
__DGUX__ __ZTC__

• Comments:

1. None of these names (other than those in the standard) are pro-
vided for the user. A different method is used for machine/system
preprocessing inquiry.

2. GCC always predefines __GNUC__. If you compile in strict-ANSI
mode (in which extensions which conflict with the Standard are
turned off), __STRICT_ANSI__ is predefined. __GNUC__ is intended
to be used to test for the presence of GCC extensions. The macro
__STRICT_ANSI__ is tested by the headers of the GNU C Library;
they don’t define any non-ANSI macros, types, or functions if it
is defined. __STDC__ is defined as 1 except in traditional mode (in
which const and volatile are not recognized, etc.). Various macros
such as __unix__, __vax__, __sparc__, __mc68000__, etc., are pre-
defined depending on machine and OS. Forms of the same macros
without the leading and trailing underscores are defined except in
strict-ANSI mode.
The headers of the GNU C Library define __GNU_LIBRARY__. Several
other macros are defined and/or tested by the headers of the GNU
C Library to determine what to declare (from ANSI, POSIX, BSD,
System V, miscellaneous historical Unix things, and GNU exten-
sions). These should not generally be of interest to application writ-
ers. There are some feature-test macros that an application writer
may define to determine what will be declared:
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_POSIX_SOURCE IEEE Std 1003.1 only

_BSD_SOURCE All except GNU, with conflicts
in favor of 4.3BSD

_SVID_SOURCE All except GNU, with conflicts
in favor of the SVID

_GNU_SOURCE All plus GNU extensions, with
conflicts in favor of POSIX

3. We predefine __machine and __unix as well as some flag specific
macros (i.e., macros are defined when certain flags are turned on to
allow conditional compilation based on presence/absence of certain
features).

4. I have a bunch of macros that tell the user things about the mode
he’s in (which has been selected with command line options or prag-
mas). The C compiler I’ve written supports parallel extensions for
transputers, and has to deal with various transputer models and
programming models.

auto Allocation Checking

Do you have some sort of a ‘stack probe’ to check that space is actually available
for automatic objects before allocating them? If so, what happens on allocation
failure? Can this probe be disabled?

• 6 – Yes (4 can turn it off)

• 6 – No

• Comments:

1. Yes. If no stack space is available the program aborts (not very
nicely), but we would have to run out of memory completely before
that would happen. No, the stack overflow check cannot be disabled
unless you write in assembly.

2. Well, there are two variants depending on whether the code (on
a PDP-10) is using extended addressing or not. If not, then the
LH of the stack pointer is a count, and the hardware automatically
generates a stack overflow interrupt when this count runs out (so
subroutine calls could trigger this as well as auto allocation). But if
extended, there is no count, so what I do instead is put a read-only
page at the end of stack space so that any attempt to store stuff
there will trigger a memory protection interrupt. The stack overflow
interrupt can be disabled with an appropriate signal(); the memory
protection one cannot. But there really isn’t any point in doing so,
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although I suppose someone might want to longjmp() back up the
stack—nothing else would be able to recover.

3. No. Given that the same compiler is used for stand-alone and hosted
environments, there is no general way to do this. In a hosted envi-
ronment, it is assumed that the operating system mediates when the
stack overflows.

4. Yes. The program is aborted with a message on failure. It can be
disabled (it is off by default).

5. The GNU system is intended for virtual memory machines, so this
is not necessary.

6. You get a signal when you try to access the unavailable memory.

7. Yes, upon entry to the function a check is made to see if sufficient
space is available. If not enough space exists the program terminates
abnormally and a “Stack overflow” message is issued. No it cannot
be disabled. Another interesting aspect of our stack is that it might
be non-contiguous. This is our way of allowing multiple processors
to allocate stack space simultaneously.

8. The instructions that allocate stack space check against a stack limit.
The check can be disabled, but the language runtimes (notably mal-
loc) might not work, since they adjust the stack limit downwards to
allocate more memory for the heap.

9. The stack probe is enabled by default. (Transputers are kind of
strange, with their multiple processes in the same heap.) Can be
disabled, though, for efficiency reasons. This is potentially danger-
ous, though. When the process runs out of stack space, a new stack
is allocated for this function and everything it calls. Whenever this
happens, it should be flagged somehow, so the programmer can find
out about it, so he knows things are less than optimal.

10. In a version of Ritchie’s PDP-11 C compiler, I forced the stack to
grow immediately upon entry to the function, rather than relying
on segmentation violation handling by the OS when the actual data
access occurred. This was because certain instructions could not be
properly restarted from the context information available to the OS.

Semantics of register

Do you take notice of register?

• Comments:

1. Yes, but only for the purpose of checking for &. All register vari-
ables are actually auto. If this ever changes, there would probably
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be about 10 word registers, with any type up to 2 words long allowed.
Actual allocation would hopefully depend on the optimizer making
a judgment call as to which variables were used most often.

2. The compilers I maintain are all based on PCC and, as such, allocate
a batch of registers reserved for programmer-denoted register vari-
ables, reserving another batch for compiler-generated temporaries.
Generally only word-sized (int, pointer) or smaller data actually
get registers this way.

3. The only effect register has is to cause error messages if you take
the address of a register variable. Actual register allocation is done
by coloring, as many as will fit. Usage counts are done of variables
to determine priority for getting in registers. Usages inside loops are
multiplied by 10.

4. When not optimizing, GCC obeys register declarations. When op-
timizing, GCC can figure this out much better than the programmer.
With the exception of the MIPS C compiler (for the MIPS processor
only), GCC produces better code than almost all other C compilers.

5. We pay attention to register if and only if the function has asm
statements. In other circumstances we perform global register al-
location and instruction scheduling which is more productive than
listening to programmer register suggestions.

6. We only notice register to prevent the variable’s address from being
taken. We attempt very aggressive register assignment and believe
that the compiler can do a better job than the programmer of de-
ciding which variables should be assigned to a register.

7. Our compilers do use register. The old ones use it alone, the
newer ones use such a declaration as one more bit of information
about whether to registerize an object.

8. Yes, if not optimizing (optimizing throws away the register hint,
and uses flow analysis to determine what goes in a register).

9. No. If supported at all, the compiler should find out about often used
objects, and only take the register keyword as a hint. Transputers
don’t really have registers in the traditional sense. It is possible
to have a better workspace (stack frame) arrangement by looking
at frequency of use of objects, though. On transputers, it’s not
important enough to make a big fuss about.

10. Yes we take notice of register. The number of registers available is
different depending on the code situation. All registers are the same
size as sizeof(int) (which == sizeof(long) == sizeof(short)
== sizeof(double)).
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If so, how many registers do you make available and what is their size?

• Comments:

1. However many registers the machine has and are not used are avail-
able for variables. The size is whatever the machine has; all of the
machines that GCC currently runs on have 32-bit registers.

2. 13 32-bit registers that are preserved across calls, 10 32-bit registers
that are not preserved across calls, and 2–3 32-bit additional registers
will be available soon.

3. Objects of sizes 1, 2, 4, and 8 can be stored in registers. On some
machines, objects of size 16 could be stored in them.

Can an object be stored in multiple registers?

• 3 – Yes

• Comments:

1. The only use of multiple registers is that forced by the architecture.
For example, two adjacent 16-bit registers can hold a long.

What types can actually be stored?

• Comments:

1. Whatever will fit.
2. All types whose size <= sizeof(register) are candidates for storing

in registers.
3. 32- and 64-bit integer and floating-point, and soon, 1 and 2 word

structures.
4. The available types is machine-specific. Basically, if a machine has

registers (some of our targets do not), all types that are usable as
registers with the instruction set can be so allocated.

If there are more requests than you have registers, what is your allocation
strategy?

• Comments:

1. The most frequently used variables go in registers.
2. Linear allocation for registers needed for a single basic block. I think

graph coloring is used for registers whose lifetimes span more than
one basic block.

3. Extra register requests are ignored (first few, typically 3 to 5, are
honored).

4. The compilers that only use the keyword for allocation do exactly
what Hansberry [the thorn in X3J11’s side] wanted: lexical ordering
takes precedence. The others use heuristic schemes.
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auto Allocation Timing

Do you allocate automatic storage on entry to each block or do it all on entry
to the function?

• 12 – On entry to the function.

• Comments:

1. It is very difficult to allocate auto storage on entry to each block:
a goto, switch, or longjmp may jump into the middle of a block,
bypassing such allocation code. The only implementation I have used
that tried to do this got it wrong.

2. GCC supports dynamically allocated local storage via alloca or
through variable dimensioned arrays. In these cases, the space as
allocated at the call site.

3. All on entry. Simpler and more efficient. Optimization nibbles away
at this from both the entry and exit points of a function, though,
since there are instructions that atomically push and pop words.

4. We allocate it all upon entrance to the function. I’ve never fig-
ured out how it could be done any other way because goto and
setjmp/longjmp make this a nightmare. I’d be curious about an
implementation that solved this problem.

5. All done upon entry to the function (though alloca and dynamic
sized arrays are available to dynamically allocate automatic storage.

6. I used to do it on entry to each block (or even expression, if it needed
temp space), but decided the act of (de)allocating took more time
than what I gained by having shorter offsets.

7. All upon function entry. I would hope that internal block use is free,
because it’s widely used just to delimit the scope of identifiers and
to aid in reuse of registers.

8. One addition to the stack pointer on entry, one on return. Some of
the machines make any other approach almost impossible.

Case Ranges

If you support case ranges, what syntax do you use? If you don’t, can you point
to any prior art here?

• 12 – Not supported.

• Comments:

1. If a common syntax is decided upon (by ANSI or practice), I’d con-
sider supporting it.
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2. No. As a programmer I’d like the extra functionality, but as an
implementer it gives me a headache.

3. I don’t have case ranges available. I would think anyone who added
them would use

case const-int-exp .. const-int-exp:

due to Pascal’s prior art.

4. Certainly, we on X3J11 have seen a number of suggestions, some
that conflict with other language enhancements (such as C++’s ::
operator).

Future Polls

Some of the topics planned for future polls are:

• How do you define NULL? Is the null constant pointer actually represented
as all-bits-zero? What different internal pointer representations do you
support?

• Assuming you implement most of the goodies required/defined by ANSI C,
how important is provable ANSI-conformance to your market place? Not
at all, somewhat, absolutely necessary.

• Do you have a home-grown or commercial validation suite? If so, which?

• Is POSIX conformance an issue for you? What about IEEE support?

• What do you see as the biggest shortcoming of the ANSI C Standard, as
a language standard or in some missing functionality (in the library or
preprocessor, for example)?

• Do you or will you implement long double with a different represen-
tation than double? If so, will that make three different floating-point
representations or are float and double mapped the same?

• Have you implemented or do you plan to implement locales other than
the standard "C"? If so, for what purpose?

If you have any topics to add to a poll please send them to me. I will provide
the responses to you as soon as they are collated, as well as publishing them
in a future issue. You don’t need to have an e-mail address to propose topics,
only to be polled.

∞



29. Understanding Expressions in C

Jim Brodie

Abstract

In this paper, I will attempt to provide a consistent and complete set of
rules which can be used to understand and decode complex C expressions.
This is necessary if you are going to provide effective documentation on
how C works. You need a framework which does not rely on black magic,
hand waving, and “Well, you know” during the discussions of the complex
or difficult cases. For the most part my discussion will cover the expression
attributes: type, value, and class; and the concept of rvalues, lvalues, and
their conversion.

Introduction

Expressions are at the heart of any C program. (All computations in a C pro-
gram are expressed by writing expressions.) Expressions appear in a wide vari-
ety of contexts. (They range from initializers to the argument lists for function
calls.) So users need a firm foundation if they are to analyze complex ex-
pressions in a methodical, reliable. It turns out that the real complexities in
C expressions almost always have to do directly or indirectly with pointers.
When is the result of an expression (or subexpression) the address of an object
and when is the result the value of the contents of an object?

One of the primary attempts to deal with some of the difficulties of complex
expressions was the introduction of the concepts of rvalues and lvalues. Any
moderately experienced C programmer is familiar with the simple application
of the rvalue and lvalue concepts. The origin of these names goes back to the
assignment operator. The expression x = y means to take the value from the
data object designated by the subexpression y and store it into the data object
designated by the subexpression x. In the left hand (lvalue) context of the an
assignment operator, the expression is used to designate an object. In the right
hand context (rvalue) context the expression is used to access the stored value.
Unfortunately, when we move away from the simple case of assignment, the use
of the lvalue and rvalue concepts have become less clear. In fact, much of the
confusion about complex expressions can be traced to insufficient information
in these non-assignment uses of the lvalue and rvalue concepts.

In the remainder of this article I will present the rules, based upon the
proposed ANSI standard for C, which will allow you to document and use
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the concepts of lvalues and rvalues so that you can understand even the most
complex expressions.

Simple Expressions

Let’s start with a little background. Although there are specific restrictions
which apply in some contexts, the general form of expressions is the same
everywhere in a C program. An expression is made up of one or more operands
and zero or more operators.

When you write an expression, with only a few exceptions, the operands are
also expressions. (The primary example of a context where an expression is not
allowed is the right hand argument to the select member operator, “.”. The
right hand argument is limited to a structure member name. This limitation is
the reason you cannot dynamically select which member of a structure you will
reference.)

The simplest form of an expression which can appear as an operand is called
a term. The terms which can appear in a C program, along with a simple
example of each, are shown below.

Terms
Kind of Term Example

name main
string literal "my string"
integer constant 123
floating-point constant 3.14
character constant 'a'
parenthesized expression (a + b)
sizeof(declaration) sizeof(int)

The only unusual thing here (compared to most presentations) is the in-
clusion of the sizeof(declaration) case. You can think of this as a way of
writing an integer constant which is determined by the C translator, using
implementation-specific rules.

Expression Classes

Despite having the same general form, there are actually four classes of expres-
sions in C.

1. Expressions whose results designate data objects – These are the lvalue
expressions. After these declarations:
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long int li;
float *pf;

the expressions li and *pf are lvalue expressions. A string, such as
"Hello world" is also an lvalue expression. The name used to designate
a data object always represents the address of the data object. It is always
an lvalue expression.

When an lvalue expression is evaluated the result is an lvalue. Note
here that we make a distinction between the expression and the result
of the expression. The expression always has the same class, given the
declarations which were used to declare the names which appear in the
expression.

The result, because of automatic conversions performed by the C transla-
tor, may change class during the course of the evaluation of an expression.
There are several rules, which we will discuss later, which describe the con-
version from the address of a data object (the lvalue) to the value stored
in the data object (the rvalue). Whether these rules are applied, however,
is based upon context (the operator this operand is being used with).

2. Expressions whose results designate functions – These are called, clev-
erly enough, function designator expressions. For example, after these
declarations:

void func(int);
int (*pfunc)(double);

the expressions func and *pfunc are function designator expressions.

3. Expressions which result in values that do not designate a data object or
a function – These are the rvalue expressions. Constants are examples
of rvalue expressions. For example, 1234, 'a', and 3.14 are all rvalue
expressions. In addition, the general form sizeof(declaration), as in
sizeof(int), is an rvalue expression. The result of an rvalue expression
is an rvalue. All of the arithmetic operators form expressions which result
in rvalues. For example, after this declaration:

int abc, def;

the expression abc + def produces an rvalue result.

4. Void expressions – These are unusual in that they do not designate any
value, data object, or function. They are specified only to cause a set
of instructions to be performed. With only three exceptions (involving
the comma, and conditional, operators and void casts), void expression
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results cannot participate as operand expressions. For example, after
these declarations:

void func(int);
void (*pfunc)(double);

the expressions func(22) and (*pfunc)(3.14) are void expressions.

Other Expression Attributes

In addition to class, each expression has an associated type. Type information is
used by the translator to determine which instructions to use when translating
the expression to machine language. The type is also used by the translator to
ensure that the only valid operations are specified in the program. For example,
the type information is used by the translator to diagnose invalid operations
such as the addition of two structures.

An lvalue, function designator, rvalue, or void expression result inherits
the class and type from the expression that was used to generate it. The one
exception is that an rvalue result always drops any type qualifiers from its type.
For example, after this declaration:

const int i = 5, j = 7;

the type of the rvalue result of the expression j + i is simply int—it is not
const int.

Each expression result, other than void, also has an additional attribute
beyond type and class.

An rvalue result has an associated value attribute. This attribute holds the
value calculated when the expression is evaluated. Depending upon the form
of the expression used to generate the rvalue, this attribute may take on a dif-
ferent value each time the expression is evaluated during program execution.
For example, the value attribute of an expression such as abc + def * i will
depend on the current values stored in each of the designated data objects.
On the other hand an expression such as 762 + 97 * 19 can be evaluated at
translation time and will not change during the execution of the program. Any
expression whose resulting value can be determined, once and for all, at trans-
lation time is called a constant expression. (762 + 97 * 19 is an example.)

An lvalue result has an address attribute associated with it. This attribute
holds the address of the data object which it designates. A function designator
result also has an address attribute associated with it. This attribute holds
the address of the function which it designates. Once you understand that the
result of an expression is actually made up of three components (class, type,
and value or address (if not void)) then you can start to make sense out of the
rules for how expressions can be constructed in C.
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Each operator in C has a specific set of rules which limit the class and types
of the operands that it accepts. Each operator then produces a result, when it
is evaluated, which has a class, type, and value or address (if not void).

Most of you are probably already fairly familiar with the type restrictions
for operators and how a value or address is generated from an expression such
as 5 * i. However, you may be unfamiliar with the expression class rules.
The following tables summarize the expression class rules for the operands and
results of the C operators. They show the valid classes for the operands to each
of the C operators and the class of the result.

Notice that some operators, such as the function call and select member
operators, allow various classes of operands to be used. In these cases the class
of the result depends on the particular classes of operands which are used.

Expression Class Rules for Binary Operators
Operator Left Operand Right Operand Result

Function call function designator rvalue list rvalue/void
rvalue rvalue list rvalue/void

Subscript rvalue rvalue lvalue
Arrow rvalue member name lvalue
Select member lvalue member name lvalue

rvalue member name rvalue
Binary Arithmetic, rvalue rvalue rvalue
Relational, Equality,
Bit-wise, Logical
Assignment modifiable lvalue rvalue rvalue
Comma void rvalue rvalue

void void void

Expression Class Rules for Unary Operators
Operator Operand Result

Unary Arithmetic, rvalue rvalue
and Logical
Increment and Decrement modifiable lvalue rvalue
Type cast rvalue rvalue

void void
sizeof lvalue rvalue

rvalue rvalue
Address of lvalue rvalue

function designator rvalue
Indirection rvalue lvalue

rvalue function designator
rvalue void
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Expression Class Rules for the Conditional Operator
Operator Left Operand Middle Operand Right Operand Result

Conditional rvalue rvalue rvalue rvalue
rvalue void void void

Class Conversions

C is actually very forgiving when you write expressions in your programs. In
situations where one class of operand result is required and a different class
has been supplied, the C translator will make certain implicit class conversions.
This is done to make it easier to write your programs.

The most common implicit class conversion is:

If the expression context requires an rvalue and the result of the
expression is an lvalue, that does not have an array type, then an
implicit lvalue to rvalue conversion is performed.

When this lvalue to rvalue conversion is performed, the rvalue value at-
tribute is set to the value stored in the data object designated by the address
attribute of the lvalue. The type remains unchanged.

It is this conversion that comes into play in expressions such as x * y. The
multiply operator requires rvalue operands. The names x and y (assuming
appropriate declarations, such as int x, y;) are lvalue expressions that result
in lvalues. In this situation, the C translator performs the implicit conversion
to access and use the values stored in the data objects designated by x and y.

One context where an rvalue is frequently required is the “full expression”
context. A full expression is an expression which is not an operand expression.
It stands alone. Full expressions that require rvalues occur in the following
contexts:

• In a declaration, to specify the number of elements in an array.

• In a declaration, to specify initializers for data objects and enumeration
constants.

• In a declaration, to specify the number of bits in a bit-field.

• In the controlling expression of the if, while, switch, and do statements.

• In each of the three optional expressions of the for statement.

• In case labels.

• In the optional expression in a return statement.

• In argument lists for function calls.

• In the #if and #elif preprocessing directives.
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In each of these cases, if an lvalue is created when the expression is evaluated
it is implicitly converted to an rvalue.

Note that if the context requires an lvalue then no conversion is performed.
This situation occurs, for example, in the left operand of the assignment oper-
ator and the operand to the “address-of” operator. If the context allows either
an lvalue or an rvalue, then no conversion is performed. This situation occurs,
for example, in the left operand of the select member operator “.”.

Another implicit class conversion rule applies to the special case where the
lvalue has an array type.

If the expression context requires an rvalue and the result of the
expression is an lvalue with an array type, the lvalue is converted
to an rvalue with a pointer to type. If the original type was array
of type the converted type is pointer to type. The value attribute of
the rvalue is set to the starting address of the array.

For example, after these declarations:

int iarr[5];
int *pi;

the expression pi = iarr causes this conversion to take place. The result of the
right operand expression has an lvalue class, an array of int type, and address
attribute equal to the beginning of the array designated by iarr. The implicit
class conversion changes this to have an rvalue class, a pointer to int type, and
a value attribute equal to the address of the beginning of the array designated
by iarr. The assignment operation can now take place.

Another class conversion allows function designators to be specified in con-
texts where rvalues are required. This works in a manner which is similar to
the array type lvalue to rvalue conversion.

If the expression context requires an rvalue and the result of the
expression is a function designator with type function returning type,
the function designator is converted to an rvalue with type pointer
to function returning type. The value attribute of the rvalue is set
to the address that designates the function.

For example, after these declarations:

int func(void);
int (*pfi)(void);

the expression pfi = func causes this conversion to take place. The result of
the right operand expression has a function designator class, a function taking
no arguments and returning int type, and an address attribute equal to the
address associated with the function designated by func. The implicit class
conversion changes this to have an rvalue class, a pointer to function taking no
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arguments and returning int type, and a value attribute equal to the address
of the beginning of the function designated by func. The assignment operation
can now take place.

A final implicit class conversion deals with contexts where void class expres-
sions are required.

If the expression context requires a void class result and the result
of the expression is an lvalue, rvalue, or function designator, then
an implicit conversion to a void result is performed.

This conversion is performed by discarding the value or address attribute.
For example, the complete expression contexts which require a void class result
occur in the following contexts:

• Expression statements

• The first and third expression in the for statement

• The left operand of the comma operator

In each of these contexts lvalue, function designator, and rvalue results are
implicitly converted to void class results.

These rules, along with the operator precedence table, allow you to decipher
complex expressions.

An Example

Let’s look at a moderately complex example.

int x;
int *arr[2];
int **pi;

x = 5
arr[1] = &x
pi = &arr[0];

Now consider this expression:

*pi[1] + 2

According to the precedence rules, the subscript operator is applied first.
The operands of the subscript operator are the lvalue expression pi on the left
and the rvalue expression 1 on the right. If you look in the class tables shown
earlier you will see that the subscript operator requires rvalues for both of its
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operands. The automatic lvalue to rvalue class conversion is therefore applied
to the lvalue result of pi. This produces an rvalue result with a value attribute
equal to the contents of the data object designated by pi (the address of the
array arr).

Subscripting is essentially an addition (except that the subscript is scaled by
the size of the objects pointed to and the result is an lvalue), so the value from
the data object designated by pi is added to a scaled 1. The address attribute
of the subscript lvalue result is set to this calculated value (the address of the
second element of array, remember we start at 0).

Next the indirection operator is applied. It takes an rvalue operand. We
have an lvalue (the result of the evaluation of the subscript expression). There-
fore, we again apply the automatic lvalue to rvalue conversion. This time, the
value from the data object designated by the operand address attribute (the
second array element) is accessed.

Indirection is an interesting operator. Its primary function in life is to take
an rvalue and convert it into an lvalue (or a function designator if working
with pointers to functions). The lvalue which results from the evaluation of
the indirection expression has an address attribute equal to its operand’s value
attribute. This is the address contained in the second element of the array (the
address of the data object designated by x).

Next we apply the add operator. The add operator requires rvalue operands.
Therefore, once again we apply the lvalue to rvalue automatic conversion to the
left operand to obtain an rvalue. This causes the value in the data object
addressed by the contents of the second element of the array (the data object
also designated by x) to be retrieved. This value (5) is then added to 2. The
result is an rvalue with a value attribute of 7.

Graphically the data structures accessed are as follows:

5
pi

arr x

[0]

[1]

✲

✲

Test out your understanding of these rules and this approach to deciphering
expressions by trying to decipher what these expressions mean.

*arr[1] + 2
(*pi)[1] + 2

Try them out with your C translator. As a hint, you may want to add the
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following declaration and statements to your program when trying out the last
expression.

int arr2[2];

arr2[1] = 9;
arr[0] = &arr2[0];

Good luck!

Jim Brodie is the convener and Chairman of the ANSI C standards commit-
tee, X3J11. He is a Senior Staff Engineer at Honeywell in Phoenix, Arizona. He
has coauthored books with P.J. Plauger and Tom Plum and is the Standards
Editor for The Journal of C Language Translation. Jim can be reached at (602)
789-5462 or uunet!aussie!jimb.
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Abstract

The inability to declare arrays whose size is known only at runtime is
often cited as an impediment to using C as a numerical computing lan-
guage. Eventual adoption of some standard way of declaring runtime
arrays is considered crucial for C’s acceptance as a useful language in
the numerical computing world. Since standards attempt to standard-
ize existing implementations and prior art, an initial implementation is
needed. This paper describes an implementation of variable length arrays
which Cray Research, Inc. has chosen to implement. A description of the
linguistic issues encountered during this development are presented along
with some rationale for the chosen resolution.

Introduction

Currently, C only supports the declaration of Fixed Length Arrays (FLA). It
does not support the declaration of Variable Length Arrays (VLA). This omis-
sion is a major obstacle to using C for numerical and scientific applications.
Some VLA support exists, in that an array is converted to a pointer before it
is passed as an argument to a function. Similarly, a formal parameter declared
to be an array has its type adjusted to be a pointer. The pointer can be used
to access any element of the array, which means the function can process ar-
rays of variable length. However, this implicit conversion only applies to the
first dimension. This means that the second dimension of a two dimensional
array is not implicitly converted. Therefore, C does not, for instance, provide
a straightforward way to define a function that performs a matrix multiply on
arbitrary sized matrices.

It would be quite convenient to be able to define a function something like:

void mxm(int n, int m, double a[n][m],
double b[m][n], double c[n][n]) {
/* ... */

} /* mxm */

215
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to perform a matrix multiply on arbitrary sized matrices. Since this widely
used feature has been in FORTRAN for many years there is substantial prior
art. The justification is easy, but attempting closure within the language raises
many issues. This paper attempts to clarify those issues, and offers guidance for
resolution based on an implementation of C that runs on Cray supercomputers.
It should also be noted that the GNU C compiler supports the notion of a VLA
declaration.

VLA Support Through Dynamic Allocation

Before exploring all the issues, it is appropriate to note that a solution exists
without requiring any changes to the language. Essentially, this solution in-
volves using the library function malloc to dynamically allocate an array of
pointers. Each element of the array points to a different row of a matrix. This
array of pointers permits access to the entire matrix through multiple indirec-
tion, as the following example demonstrates.

Example 1 – User Allocated

#include <stdlib.h>

double a[10][20], b[20][10], c[20][20];
void mxm(int n, int m, double **a, double **b,

double **c);

main(){
double **pa, **pb, **pc;
int i;

/* allocate arrays of pointers */
pa = malloc(10 * sizeof(double *));
pb = malloc(20 * sizeof(double *));
pc = malloc(20 * sizeof(double *));

/* setup array of pointers */
for (i = 0; i < 10; i++)

pa[i] = a[i]; /* pa[i] -> i-th row of a */

for (i = 0; i < 20; i++) {
pb[i] = b[i]; /* pb[i] -> i-th row of b */
pc[i] = c[i]; /* pc[i] -> i-th row of c */

}
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mxm(20, 10, pa, pb, pc);

free(pa);
free(pb);
free(pc);

} /* main */

void mxm(int n, int m, double **a, double **b,
double **c) {
int i, j, k;

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

c[i][j] = 0;
for (k = 0; k < m; k++) {

/* use multiple indirection */
c[i][j] += a[i][k] * b[k][j];

}
}

}
} /* mxm */

Using this technique, a library of utilities can be provided to create, convert,
and free matrices of variable length. The calls to malloc and setting up the
array of pointers is handled by a create_mx utility, and freeing up the matrix
is handled by a free_mx utility. The create_mx utility might also allocate the
space for the matrix itself. The following example shows how the create_mx
and free_mx utilities can be used.

Example 2 – Library Allocated

main(){
double **pa, **pb, **pc;

/* allocate arrays of pointers */
pa = create_mx(a, 10, 20);
pb = create_mx(b, 10, 20);
pc = create_mx(c, 10, 20);
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mxm(20, 10, pa, pb, pc);

free_mx(pa);
free_mx(pb);
free_mx(pc);

} /* main */

The book Numerical Recipes in C: The Art of Scientific Computing by
Press, Flannery, Teukolsky, and Vetterling (Cambridge University Press), gives
an excellent description of the framework needed for this support.

This paper deals with the issues introduced by providing direct compiler
support for VLA declarations. These are arrays whose length can vary each
time the function or block containing the declaration is entered. Providing
direct compiler support for VLA declarations eliminates the need for explicit
calls to malloc and free. It is my belief that this lends itself to a more natural
view of the problem being solved. The User Allocated and Library Allocated
approaches, discussed above, will be compared with a Compiler Allocated ap-
proach presented in the next example.

Direct VLA Support

Permitting formal parameters to be VLA declarations is the primary motivation
for this feature. There is no need to dynamically allocate any memory for a
formal VLA since the address of the first element is passed, just like a formal
FLA. The following example shows how the matrix multiply example appears
using VLA formal parameters.

Example 3 – Compiler Allocated8

double a[10][20], b[20][10], c[20][20];

void mxm(int n, int m, double a[*][*], double b[*][*],
double c[*][*]);

main(){
mxm(20, 10, a, b, c);

} /* main */

8Technically speaking, the parameters n and m should have the type size_t which is defined
in the <stddef.h> header.
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void mxm(int n, int m, double a[n][m], double b[m][n],
double c[n][n]) {
int i, j, k;

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

c[i][j] = 0;
for (k = 0; k < m; k++) {

c[i][j] += a[i][k] * b[k][j];
}

}
}

} /* mxm */

Now that the three approaches, Example 1 – User Allocated, Example 2 –
Library Allocated, and Example 3 – Compiler Allocated, have been examined,
some comparisons can be made. From a readability viewpoint, both the Library
Allocated and Compiler Allocated approaches are clearer and easier to under-
stand than the User Allocated approach. The User Allocated approach burdens
the programmer with writing extensive allocation, setup, and deallocation code.
The Library Allocated approach requires a library of support utilities. Although
this eliminates much of the burden, the library does not directly support more
than two dimensions. The Compiler Allocated approach has an advantage over
the Library Allocated approach in that the library of utilities is not needed and
support for more than two dimensions is provided directly by the compiler.

The following terms are useful for discussing the issues surrounding the use
and declaration of a VLA and to help explain new syntax that is being intro-
duced. A prototype definition is a function definition declared with a prototype,
while a prototype declaration only contains the prototype and not the function
body.

void f(int, double *); /* prototype declaration */

void f(int n, double *p) { /* prototype definition */
while (--n >= 0)

p[n]++;
}

A type consists of zero or more modifiers and a basic type. A modifier is a
part of the typing mechanism and is one of pointer, array, or function. The
following declaration:

int *a[10];

declares a to have the type array of ten pointers to int. This type is composed
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of two modifiers, array and pointer, in which the order is important, and a
basic type of int. (A basic type is either an arithmetic, structure, union, or
void type. An arithmetic type is either an enumeration, integral, or floating
type.)

Currently, all array modifiers have a fixed length. Introducing variable
length arrays also introduces a VLA modifier into the typing mechanism. This
requires that the entire language be reviewed for issues surrounding the decla-
ration of a VLA modifier, and the interaction between two compatible types,
with one containing an FLA modifier and the other containing a VLA modifier.

Formal Parameters

Example 3 introduces a prototype declaration with a VLA modifier as part of
the type of a formal parameter.

void mxm(int n, int m, double a[*][*], double b[*][*],
double c[*][*]);

The [*] notation is used to indicate that an array modifier inside a function
prototype is a VLA. The [*] notation is only permitted inside a prototype
declaration and not inside a prototype definition. This is only used for type
compatibility checking with the function definition and other prototypes for the
same function. The following prototype declarations are also equivalent.

void mxm(int n, int m, double a[ ][*], double b[ ][*],
double c[ ][*]);

void mxm(int n, int m, double (*a)[*], double (*b)[*],
double (*c)[*]);

because the first array modifier is converted to a pointer. Similarly, for the
prototype definition the following definitions for mxm are equivalent.

void mxm(int n, int m, double a[ ][m], double b[ ][n],
double c[ ][n]) {
/* ... */

}

void mxm(int n, int m, double (*a)[m], double (*b)[n],
double (*c)[n]) {
/* ... */

}
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VLA Expressions

The VLA modifier can contain an arbitrary integral expression. There is no
linguistic reason to place restrictions on which operators can appear as part
of the length expression in a VLA modifier. All operators, including function
calls, short circuit operators (&& and ||), and conditional operator (?:), are
permitted. The use of assignment operators is also permitted, but is of dubious
value.

double a[n][n + m]; /* + in length expression */
double b[n][m++]; /* use of ++ is questionable */

If the declaration of a VLA contains multiple assignments, the order in
which the assignments occur is unspecified.

The value of the length expression in a VLA modifier is stored inside a
compiler generated temporary after it is evaluated at execution time. This
prevents the size of a VLA from changing after it has been allocated.

Example 4

void f(int n, double a[n]) {
while (--n)

a[n] = 0;
}

Note that the size of a does not change when n does. This makes the size
of a VLA such as a an invariant value as long as it is visible, but it is not a
compile-time constant—its size can change every time it becomes visible.

All of the examples used so far have declared the parameter n before the
VLA parameter. This is an undesirable restriction to place on programmers
since they currently do not need to worry about the order in which formal
parameters are specified. Consider the following prototype declaration and old
style function definition:
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Example 5

/* prototype for an old style definition */
void f(double a[*][*], int n);

void f(a, n)
int n;
double a[n][n];
{

/* ... */
}

The order in which the names are specified in the parameter list is indepen-
dent of the order of the declarations for those parameters. The accompanying
prototype declaration is compatible with the definition. For this reason it seems
appropriate to allow a similar prototype definition such as:

Example 6

void f(double a[n][n], int n) {
/* ... */

}

to exist with the same meaning. That is, the order in which the parameters
are specified remains unimportant. In order to accomplish this temporary sus-
pension of honoring the lexical ordering, the concept of an incomplete type is
expanded. An incomplete type is a type whose size is unknown. A VLA modi-
fier inside a prototype definition is an incomplete type. That is, the size is not
known at the time of the declaration. An attempt is made to complete the type
when the ) that terminates the function prototype is encountered. If at that
time the VLA modifier is still incomplete it is undefined behavior. (A quality
implementation will likely produce an error message.)

Example 7

extern int n; /* file scope variable */

void f(double a[][n], int n) {
/* ... */

}
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extern int m; /* file scope variable */

void g(double b[][n * m], int n) {
/* ... */

}

void h(double c[][x], int n) { /* ERROR */
/* ... */

}

For function f the formal parameter a is an incomplete array type until the
) is encountered. At that time, the type of a is completed by first searching for
n in the formal parameter list and then as a file scope variable. In this case,
formal parameter n is used to complete the type. For function g the type of b
is completed by using the formal parameter n and the file scope variable m in
the expression n * m. Finally, for function h the type of formal parameter c
cannot be completed because it uses the undeclared identifier x for its size. A
compile-time diagnostic is issued for this error.

Automatic VLA declarations

A declaration containing a VLA modifier is only permitted for formal parame-
ters, block scope typedefs, auto, and register declarations. This means that
file scope declarations, and block scope static and extern declarations cannot
contain VLA modifiers. A function cannot return a VLA.

Example 8

extern int n;
double glob[n]; /* ERROR - file scope VLA */

void f(double a[n], int n) {

/* declare a temporary with the same
length as parameter a */

double tmp1[n];
static double tmp2[n]; /* ERROR - static VLA */

/* ... */
}

A declaration of an auto variable containing a VLA modifier can appear
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inside an inner block. Each time the block is entered, the length expression
of the VLA modifier is evaluated. The memory for a VLA is allocated upon
entrance to the block containing the declaration and deallocated when the block
is exited. This means that the size of the VLA can change each time the block
is entered.

Example 9

void f(double a[n], int n) {
int i;

for (i = 0; i < n; i++) {

/* the size of tmp changes for each iteration */
double tmp[n - i];

/* ... */
}
/* ... */

}

Pointers to VLAs

When the address of a VLA is taken, it yields a pointer to a type that is a
VLA. Since types such as pointer to VLA exist, objects can be declared with
such types. The declaration:

register int (*pvla)[n];

declares a pointer to array of n ints. Since pvla is a pointer and not a VLA,
a register declaration is acceptable. The assignment:

int a[n];
int (*pvla)[n];

pvla = &a;

is perfectly acceptable because the type of pvla is compatible with the type
of &a. However, this does raise an issue about loss of type information when
corresponding FLA modifiers meet VLA modifiers. Consider the following:

int a[10];
int (*p)[n];

p = &a; /* Are these assignment compatible? */
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If &a can be assigned to p then a VLA modifier is always compatible with
any FLA modifier. If they are compatible then the fixed length information
(i.e., size of the array is ten) is replaced with the variable length information.
This means that information is lost because the compiler is no longer able to
diagnose inconsistent usage. This loss of information is accepted because it
allows for much greater flexibility and usability. The following example shows
how information is lost when a VLA modifier and FLA modifier are compared
for compatibility. No compile-time diagnostic is issued for these incompatible
types, but the program is erroneous.

Example 10

int n = 10;
int a[10];

main() {
f(&a); /* pointer to array of ten ints */

}

g(int q[ ][11]) {
/* ... */

}

f(int (*p)[n]) {
/* incompatible types are not diagnosed */
/* at compile time: 10 != 11 */
g(p);

}

Similarly, two different VLA modifiers are always compatible.

int (*p1)[n];
int (*p2)[m];
int (*p3)[x*y+7];

p1 = p2 = p3; /* All are assignment compatible */

When checking for type compatibility, the length of a VLA modifier is as-
sumed to be the same length as a corresponding FLA or VLA modifier. The
burden is placed on the programmer to ensure that the two lengths are iden-
tical. If at execution time the lengths are different, it is an erroneous program
with undefined results. However, corresponding FLA modifiers must still have
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the same lengths, which can be detected at compile-time.

int (*p1)[n][4];
int (*p2)[m][6];

p1 = p2; /* ERROR - because 4 != 6 */

Finally, the following example shows that a pointer to a VLA is assignment
compatible with a pointer to an FLA.

int (*p1)[n];
int (*p2)[10];

p1 = p2;
p2 = p1; /* both are permitted */

This means that a VLA modifier is always compatible with an FLA modifier.
Providing execution time checks that ensure that the lengths of corresponding
VLA modifiers are identical is a desirable debugging aid, but is left as a quality
of implementation issue.

Making typedef Work

A VLA modifier can appear as part of a block scope typedef declaration. In
this case a decision has to be made about when to evaluate the length expression
of the VLA modifier.

Example 11

void f( ) {
int i;
int n = 10;
typedef int An[n]; /* length expression is n */
An x; /* array of 10 ints */

n = 11;
{

An y; /* array of 10 or 11 ints? */

/* ... */
}

}
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Since a typedef declares a synonym for a type, there is no storage allocated
for An. The length expression n could be evaluated when the typedef An is
declared or when the arrays x and y are declared. The decision was made to
store the size into the temporary when An is declared because this means that
the following expressions are always true:

sizeof(An) == sizeof(x)
sizeof(An) == sizeof(y)
sizeof(x) == sizeof(y)

Essentially this means that x, y, and An have the same length. That length
may change each time function f is called, but the sizes of An, x, and y will
always be equal. The type of a VLA (e.g., An) is considered to be a Variable
Length Type (VLT).

The sizeof Operator

The size of an object is such an important concept in the language that it is
important to define the semantics of the sizeof operator when its operand
is a VLA or VLT. Currently, sizeof can be used in any constant expression
(except for preprocessor directives such as #if). Since the length of a VLA is
not known until execution-time, the compiler must generate code that computes
the size of a VLA. This means that the sizeof operator does not always yield
a constant expression. If the operand of a sizeof operator is a VLA or VLT
then the result is not a constant. Although this seems controversial, it is also
important in that the notion of size is an integral part of other operations. The
operations involving pointer increment, subscripting, and pointer difference are
closely tied to the size of an object. Specifically, given an object type T and
the following declarations, the three pairs of expressions shown below represent
equivalent results:

T a[N];
T *p = &a[0], *q = &a[3];
int i;

/ * pointer addition */

/*1*/ p + i
/*2*/ (T *)((char *)p + i * sizeof(T))
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/* subscripting */

/*1*/ a[3] /* *(a + 3) */
/*2*/ *((T *)((char *)p + 3 * sizeof(T)))

/* pointer difference */

/*1*/ p - q
/*2*/ ((char *) p - (char *) q)/(ptrdiff_t) sizeof(T)

The definition of sizeof should always maintain these equivalences. The
requirement of storing the value of the length expression of a VLA modifier in
a compiler temporary preserves these equivalences. However, the use of sizeof
where constant expressions are required can now cause a diagnostic, as shown
in the following example.

Example 12

void f(int n) {
int fla[2]; /* fixed length array */
int vla[n]; /* variable length array */

static int i = sizeof(fla); /* OK */
static int j = sizeof(vla); /* ERROR */

auto int k = sizeof(vla); /* OK */

enum { A = sizeof(fla), /* OK */
B = sizeof(vla) }; /* ERROR */

struct {
int b1 : sizeof(fla); /* OK */
int b2 : sizeof(vla); /* ERROR */

} x;

int *p = malloc(sizeof(vla));/* OK */
int num_elem = sizeof(vla)/sizeof(int);/* OK */
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switch (i) {
case sizeof(fla): /* OK */
case sizeof(vla): /* ERROR */

return;
}

}

Although the sizeof operator can now produce a value computed at run-
time, there is still a consistency in its definition that preserves its most useful
properties. For instance, it can still be used as the operand to malloc and to
compute the number of elements in an array.

Pointer Difference

Before two pointers can be subtracted (portably) they must conform to the
following two rules:

• They must be pointers to the same type.

• They must point into the same object.

The same rules apply when a pointer points to a VLA. The following exam-
ple shows several pointer subtractions involving pointers that point to a VLA.
Comments are present to indicate if the expression violates either rule.

Example 13

int a[10][10];
int b[3][5];

int n0 = 10, n1 = 10;
int m0 = 5, m1 = 3;

void f( ) {
int i;
int (*p0)[n0] = a;
int (*p1)[n1] = a+1;
int (*q0)[m0] = b;
int (*q1)[m1] = (int (*)[m1]) b+1;
int (*p10)[10] = a+2;
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/* OK: p1 and p0 point into same object */
i = p1 - p0; /* OK: i == 1 */

/* OK: q1 and q0 point into same object */
i = q1 - q0; /* ERROR because 3 != 5 */

/* OK: p10 and p0 point into same object */
i = p10 - p0; /* OK: i == 2 */

/* ERROR: p10 and q1 do not point into same object */
i = p10 - q1; /* ERROR because 10 != 3 */

}

The “errors” identified in Example 11 are not diagnosed at compile-time.
Whether or not execution-time checks are generated is left as a quality of im-
plementation issue.

Variable Length Objects

Up to now this paper has concentrated on arrays and pointers to arrays. How-
ever, a structure or union member can also be declared with a VLA modifier.
A structure or union with a VLA member is considered to be a Variable Length
Object (VLO). Similarly, a structure or union type that contains a VLA mem-
ber is considered to be a VLT. Essentially, the same rules apply to a VLO that
apply to a VLA with one exception: formal parameters cannot be declared to
be variable length structures or unions. If they were, it is not clear how such a
function could ever be called. For example:

Example 14

void f(int n) {

struct tag { /* struct tag is VLT */
int len;
int a[n];

} x; /* x is a VLO */

x.len = n;

/* ... */
}
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/* Can this function ever be called? */

void g(int n, struct vtag { int m1; int m2[n]; }) {
/* ... */

}

The size of a variable length structure type is computed by evaluating the
size of all variable length members at execution time and adding it to the
constant fixed size.

The size computation of a variable length union type is different than for
other VLTs because either the largest fixed sized member or largest variable
sized member can be the size of the type. For example:

Example 15

void f(int n, int m) {

union tag { /* union tag is VLT */
int a[n];
int b[10]; /* largest fixed size member */
int c[m];
char d[20];

} x; /* x is a VLO */

/* ... */
}

The size of a variable length union type is computed by first computing the
size of all variable length members. Then computing X, the maximum of these
variable length sizes; and then computing the maximum of X and the largest
fixed size member.

It is important to note that the size computation of a VLT can be compli-
cated.

Variable length structure and union types will probably not be implemented
in the initial release. There are no linguistic reasons preventing such implemen-
tation, however, just pragmatic issues such as limited resources and deadlines.

Miscellaneous Issues

The offsetof Macro

The offsetof macro expands into an implementation-defined constant expres-
sion that yields the byte offset of the member-designator of a struct or union
type. Since offsetof currently yields a constant expression, the same issues
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that surrounded sizeof exist. There are no problems with members that have
a constant offset. The problem is with members that follow a variable length
member. For example:

struct tag {
int m1;
int m2[n];
int m3;

};

offsetof(struct tag, m1) /* OK */
offsetof(struct tag, m2) /* OK */
offsetof(struct tag, m3) /* Undefined behavior */

Since the expansion of offsetof is implementation-specific, it seems im-
practical to guarantee any behavior for members that follow a variable length
member. The offsetof macro can only be used if the header <stddef.h> is
included in the program. Unlike sizeof, the offsetof macro is not part of the
language proper. The actual expansion of offsetof varies from implementation
to implementation, making it more difficult to specify.

Initialization

Initialization of a VLO is not permitted. However, a pointer to a VLO is still
a scalar and not considered to be a VLO.

int a[n] = {1, 2}; /* ERROR */
int (*p)[n] = &a; /* OK */

Jumping into blocks with VLO declarations

It is not permitted to jump into a block that contains a declaration with a VLA
modifier because the size expression evaluated at execution time will be skipped.
This applies to the goto statement, switch statement, and setjmp/longjmp.

Jumping into a block containing a VLA declaration causes a compile-time
diagnostic. Jumping out of a block that contains a VLA declaration is permit-
ted, but it might mean that memory for the VLA object is not freed.
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Example 16

void f(int n) {
int j = 4;
goto lab3; /* ERROR - going into scope with VLA */
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; /* OK - same scope */
a[j] = 5.5

lab4:
a[j] = 6.6

}
goto lab4; /* ERROR - going into scope with VLA */

}

Conclusions

Adding a variable length array feature to C raises many issues. The changes to
the language to support this feature must be weighed against the need for this
feature. It is hoped that this initial implementation will give valuable insight
into the usefulness of providing variable length types.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is Cray Research Inc’s representative to X3J11 and a major
contributor to the floating-point enhancements made by the ANSI standard.
He specializes in the areas of floating-point, vector, array, and parallel process-
ing with C language and can be reached at (612) 681-5818, tam@cray.com, or
uunet!cray!tam.
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31. Miscellanea

compiled by Rex Jaeschke

Constant Types in float.h

Some time ago I came across an implementation whose header float.h con-
tained the following macro definitions. The compiler runs on Intel 80x86 ma-
chines using IEEE floating-point representation (either Intel’s 80x87 chip or
emulation). The types double and long double are mapped to the same rep-
resentation.

#define FLT_MIN 1.17549435e-38F
#define DBL_MIN 2.225073858507201e-308
#define LDBL_MIN 2.225073858507201e-308

The interesting thing here is the presence of the F suffix on FLT_MIN and
then, the lack of an L suffix on LDBL_MIN. When I looked at six or seven other
implementations (several of which are actively claiming ANSI conformance) I
found none with such suffixes. Are these suffixes required or not?

According to §2.2.4.2, page 14, line 31, of the December 1988 draft, “...
except, for CHAR_BIT and MB_LEN_MAX, the following [limits.h] macros shall
be replaced by expressions that have the same type as would an expression
that is an object of the corresponding type converted according to the integral
promotions.” That’s fine for macros in limits.h but what about those in
float.h? No such statement is made.

Instead, §2.2.4.2, page 16, line 19, states “The values given in the following
list shall be replaced by implementation-defined expressions ...” No information
is provided as to the permitted type of these expressions. However, it does say
the value must be equal or greater in magnitude to the values shown.

When I spoke with David Prosser (the redactor of the draft) his (unofficial)
response was “ I think the pANS implies that the F suffix should be present by
the two examples given at the end of §2.2.4.2. An implementation that provides
a long double type that’s larger than its double would require an L suffix, if
only to eliminate the required diagnostic (see §3.1.3, page 26, line 37, Con-
straints).” The constraint is required since there is no hierarchy of constant
typing for floating-point constants like there is for integers. That is, a constant
that is too big for double is not automatically typed as long double.

The only place where I could see that the macro types would matter is if
they were used in an argument to sizeof or in certain function arguments
where no prototype was in scope at the call site.

234
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As far as I can tell, the only macros in the header <float.h> affected are:
FLT_EPSILON, FLT_MIN, FLT_MAX, LDBL_EPSILON, LDBL_MIN, and LDBL_MAX.

It appears that all the integer minima and maxima defined by the standard
can be represented by type int. Certainly, that is the type inferred from the
examples on pages 17–18. As such, I’m assuming that if FLT_RADIX is defined
as 16L or 16U, it is not conforming. Any opinions on this?

Of course, the standard permits most of the macros in this header to expand
to non-constant expressions. However, this discussion is still relevant in such
cases since the expressions are still required to have a given type.

Idiosyncrasies of Designing assert.h

From a functionality point of view, the header assert.h is one the simplest in
the standard library. However, to make sure it’s ANSI-conforming, you must
design it very carefully. Very few versions I have seen to date have gotten it
right including several that define __STDC__ to 1. (Note, there are several ways
to design the header correctly.)

According to ANSI C, assert.h must be self-contained. That is, you are
not required to include any other standard header to use assert.h correctly.

assert.h is the only standard header that is permitted to be included mul-
tiple times and to behave differently from one inclusion to the next. Therefore,
you must not put this header’s contents inside a protective wrapper. And since
on each inclusion the definition of the assert macro may change, you must
explicitly #undef assert each time.

Assuming NDEBUG is defined, assert must expand to a void expression. It
cannot expand to nothing since this will fail when assert is used as the second
or third operand of the conditional operator. The macro must have the form:

#define assert(arg) ((void) expression)

When NDEBUG is not defined, assert must still expand to a void expression,
which eliminates the use of an if. You can use the conditional operator, but
in doing so, you are forced to have both a second and third operand when you
really only want to do something when the assertion is true.

#define assert(arg) (((arg) == 0) ? \
__assert(#arg, __FILE__, __LINE__) : ((void)0))

To eliminate this the logical OR operator can be used instead, as follows:

#define assert(arg) \
((void)((arg) || __assert(#arg, __FILE__, __LINE__)))
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The above definitions have assert expanding into a call to the “private”
function __assert. Note that according to §4.1.2.1 Reserved Identifiers,
page 98, all private externals defined by the implementation must be spelled
with two leading underscores or an underscore and a capital letter. (Whether
two underscores are needed, or only one, depends upon whether the symbol has
file scope or block scope. The simplest and safest course is to use two leading
underscores on your private function name.)

You may include a prototype for __assert if you wish but there is no
requirement to do so, provided you can define the macro to work since the
function has a fixed-length argument list. Of course, if you do have a prototype,
any optional argument identifiers must be in your namespace as well.)

The big question is, “Can assert expand directly to a call to fprintf?”
If the answer is Yes you would need a prototype for fprintf since to call a
function with a variable argument list without a prototype in scope is undefined
behavior. However, for most (if not all) implementations, assert.h cannot
include stdio.h since the latter contains typedefs. These identifiers have file
scope, there is no way to undefine them, and they are not defined in the section
describing assert.h. Therefore, they are not permitted there. That leaves the
possibility of duplicating the required bits from stdio.h in assert.h.

To write to stderrwithout defining the names stderr or FILE is challenging,
although I believe it can be done at least for some implementations. However,
the amount of effort is hardly worth it considering a more overt and probably
just as efficient method is available using something like __assert.

I have noticed some implementers call __assert as follows:

__assert((arg), #arg, __FILE__, __LINE__)

Here, __assert checks whether the argument is true or false, eliminating
the test code from the macro expansion, and hence from all the places it is
called. The cost though is that the function is always called, not just when it
needs to abort.

Whatever approach you use you probably should call fflush(stderr) to
make sure the output is actually written since abort is not required to do so
itself.

One last thing. The preprocessor stringize operator # has to be used to
construct the expression text since the old-style method of recognizing formal
macro arguments inside strings (and character constants) is not sanctioned by
ANSI C.

Here then, is a correct version of assert.h:
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/* assert.h -- designed by Rex Jaeschke for public use */

#undef assert

#ifdef NDEBUG
#define assert(arg) ((void)0)

#else
void __assert(const char *, const char *, int);

#define assert(arg) (((arg) == 0) ? \
__assert(#arg, __FILE__, __LINE__) : ((void)0))

#endif

To check your version, compile the following test program. No errors should
be produced.

#define NDEBUG
#include <assert.h>

void f(int i)
{

assert(i);

i ? assert(i - 4) : assert(i + 4);

if (i > 24)
assert(i * 3);

else
assert(i * 24);

}

#undef NDEBUG
#include <assert.h>

void g(int i)
{

assert(i);

i ? assert(i - 4) : assert(i + 4);

if (i > 24)
assert(i * 3);

else
assert(i * 24);

}
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Quality of Implementation

Strict Prototype Checking

ANSI C requires function arguments to be assignment compatible to the cor-
responding prototype. However, this can still permit logical errors to go unde-
tected. For example, consider the following code. (The prototypes may be in
the source file or an included header.)

void f(double);
void g(char);

main()
{
/*6*/ f(’a’); /* char confronts double */
/*7*/ g(1234.56E26); /* double confronts char */
}

Silently converting the char expression to type double, and truncating the
double constant to char, will likely produce surprising results. The ability to
selectively activate more strict checking is highly desirable.

Microsoft C V5.1 provides this capability. For example:

test.c(6) : warning C4051: data conversion
test.c(7) : warning C4051: data conversion

The DOS-based DeSmet compiler also provides this capability. (Error loca-
tions are identified by this compiler using $$.)

6 f(’a’ $$ );
warning:argument type conversion

7 g(1234.56E26 $$ );
warning:argument type conversion

Lattice’s V6.01 compiler produces:

test.c 6 Warning 89: constant converted to required type
f(’a’); /* char confronts double */

^
test.c 7 Warning 89: constant converted to required type

g(1234.56E26); /* double confronts char */
^

An even more subtle situation exists in the following case:
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void f(int);
void g(unsigned);

main()
{
/*6*/ f(100U); /* unsigned confronts signed */
/*7*/ g(100); /* signed confronts unsigned */
}

In this case, Microsoft C and Lattice C did not complain while DeSmet
produced messages similar to those shown in the previous example. In both
compilers, the extra checking is activated using a compiler option—it is not the
default mode.

Actually, flagging certain type “mismatches” can be most distracting. For
example, warning about malloc(100), simply because 100 has type int when
an unsigned integer type is expected, is undesirable. However, warning about
malloc(-10) or malloc(i), where i is an int variable (or expression involving
other than constants), is not. Similarly, if a signed integer type is expected and
you pass an unsigned integer constant expression whose value can be represented
in that signed type, no warning should result.

Machine Code Listing

Many implementations either generate assembly code directly or have an option
to disassemble the object produced. However, since most of them cannot pro-
duce a listing file, the assembly code is written to its own file. Many DOS-based
compilers can produce a source listing file containing merged assembly code.
These include: Microsoft, Borland’s Turbo C, WATCOM, Zortech, DeSmet,
and Lattice. VAX C also has this capability.

Automatic Prototype Extraction

In the March 1989 Sample Issue of The Journal of C Language Translation,
I described details of a prototype extraction tool. This generated quite some
interest in the user and implementer community. There were also numerous
suggestions for a tool to rewrite programs changing to/from old and new styles
of function definitions as well as declarations. (See the section following.)

The DOS-based compilers from Microsoft, WATCOM, and Lattice provide a
compiler option for prototype extraction. The Manx Aztec system also provides
a separate tool for this purpose. For example, the source:
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#include <stdio.h>

void f(FILE *fp)
{
}

void g()
{
}

causes the following prototypes to be generated:

extern void f(FILE *); /* WATCOM */
extern void g(void);

extern void f(struct _iobuf *fp);/* Microsoft */
extern void g(void);

void __near f(struct _iobuf *); /* Lattice */
void __near g(void);

void f(FILE*fp); /* Manx */
void g(void);

Note, however, that Microsoft and Lattice do not preserve the typedef
name, whereas WATCOM and Manx do. (It is interesting that WATCOM
also provides an alternate option to emulate Microsoft’s [limiting] behavior. I
guess that’s what competition does to you.) The identifier __near produced by
Lattice C refers to the an Intel memory model in which function addresses are
16-bit “near” pointers.

Lattice provides several prototype-related compiler options. You can request
all functions be extracted or just the extern or static ones. You can also
specify whether identifiers are to be preserved. Another option allows you to
generate function declarations using the old or the new format. When used
with the earlier example above, it produces:
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#ifndef __NOPROTO
#ifndef __PROTO
#define __PROTO(a) a
#endif
#else
#ifndef __PROTO
#define __PROTO(a) ()
#endif
#endif

void __near f __PROTO((struct _iobuf *));
void __near g __PROTO((void));

Simply by defining (or not defining) the macro __NOPROTO using a compiler
option, you can compile with or without full prototype checking. This utilizes
an old trick that I first came across in the Whitesmiths C compiler on the
PDP-11.

Both Manx and Aztec retain register in formal parameters, with Manx
making it optional.

ANSIfying Old Programs

The following text was taken from a note posted to the comp.std.c newsgroup by
Ron Guilmette late in mid-1989.

Many people have noted the need for tools to automate the conversion of
old C code (in non-prototyped form) to new ANSI C and C++ prototype form.
Well, I noted it too and I decided to do something about it.

I would like to announce the availability of an automated prototyping assis-
tant tool. This tool can automate much (but definitely not all) of the otherwise
tedious work of converting a large system of source files to ANSI C (or C++)
prototype format. This assistant can convert most of the obvious cases, leaving
you to handle only the occasional tricky case manually.

This prototyping assistant tool comes in two separate parts. The first part
gathers prototype information, and the second edits this information into the
proper places (i.e., function declarations and definitions) within a set of existing
source files (both base files and include files).

The information gathering tool is really a modified version of the GNU
Project C compiler (GCC) Version 1.35. This was the most expedient base for
an information gatherer, because it already had a complete (debugged) parser
for full ANSI C.

The other half of the automatic prototyping system is the tool that actually
merges the prototypes back into the source code at the right places. This
is called protoize. It is written in (reasonably portable) C. It is about as
intelligent as it can be, given the limitations of its input. For instance, it knows
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the difference between static and extern functions, and about many other
subtle points.

Since protoize must be used with GCC, the current version (1.00) is being
distributed as a set of patches against the (virgin) GCC 1.35 sources.

You may obtain the current version of protoize via anonymous FTP from
yahi.stanford.edu (36.83.0.92). The compressed set of GCC 1.35 patches is in:

~ftp/pub/protoize-1.00.Z.

This software is distributed with the same terms and conditions as other
GNU software distributed by the Free Software Foundation.

For further information, contact:

Ron Guilmette
MCC - Experimental Systems Kit Project

3500 West Balcones Center Drive
Austin, TX 78759

(512) 338-3740
Arpa: rfg@mcc.com

uucp: rutgers,uunet,gatech,ames,
pyramid!cs.utexas.edu!pp!rfg

In October an updated message was posted, excerpts of which are reprinted
here.

protoize Version 1.04 is now available for anonymous FTP from ics.uci.edu
(128.195.1.1). It is stored in the following file:

~ftp/pub/protoize-1.04.Z

This version is compatible (only) with GCC version 1.36.
Note that I have plans to produce a modified version of protoize called

unprotoize when time permits. This new program will convert ANSI C pro-
grams back to old K&R code (without prototypes). Once this is available you
will be able to automatically convert code back and forth between ANSI C and
K&R C at will.

Calendar of Events

• January 22–26, Winter 1990 USENIX Technical Conference – Lo-
cation: Washington, D.C. at the Omni Shoreham Hotel. Call Judith Des
Harnais on (714) 588-8649 or judy@usenix.org for details.
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• March 5–6, ANSI C X3J11 meeting – Location: New York City, Spon-
sored by Farance, Inc. This one-and-a-half day meeting will handle ques-
tions from the public, interpretations, and other general business. Ad-
dress correspondence or enquiries to the vice chair, Tom Plum, at (609)
927-3770 or uunet!plumhall!plum.

• March 7–8, Numerical C Extensions Group (NCEG) meeting –
Location: New York City. The third meeting will be held to consider
proposals by the various subgroups. It will follow the X3J11 ANSI C
meeting being held at the same location earlier that week and will run
for two full days, not the usual one-and-a-half. For more information
about NCEG, contact the convener Rex Jaeschke at (703) 860-0091 or
uunet!aussie!rex, or Tom MacDonald at (612) 681-5818 or tam@cray.com.

• April 9–11, USENIX C++ Conference – Location: San Francisco Mar-
riott. Contact Jim Waldo at waldo@apollo.com for more information.

• August 13–17, International Conference on Parallel Processing –
Location: Pheasant Run resort in St. Charles, Illinois. Call David A.
Padua on (217) 333-4223 or padua@a.cs.uiuc.edu for more information.
(David is the contact for software-related papers.) The deadline for sub-
mitting papers is Jan 10.

• October 8–10, Frontiers of Massively Parallel Computation – Lo-
cation: University of Maryland, College Park, MD (greater Washing-
ton D.C.) Call Prof. Joseph JaJa on (301) 454-1808 for more information.
The deadline for extended abstracts is Mar 15.

News, Products and Services

• Developers of C compilers for new architectures will find the Edison
Design Group C Front End an effective basis for development of a high-
quality translator. It supports both traditional K&R and ANSI C, and
features rapid compilation, full error checking (with clear error display and
excellent error recovery), and a high-level tree-structured intermediate
form. Host and target computer characteristics are configurable, allowing
use in a variety of environments and as a cross-compiler. Licensing is
in source form, with complete internal documentation. For information,
contact Steve Adamczyk at (201) 744-2620.

• Conversion service: If you have a large system that you would like to
have converted from old C to ANSI C or to C++, please contact me via e-
mail. I may be willing to perform the conversion (using the protoize tool
described elsewhere in this column) for a modest fee based on thousands
of lines of code (or something like that). Ron Guilmette, Austin, Texas,
(512) 338-3740, rfg@mcc.com.



244 The Journal of C Language Translation – December, 1989

• PROMULA Development Corporation is licensing the source to
PROMULA.FORTRAN its Fortran to C translator. V1.22 is now avail-
able for MS-DOS, VAX/VMS, and Sun/UNIX platforms. Also available
are consulting and conversion services. Call George Juras on (614) 263-
5454 for information.

• Lattice, Inc., is now shipping V6.01 of their DOS compiler with claims
it is ANSI-conforming. Contact John Nelson on (312) 916-1600.

• Copies of proposed and final ANSI standards (including our own X3J11
ANSI C effort) are available from:

Global Engineering Documents, Inc.
2805 McGaw Avenue

Irvine, CA 92714
(800) 854-7179
(714) 261-1455

Telex: 62734450

∞


