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32. Standard C Library Name Space Control

P.J. Plauger

Abstract

The ANSI Standard for C imposes quite a number of constraints on how
the library can be implemented. It restricts the space of names available
to the implementor. It requires that library headers be carefully con-
structed in several nonobvious ways. On the other hand, the Standard
also offers new opportunities to improve library performance and power.

This paper is an overview of the Standard C library from the viewpoint
of both the user and the implementor. Its goal is to illuminate some
of the subtler implementation issues in the library. It highlights issues
that may not be apparent from a simple reading of the Standard or the
accompanying Rationale.

Introduction

The ANSI C Standard is a treaty between programmers and implementors of
the language. That’s a principle that I first espoused back in 1983. It made it
into the Rationale as one of the guiding precepts of X3J11. It’s an important
touchstone for evaluating every statement in the Standard. A statement must
restrict either the user or the implementor (or both) in some obvious way.
Otherwise, it is deadwood.

Nowhere is the Standard more clearly a treaty than in the library portion.
Users are given stronger assurances than ever before about what is in the Stan-
dard C library and how it behaves. Users are also told quite clearly what they
must not count on. Similarly, implementors are given clear guidance as to what
facilities they must provide. And they are told what practices not to indulge in
when writing the Standard C library.

Like any treaty, the C Standard has a number of gray areas. Some turf is
not safe to tread by either party to the treaty. It forms a sort of demilitarized
zone. Some critics of the C Standard view these gray areas as weaknesses in the
Standard. They assume that X3J11 was too tired or too cowardly to eliminate
them. Not so. By and large, the gray areas were conscientiously evaluated and
intentionally left in. It is important to leave space for some dialect spread in
C, to benefit both programmers and implementors alike.

A treaty is easy to misread. (The wars of the Twentieth century are ample
proof of that.) If you try to implement Standard C just by reading the ANSI
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Standard, you are in for a tough time. Reading the Rationale certainly helps,
but even that worthy document is laconic at critical moments. Most of us in
the C community can fall back on our shared cultural understanding to fill in
the blanks. That works best for the language proper, because that is largely
unchanged. It works somewhat less well for preprocessing, because that got
tidied up a lot and altered somewhat. It works worst of all for the library,
because that has never been well documented in the past.

The purpose of this paper is to provide additional guidance to implementors
of the Standard C library. It does so by emphasizing the treaty aspects of the
Standard. It focuses primarily on naming rules and conventions, because that’s
where most of the action is.

I will examine each of several major library topics from four perspectives.
First I discuss what the user must do. I follow that with what the user can do.
Then I discuss what the implementor must do. I end each discussion with what
the implementor can do.

I find that those four views, taken in that order, build the most comprehen-
sive image. Leave any out and you distort the picture. Take them in any other
order and you distort priorities.

Headers

Standard C partitions its libraries into fifteen chunks. Each chunk consists
of a set of functions, type definitions, and macros that are at least loosely
related. You obtain all the definitions and declarations you need to use a chunk
by including its associated standard header. One of the cleanups effected by
Standard C is to ensure that every library function is declared in some header.

User Viewpoint

To use a given header, what you must do is include it with the preprocessing
directive #include. Write the name of the header in angle brackets, such as:

#include <stdio.h>

The header is probably a file, but it need not be. That means, for one thing,
that you must use angle brackets. Writing the name in double quotes does not
necessarily work on all implementations.

You must include the header, naturally, before you use any of its declarations
or definitions. You must write the include directive at file level. File level is
outside any other declaration, including its data initializer or function body.

You must not precede the include directive for the header with any macros
that mask keywords. Nor may you have any macro definitions or declarations
in scope that match any of the names defined or declared in the header. This
rule has two important exceptions, however. You can include the same header
more than once in the same translation unit. And you can include a header that
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defines certain macros or types also defined in other headers. The privileged
names are NULL, size_t, and wchar_t.

You can include headers in any order. You can omit a header, in some cases,
and still use one of its functions. The function must be one that you can declare
explicitly with known types, such as:

extern double cos(double);

Or it must be one that you can declare implicitly, as in:

int atomag(char *s)
{return abs(atoi(s)); }

(Both abs and atoi are implicitly declared here.)
You must assume that any function name declared within a header is masked

by a macro of the same name. That means you must not use the function name
as, say, a member or tag name. Nor can you safely redeclare the function name
in an inner block. Macro names have no respect for program structure.

Finally, you can use any library name as you see fit inside a translation
unit, provided you do not include its associated header. By inside, I mean as a
macro definition, a type definition, or anything else that does not have external
linkage. It is generally not wise for you to do so, except out of ignorance, but
you can.

Implementor Viewpoint

As an implementor, you must of course provide all fifteen headers, at least for a
hosted environment. Four of the headers must be present even in a freestanding
environment: float.h, limits.h, stdarg.h, and stddef.h. (Note that none
of these declare any functions.) In a freestanding environment, you can choose
to omit any or all of the other headers. You can implement only part of the
capabilities in a given header. Only market forces really limit you here.

Several of the restrictions imposed on users are needed to give you a fighting
chance. You need the assurance that your header file will not be included inside
a function body or partway through some other declaration. Otherwise, you
could not safely write define preprocessing directives and file-level declarations
within the header. You also need to know that type names such as char will
have the meaning you expect.

You must write each header so that it can be included multiple times. Most
function declarations can be repeated. A macro definition can be repeated if
the new is essentially identical to the old. Barring that, you can always precede
each define preprocessing directive with an #undef for the same name. Type
definitions, however, cannot be repeated.
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The safest practice to follow, therefore, is to protect the body of each header
with a wrapper, as in:

/* stdio.h header */
#ifndef _STDIO
#define _STDIO
/* ... guts of stdio.h */
#endif

Note that the standard header <assert.h> is different. It must test NDEBUG
each time you include it, as Rex Jaeschke described in a recent issue of The
Journal (Volume 1, number 3 December 1989, page 235). Use the same trick
to protect each definition of size_t and wchar_t.

You must not have any header include another header. If any
two headers must share knowledge, you must introduce a synonym. Note,
for example, three of the functions in <stdio.h>. The functions vfprintf,
vprintf, and vsprintf each have an argument of type va_list. But va_list
is not defined in that header. You can only declare these functions by using a
synonym for the type that cannot be named, as in:

typedef char *_VALIST[2];
int vfprintf(FILE *, const char *, _VALIST);
/* ... etc. */

You can replicate the synonym as needed among headers. Or you can place
all critical synonyms in a secret header that you include as needed in the stan-
dard headers. The former choice makes for faster compiles and a less messy
visible interface. The latter is better for maintenance and retargetability.

You can mask any function declaration with a macro definition. You do
this for some functions so that they expand to inline code. For example, the
functions in <ctype.h> often use a translation table, as in:

#define isdigit(c) (_Ctype[c] & _ISDIG)

Evaluating this expression is almost always preferable to calling the actual
function. Don’t omit the actual function declaration, however. The program
may want to pass its address as a function call argument, as in:

found = istest(str, isdigit);

You may want to mask a function declaration to access a builtin operation.
True, a translator can know that all library names have special meaning. It
can replace every call to the function cos (with external linkage) with a builtin
instruction sequence. Your customers may want to control this translation,
however. One way to do so is by requiring the masking definition:

#define cos(x) _COS(x)
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That way, only the rather exotic name _COS is magic to the translator.
You must be careful what names you use when you write macros. Consider,

for example, the definition:

#define log10(x) (_LN10 * log(x))

It looks safe enough, until some perverse customer writes:

#include <math.h>
#undef log
#define log(x) (printf(%d\n", x), x)

Any subsequent use of log10 will be very difficult to debug.

Reserved Name Spaces

Standard C defines several hundred names. A relatively small number are pre-
defined by the translator. You are best off using these names only as intended,
even in the rare cases where you can redefine them. The rest of the names are
defined in the various standard headers. I outlined what you can and cannot
do with those names in the previous section.

Standard C also makes assertions about other names. This section discusses
what the user and implementor can and cannot do with those names.

User Viewpoint

You can probably write a C program with no thought to any names not ex-
plicitly defined in the language proper or the Standard C library. After all,
that’s the way most of us have had to write C code for decades. Mostly, it
works. If you inadvertently collide with a name used by the implementor, you
just change it and try again. Once you get the program working this way, you
can stop worrying. You can stop worrying, that is, until the implementation is
upgraded. Or until you need to move the code to another implementation.

Standard C offers you an additional level of security, however. It is a level
offered in no other language standard that I know. It promises that if you avoid
certain sets of names, you will experience no collisions. Thus, Standard C makes
it that much easier to write highly portable applications.

Please note that your program is not ill-formed if you use one of the con-
traindicated names. It is just not “strictly conforming,” which is Standard C-ese
for “not guaranteed to be portable.” I lean on this point here because it has
been the source of considerable confusion, and some hard feelings, among crit-
ics of the C Standard. I use “must” and “must not” in the remainder of this
section only to describe strictly conforming programs. Ignore these rules and
you are no worse off than in the days before Standard C.
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So, to write a strictly conforming program, you must avoid four classes of
names:

Hidden macros – These are names that the implementor uses for macros
needed to flesh out the implementation. They consist of all names that
begin with an underscore, followed by an underscore or a uppercase let-
ter. Examples are _STDIO and __log2. Note that hidden macros can be
defined even if you include no standard headers in a translation unit.

Hidden external names – These are names that the implementor uses for
functions and data objects that have external linkage but are not for you
to use directly. They consist of all names that begin with an underscore
and are declared with external linkage. Examples are _errno and _sinx.
Note that you can write macro names, names with no linkage, and names
with internal linkage that match this class of names.

Added macros – These are names that the implementor uses for macros
added to certain header files. Typically, they name things peculiar to
a given implementation. The complete list is:

• An implementation can add error code names to <errno.h> if they
begin with E, followed by a digit or uppercase letter.

• It can add locale category names to <locale.h> if they begin with
LC_, followed by an uppercase letter.

• It can add signal code names to <signal.h> if they begin with SIG,
followed by an underscore or uppercase letter.

Future functions – These are names that are reserved by X3J11 for future
inclusion in Standard C. That makes them likely candidates for inclusion
in avant garde implementations of the current standard. By avoiding these
names, you can be tolerant of such extensions now and avoid maintenance
changes in the future. Note that, like all library function names, each can
also be masked in its defining standard header with a macro definition.
The complete list of places future implementations may add functions is:

• <math.h>, by appending f or l to existing function names declared
in that header.

• <ctype.h>, provided the names begin with either is or to, followed
by a lowercase letter.

• <string.h>, provided the names begin with either mem, str, or wcs,
followed by a lowercase letter.

• <stdlib.h>, provided the names begin with str, followed by a low-
ercase letter.
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If you avoid the names listed here, and the ones explicitly defined in Stan-
dard C, you should never collide with the implementation. All other names
belong to you.

Your only residual concern is the constraint imposed on external names
by primitive linkers and assemblers. An implementation of Standard C might
be able to preserve only the first six characters of significance in an external
name. It might have to compress uppercase and lowercase letters in an external
name to a single case. If you write code that may have to move to such an
environment, you must create names that survive such mangling. Make sure
that no two names you create collide as a result.

Implementor Viewpoint

As an implementor, your task is fairly clearcut. Confine your secret names to
the classes listed above and you will not step on the toes of the user. The
headers you write may not be as readable as in the past, but they will be safe.

One thing you should be careful of. Remember that the user can write
macros that begin with an underscore, followed by a lowercase letter. These
names overlap those reserved to the implementor for naming external functions
and data objects. That causes no trouble if you use such external names only
within library modules that you write. But don’t write macros that refer to
them if the macros can be expanded in user code.

For example, here is a not uncommon way to implement cos and sin:

extern double _sinq(double, int)
#define cos(x) _sinq(x, 1)
#define sin(x) _sinq(x, 0)

The second argument to _sinq is an offset in quadrants to be added to x (in
radians). It works fine so long as the user doesn’t inadvertently define a macro
named _sinq. Better you should name the secret function _Sinq, assuming
that uppercase letters survive the linker. Otherwise, a name like __sinq is
safest.

I find that two leading underscores makes for difficult reading. The secret
names I use almost always have a leading underscore, followed by an uppercase
letter. For macro names, I use uppercase letters and digits. For other names,
the remaining characters are lowercase letters and digits. Whatever you do,
pick a convention and adhere to it rigorously. Standard C headers and support
code needs all the help it can get.

If you must write code that survives shortened external names, I have one
additional piece of advice. Don’t try to contrive meaningful names as short as
the linker might like. You may need two leading underscores to avoid collisions
with the user. That leaves you only four significant characters in the name. In
such straits, you need names with two components. The first is a four-character
code that is unique but only suggestive of the meaning. The second is a tail
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that is as long as necessary to be properly descriptive. For example, you might
well prefer __prtx_Generic_Print to the laconic __prtx.

Conclusion

None of the issues I discussed here is particularly onerous taken alone. In
concert, however, the issues raised by the C Standard can intimidate users and
implementors alike. I have tried to help users by clarifying what rules apply
only to highly portable code. Not everyone needs to fret to the degree suggested
by the Standard, even for code that must be portable to some degree. I have
tried to help implementors by grouping the issues differently and showing a
few techniques that work. I know from personal experience that Standard C is
eminently implementable.

You just have to be a bit tidier than in the good old days.

P.J. Plauger serves as secretary of X3J11, convener of the ISO C working
group, and as Technical Editor of The Journal of C Language Translation. He
can be reached at uunet!plauger!pjp.

∞



33. Numerical C Extensions Group

Rex Jaeschke
Convener

In November 1989, a letter ballot was conducted among members of X3J11
regarding the admission of NCEG as a working group within X3J11. Below, is
a copy of the cover letter attached to that ballot.

Dear X3J11 Voting Member,
Early this year I announced the formation of the Numerical C

Extensions Group (NCEG) in a letter to all X3J11 members. As a
result of this and other promotion, NCEG has had two successful
meetings (in May and September) and is continuing on its mission to
produce a Technical Report. At both meetings, the NCEG member-
ship expressed desire to become affiliated with a formal standards
group, and X3J11 was identified.

Enclosed you will find a letter ballot which has been issued to
all eligible voting members of X3J11. You are requested to state
your position regarding the admission of NCEG as a working group
(tentatively called X3J11.1) within X3J11.

Also enclosed are copies of the minutes from the first two NCEG
meetings so you may view the work achieved to date. The enclosed
Project Proposal contains the formal specification of NCEG’s mis-
sion. This will be forwarded to SPARC for their consideration pro-
vided this letter ballot results in a two thirds majority.

Since the intent of NCEG is rather specialized (aliasing is a gen-
eral issue but needs to be addressed by NCEG too) you may find
NCEG’s work to have little or no effect on you or your implemen-
tations. If that is the case I urge you to vote in favor of admitting
NCEG rather than abstaining unless, of course, you have good rea-
son to vote NO.

The ballot will last 30 days and if admission is approved, the
results will be summarized and forwarded to SPARC by the Chair
of X3J11.

Rex Jaeschke, NCEG Convener

The letter ballot period ended in mid-January with 23 of the 50+ eligible
members actually voting. Of those 23, 22 voted “YES, I support the admission
of NCEG and the forwarding of the project proposal to SPARC” and one person
voted NO. As a result, X3J11 Chairman Jim Brodie will forward the results of
the ballot to SPARC along with the project proposal for their consideration.

The one dissenting vote is worthy of comment. Essentially, the objection
was based on a section of the project proposal that hinted NCEG might violate
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the ANSI C Standard. The section was “Expected Relationship with X3, etc.”
and contains the following passage.

The stated goal of NCEG is to be upwards compatible with ANSI C.
However, it is conceded that in at least one area (namely error
handling by certain library functions) NCEG may have to use an
approach not sanctioned by ANSI C.

Note that the key word here is “may.” NCEG is definitely not advocating
it set out to “fix” or “break” ANSI C in this regard. However, more than a
few knowledgeable NCEG members have indicated errno is a major thorn in
their (or their customers’) sides. Note too, that NCEG’s mission is to produce
a technical report, not a standard. Even if NCEG recommends an alternative
error handling mechanism X3J11 is under no obligation to adopt it. In fact,
I expect numerous NCEG efforts will result in implementation-defined or un-
defined behaviors due to conflicting prior art or failure to agree. That’s OK
too.

I have established an informal liaison with X3J16 (ANSI C++) and attended
their first meeting in Washington D.C. on December 15th. I also expect to be
attending an ISO C meeting in Europe in mid-June and will brief delegates on
our activities and solicit their input.

The next NCEG meeting is scheduled in New York City, March 7–8, 1990
immediately following X3J11. The meeting time has been extended from one
and a half to two days. The meeting after that is being proposed in the Liver-
more, California area (an hour east of San Francisco), probably in September.

To submit a paper, call Tom MacDonald to get a document number. Please
put the document number and title at the top of each page. The deadlines for
the next two mailings are (approximately) April 1 and August 1.

For more information about NCEG, contact me at aussie!rex@uunet.uu.net
or (703) 860-0091, or Tom at (612) 681-5818 or tam@cray.com.

∞



34. C Standards Update

Jim Brodie

Abstract

The American National Standard for C has finally been approved and
we can now look to the future activities of X3J11. Interpretations of
the C Standard and the International standardization of C remain to be
addressed. Also, what is the future of C? It’s often said that standards
committees take so long that they standardize a language about the time
it becomes obsolete. Is this the case with C? Has C++ become the
language of choice in traditional C language application areas? These
questions are examined and some potential answers supplied.

ANSI C Standard Approved

This is an article that I have been waiting a long time to write. On December 20,
1989 X3J11 received formal notification that the American National Standard
for the C Programming Language was approved by the Board of Standards
Review (BSR) of the American National Standards Institute (ANSI). This was
a unanimous decision. This is the final step in the approval process for C. We
now have a standard for the C language!

The Board of Standards Review considered the issues raised by Mr. Hans-
berry in his earlier appeals of the X3J11 and X3 processes. (These appeals
delayed the standards approval process by about nine months.) In response to
Mr. Hansberry the BSR wrote:

The members of the Board of Standards Review, in taking this
action, carefully reviewed and considered all of the documentation
regarding this subject standard and found that, in accordance with
ANSI procedures, due process had been followed and consensus
achieved in the development of this standard. However, it was the
sense of the members, in determining this action, that:

1. The Secretariat was responsible for a serious oversight in its
handling of Mr. Hansberry’s original public review comments.
It is the strong recommendation of the BSR that the Secre-
tariat institute administrative procedures to prevent a similar
recurrence.

255



256 The Journal of C Language Translation – March, 1990

2. The Secretariat, after recognition of this oversight, did act to
correct the oversight and did contact Mr. Hansberry in an effort
to resolve his comment, in accordance with procedures.

3. The BSR recognizes that step 2 was conducted by the Secre-
tariat in a conscientious and earnest effort to resolve this issue
and commends the Secretariat for the same.

The period for appeals before enactment of the standard has now passed
and actual publication of the standard should occur shortly. (ANSI anticipates
copies being available by late March.) The Standard’s official designation is
ANSI X3.159-1989. To obtain a copy, contact:

American National Standards Institute
Sales Department
1430 Broadway

New York, NY 10018
(212) 642-4900

fax (212) 302-1286

At press time, the price of the standard had not yet been determined.
The X3J11 committee will continue to exist and be active despite the ap-

proval of the standard. (The next X3J11 meeting will be held on March 5–6 in
New York City.)

Interpretations Phase

X3J11 will now turn its attention to the Interpretations phase, where questions
about the meaning of the standard document are addressed. Although the
committee’s responses do not have the force of the standard, they do serve as
guidance to the C community. The committee already has a small backlog of
interpretation requests. Requests for interpretations cover a range of issues.
For example, one request for interpretation asks:

Do functions return values by copying? The standard is clear
(§3.3.2.2) that function arguments are copied, but it is not clear
(§3.6.6.4) whether a function’s returned value is also copied. This
question becomes an issue in the assignment statement s = f();
where f yields a structure: is the result defined when the structure
s overlaps the structure that f obtained the returned value from?

A second request asks:

Are multiple definitions of unused identifiers with external link-
age permitted? The wording of §3.7 permits multiple definitions of
identifiers with external linkage, so long as the identifiers are never
used. For example, the following program is “strictly conforming”
if you take the wording in §3.7 literally:
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int F() {return 0;}
int F() {return 1;}
int V = 0;
int V = 1;
int main() {return 0;}

This must be a bug in the wording of §3.7. It cannot have been
the Committee’s intent, since it prohibits the commonly encountered
linker model. For example, most linkers will flatly refuse to link the
following “strictly conforming” program.

/* x.c */

int F() {return 0;}
int G(int i) {return 1;}

/* y.c */

int F() {return 1;}
int G(int);
int main() {return G(0);}

because F is defined twice.

As X3J11 prepares responses to these and other interpretation requests, we
will share them with you. If you would like to formally submit a request for
interpretation, do so to:

X3 Secretariat
CBEMA

311 First Street N.W.
Suite 500

Washington, DC 20001-2178
Attn: Manager of Standards Processing

If you like, you may also send a copy to the editorial offices of The Journal.
Since interpretations meetings will probably occur only twice a year, if you
submit a copy to us we can take an electronic poll of X3J11 members between
meetings to gauge their (informal) opinions and pass them on to you. Another
source of informal assistance is the comp.std.c electronic conference.

The ISO C Standard

X3J11 will also be involved in helping ensure that a quality International stan-
dard for C is produced. The International Standards Organization (ISO) stan-
dardization process includes several ballots. As I reported in last September’s



258 The Journal of C Language Translation – March, 1990

issue of The Journal the first of these ballots was completed without any neg-
ative votes. The second (six month) ballot was started in December 1989.

Despite the lack of negative votes on the initial ballot, all is not quiet on
the International front. The Danish delegation is still unhappy over the lack
of readable alternatives when the local character set does not include all of
C’s special characters. They do not consider trigraphs to be a readable1 or
acceptable solution.

The British delegation feels that the document, as it currently stands, is
not explicit enough in several areas, most notably when identifying constructs
which have undefined behavior. The British are driving an activity in the ISO C
programming standards committee (WG14) which will produce a Normative
Addendum for the draft currently being balloted (which is identical to the ANSI
standard). This addendum would be part of the ISO standard (and have the
full force of the standard). It would supply explicit editorial clarifications to
some of the areas that the British feel need to be addressed. A risk is that one
of these “editorial clarifications” will end up being a substantive change to the
standard. X3J11 will be working to make sure this doesn’t happen.

The current plans call for the next ISO C committee meeting to be held in
London on June 18–19 of this year.

The U.S. Government FIPS

There is not yet a Federal Information Processing Standard (FIPS) for C. Refer-
encing a FIPS significantly simplifies the process of using a language in a U.S.
defense project. Now that the ANSI standard for C has been approved, the
C FIPS should follow soon. Sometime in Spring 1990, the FIPS proposal will
be issued for a 90 day public comment period. Assuming there are no objec-
tions, the FIPS is presented to the U.S. Secretary of Commerce for signing. It
is expected this whole process will be completed during the Fall of 1990. This is
then followed by a six month acceptance period, after which the FIPS becomes
final. Note, however, that since the ANSI Standard exists right now, a U.S.
Government agency can require conformance to that standard in Requests For
Proposal (RFPs) right now! They do not need to wait until a FIPS is produced.

The Formal Validation Process

As reported in the Volume 1, number 2, September 1989 article by Neil Martin
of the British Standards Institution (BSI), Britain, along with several other
European standards organizations, has established testing procedures and has
actually adopted a commercial suite.

On the U.S. front, activity in that direction has also begun in earnest. Ac-
cording to the National Institute of Standards and Technology (NIST) they

1When trigraphs were invented by X3J11 they were not necessarily intended to be readable
but, rather, to aid mechanical translation to and from ISO-646 environments.
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issued an RFP in late January asking for submissions of C language validation
test suites. To get a copy of the solicitation for C language validation suite
RFP (Solicitation Number 52SBNB0C6O42) contact:

National Institute of Standards and Technology
Acquisition and Assistance Division

Building 301 Room B117
Gaithersburg, MD 20899

Note that the process of selecting or developing a validation suite is not
related to the FIPS. That is, the suite may be finalized before or after a FIPS
is produced.

Looking into the Crystal Ball

At this point, as we close one chapter in the history of C and open another, I
think it is useful to take a look at what the future holds for the C language. It
has been joked that standards committees take so long to complete their task
that they standardize a language about the time it becomes obsolete. Since it
took X3J11 six years to produce an approved standard, is this the case with C?
Will the standardization of C be an item of more academic rather than practical
importance? Has C++ become the language of choice in traditional C language
application areas? If all of the object-oriented hype is correct, can a programmer
developing in C hope to compete?

Many of you who read The Journal have made major commitments to the
C language and the tools that support it. Now that you finally have a fixed
target language, do you need to be moving off to support other languages?

To get a sense of the future of C and the C market, I talked to a cross-section
of current language product developers (all of whom offer C related products)
in the U.S. and Canada. I asked about the future of C and the demands of their
marketplaces with regards to C and other languages, most specifically C++. In
the remainder of this article I will share some of my own observations as well
as those of the people I talked to.

Building from the Base

As a starting point, we should remember that even if no new C program devel-
opment efforts were begun, starting today, there remains a very large body of
existing code that must be maintained and enhanced during the coming years.
There are many historical precedents to indicate that the massive investments
in this C code will not be thrown away. It will not be abandoned any more
than previous investments in BASIC, FORTRAN, COBOL, and Pascal have
been thrown away.

Microsoft still has a very healthy business selling its BASIC interpreters and
compilers. It is interesting to note too that the dominant language in the super
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computing world remains FORTRAN, despite all the wonders of C and other
newer, “better” languages. There remain more lines of COBOL code than any
other computer language.

Many large industrial efforts (e.g., the GTE GTD-5 telephone switching
system and the Honeywell TDC 3000 Process Control system) which were begun
in the late ’70s and early ’80s were written in Pascal. These products are still
in the marketplace today and will remain there for years to come. (Some
companies are now considering re-writing part or all of their Pascal programs
in a language such as C++. However, the very size of the applications makes
this a long and expensive process.)

If history is any indication of what the future holds (and it usually is), C
will remain a significant player well into the 21st century.

New C Development Efforts

While there appears to be a secure “existing code” marketplace for C and
C tools, this is not the exciting, growing market-place that companies typically
like to be a part of. Will C continue to be used for new product development
during the next 3–5 years?

The consistent answer appears to be YES. There are a variety reasons for
this, many of which have little to do with the language’s features and capabili-
ties.

The first reason for C’s continued use in new product development is that C
remains the language that most programmers know and are comfortable with.
People tend to stay with what they know unless there is a clear reason to
change. In addition to the wealth of C experience there is a corresponding lack
of experience with most of the new alternatives (e.g., C++). Right now it is
simply much easier to find and hire experienced C programmers. This situation
may change as universities begin to teach and use languages such as C++ on a
consistent basis. However, this is likely to be a slow process.

C remains relatively easy to learn and use. One of the consistent comments
about C++ is that there is a high learning cost (at least to become an “ef-
fective” or “real” C++ programmer). This will slow C++’s spread into many
application area as a potential replacement for C.

Another reason for C’s continued use is that there is a wealth of high quality
support tools from a wide variety of vendors. The competition in this arena has
driven down prices and driven up quality. This has made the C market a difficult
one for developers. However, the customers have benefitted tremendously.

C remains the language of choice when portability is a serious consideration.
No other language can match C’s widespread availability. In addition, despite
the fact that the standard has just been officially approved, the draft standard
has been stable for over a year and a half. The C language, as defined by the
ANSI Standard, is currently the de facto standard for much of the industry.

Several C products are already completely standard-conforming and many
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more, which are already quite close, will conform very soon. For example, the
next release of UNIX from AT&T is reported to include a fully ANSI-compatible
C compiler.

When considering how newer languages will impact the C marketplace we
need to remember that change comes slowly in most parts of industry. Most
engineering managers are very skeptical of new wonder cures like “object ori-
ented whatever.” They have all heard (and frequently paid for) the wonder
cures of the past. They have spent big money, yet projects were still late and
over budget.

Industry, unlike academia where it is relatively easy to move on to the
next new idea, lives very closely with its past. The thought of moving to
a new development language sends shivers down the backs of most software
engineering managers. When they start to add up the costs of training, tools,
lost productivity, replacement libraries, etc., they become very hard to convince
that the gains will outweigh the costs. The existing inertia can be enough to
kill any effort to move to a new language.

It is interesting that the role of C has changed so dramatically over the
years. It has gone from being the upstart to being part of the conservative
establishment.

The Object-Oriented Challenge

Perhaps one of the most interesting challenges to C will be the current industry
emphasis on object-oriented programming. Many advocates argue that full
blown object-oriented programming is the wave of the future that will engulf
all of programming. If this is the case, then C might be doomed to extinction
in the long term. I don’t buy this scenario.

Another view is that object-oriented design and programming is largely
an evolution of current practices. This view holds that the object-oriented
approach supplies a new set of approaches and tools to address certain classes
or kinds of problems. When these problems occur, the object-oriented approach
can be a real help. In the cases where they do not occur, the object-oriented
approach does not help and can even make things harder.

Larry Constantine, one of the leaders of the structured programming rev-
olution, is an advocate of this alternative view. In a recent article Objects,
Functions, and Program Extensibility (Computer Language, January 1990),
Constantine shows a transaction processing example where an extension in the
data domain (e.g., the kinds of transactions to be processed) was simpler if
an object-oriented approach was chosen. However, an extension in the func-
tion domain (e.g., a new action supplied on each transaction) was simpler if a
traditional function-structured approach was chosen. The key is to develop a
program that supports the kinds of future changes which are likely to occur.

Once all the hype passes and we settle down to really understand the essence
of the advantages that object-oriented programming brings, there will be a
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clearer understanding of exactly which application areas are well suited for the
object-oriented paradigm and the associated languages. If there is no benefit
in a particular application area, then the simplicity of C will probably ensure
C’s continued use.

What Markets will C Continue to Serve?

The question remains, “Are there marketplaces where C, because of features
and simplicity, is simply the best language choice currently available?” Here
again, the answer is consistently yes.

C remains the language of choice for much of the low level (e.g., device
drivers) and system level programming market. C also appears to address the
needs, while avoiding some of the complexities and high learning curves of some
of the alternatives, of many tool applications. The full blown object-oriented
programming paradigm does not appear to offer significant advantages in these
areas (although many of the fundamental programming principles upon which
object-oriented programming is based still apply, such as data abstraction and
information hiding, just as they always have.)

C remains a strong choice in much of the embedded systems market. C
remains the number one high level language choice in applications where ef-
ficiency, both in terms of time and space, is a high priority. This class of
programs goes from real-time embedded applications (where response times are
measured in micro-seconds) to non-embedded system applications (like Termi-
nate and Stay Resident [TSR] utilities under DOS). This is partly due to the
quality of the compilers that are available and partly due to the level at which
C programmer’s can specify their programs.

C will probably remain dominant for most application areas where the pro-
grams produced are “small.” The C language facilities are completely adequate
for small and medium size programs.

As you move into some of the large and very large systems, some of the
limitations of C will make C++ an attractive alternative. C++ introduces
a variety of complexities, but the additional facilities are very helpful when
dealing with the inherent complexities of a large programming effort. At this
point, it appears that C++ will make its first major inroads into the traditional
C marketplaces among sophisticated users trying to build new large systems.

C has become a more viable alternative in some of the numerical application
areas. The C Standard now allows true single precision arithmetic for float
objects. This, along with the honoring of grouping parenthesis has allowed some
programmers to move from FORTRAN to C for new applications. Although
C is still a long way from providing a complete alternative for FORTRAN
programmers, it offers enough to become a serious option for some. It will be
interesting to see how the work of the X3J11’s Numerical Subgroup expands
this marketplace in the future.

The defense/government industry is an interesting marketplace for C. Al-
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though there has been a push for years to move to Ada there appears to be a
renewed willingness by the Department of Defense to consider other language
alternatives. This is particularly true with the adoption of IEEE’s POSIX as
an operating system standard.

C++ might be a better fit than C in many large defense software efforts.
Here, however, the lack of an approved language standard will limit C++’s
acceptance. It is interesting to note that the recently formed C++ language
committee (X3J16) is currently planning to complete its work in about two
years. Perhaps they will be successful in this aggressive schedule. However,
past experience, including that of X3J11, is that it will take significantly longer
than this before an approved C++ standard is a reality. One reason for my
skepticism about a two-year schedule is that several key (and quite difficult)
C++ areas remain to be developed before they can be standardized. These
include exception handling and parameterized types. The lack of a body of
existing code will make it difficult to evaluate the effectiveness or correctness
of the proposed solutions.

One new area of application of C with considerable potential is that in-
volving international applications. X3J11 spent considerable time and effort
soliciting input from the international community before adopting the locale
and multibyte support primitives. It is expected these hooks will boost C’s use
in Western European and Asian marketplaces considerably.

Conclusion

The C language has grown and prospered for the better part of 20 years. New
challenges face the language and it will probably not grow into new application
areas as rapidly as it has during the past 10 years. Some application areas,
such as new, very large application developments will probably move to other
language alternatives, most notably C++. However, C remains the language
of choice in a wide variety of application areas, and will probably remain so for
the foreseeable future.

Jim Brodie is the convener and Chairman of the ANSI C standards com-
mittee, X3J11. He is a Senior Staff Engineer at Honeywell in Phoenix, Arizona.
He has coauthored books with P.J. Plauger and Tom Plum and is the Stan-
dards Editor for The Journal of C Language Translation. Jim can be reached
at (602) 863-5462 or uunet!aussie!jimb. Rex Jaeschke contributed information
about FIPS, NIST, and ANSI.
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35. A FORTRAN to C Translator, Part II

Fred Goodman
PROMULA Development Corporation

Columbus, Ohio

In Part I of this series, a surface-form description language was presented.
In this, the second and final part, a detailed sample translation is presented.

A Sample Translation

This section gives a complete example, using the FORTRAN OPEN statement,
of a translation and of the considerations needed to produce that translation
for the various user output biases. The material presented shows the actual
specifications and output results as produced by the current version (1.22) of
PROMULA.FORTRAN. Before beginning this discussion it must be empha-
sized that though any user of PROMULA.FORTRAN has full access and con-
trol over the following specifications, the typical user accesses them in compiled
form only and needs only specify his overall output bias.

The OPEN statement is selected because its operation should be clear to
those not familiar with FORTRAN, while its syntax and implementation are
sufficiently complex to make the points needed.

The FORTRAN OPEN Syntax

In this presentation a slightly simplified version of the OPEN statement is pre-
sented. The purpose of OPEN is similar to the C fopen function though it
cannot be directly translated into fopen. The primary problem is that in FOR-
TRAN the user assigns arbitrary integer handles—referred to as logical unit
numbers—which he then uses to reference the file. The handle is not assigned
by the runtime system. The syntax of the OPEN is as follows:

OPEN ( [UNIT=] u [,IOSTAT= ios] [,ERR= sl]
[,FILE= fin] [,STATUS= sta] [,ACCESS= acc]
[,FORM= fm] [,RECL= rl] [,BLANK= blnk] )

Where:
u unit number acc access type
ios error code fm record format
sl error label rl record length
fin file name blnk blank treatment
sta file status

264



A FORTRAN to C Translator, Part II – Goodman 265

The Runtime Library Structure

Suffice to say that the FORTRAN file system is clearly different than the stan-
dard C file system. Therefore, a basic set of utilities is needed in the runtime
library to deal with the OPEN statement. These are as follows:

void fiostatus(iostat, error)
long *iostat; /* Address of error status variable */
int error; /* Error testing switch */

Description: If the FORTRAN I/O runtime system encounters an error, it
sets an error code and calls function fioerror. The behavior of that function
depends upon how the code using the I/O system is doing error processing. This
function establishes the error code return variable based on the error testing
switch passed in. If that switch is zero, then an error on a successive I/O
operation causes an abnormal termination. If the switch is nonzero, then an
error condition is set and a normal return is executed.

int fiolun(lun, action)
int lun; /* Logical unit number of file */
int action; /* Action code for subsequent use */

Description: Before any action can be performed on a FORTRAN file, the
logical unit number must be associated with an existing FORTRAN file struc-
ture. If there is no already existing structure for the unit number, then this
function will attempt to create one. The form of this creation depends upon
the type of the action to be performed. These will not be detailed here. For
OPEN, action is zero.

void fiofdata(option, string, ns)
int option; /* Says which data is being specified */
char *string; /* String information */
int ns; /* String length or integer info */

Description: This function is used to specify the various file data options
associated with the current FORTRAN file structure. The particular data being
specified is defined by the option parameter. These will not be detailed here.

int fioopen()

Description: This function opens the file associated with the current FOR-
TRAN file using the current specifications as established via previous calls to
function fiofdata.
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int fioerror(clear)
int clear; /* Should error control be cleared? */

Description: If the FORTRAN I/O runtime system encounters an error,
it sets an error code and calls this function. This function either sets an error
return value or exits to the operating system with an error message. In the case
where an error code is returned to the calling function, the parameter clear
specifies whether or not the error processing control variables should be cleared
prior to the return.

The Optimized Translation

Given the above syntax and the above runtime library structure, the optimal
translation of the following FORTRAN fragment is as follows:

SUBROUTINE DEMO
INTEGER ERRCOD
OPEN(1,STATUS=’NEW’,FILE=’d.o’,IOSTAT=ERRCOD,ERR=5)
OPEN(2,STATUS=’OLD’,FILE=’d.i’,ACCESS=’DIRECT’,RECL=50)

5 RETURN
END

#include "fortran.h"
void demo()
{
static long errcod;

fiostatus(&errcod, 1);
fiolun(1, 0);
fiofdata(1, "d.o", 8);
fiofdata(2, "NEW", 3);
fioopen();
if(fioerror(1)) goto S900;
fiolun(2, 0);
fiofdata(1, "d.i", 8);
fiofdata(2, "OLD", 3);
fiofdata(3, "DIRECT", 6);
fiofdata(5, NULL, 50);
fioopen();

S900: return;
}

First the fiostatus function is called if the user is performing his own
error processing. Next, the fiolun function is called to establish the logical
unit number of the file, and the fiofdata functions are called to establish
the various parameter values. Finally, the actual open operation is performed
and if so requested a possible branch is taken if an error occurred. The above
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translation is optimal in that it gets the job done in the most efficient and
straightforward way. It is the translation for those users who have no direct
interest in the intermediate C output.

The remainder of this subsection shows how the above translation is achieved
and alternate translations can be produced which are less optimal but which
are more readable and more maintainable.

The OPCODES Component

The first step in any translation specification is the establishment of the inter-
mediate language and of its operation codes. These codes tie the translation
specifications together. The basic operations involved in the OPEN are as follows:

Op Code Description
LDA Load the address of a variable onto the stack
LIC Push an integer constant onto the stack
STA Establish the current error processing status
LUN Specify the logical unit number
LSC Load a string constant onto the stack
DFA Define file access type
DFN Define current file name
DFR Define file record length
DFS Define current file status
DSP Push a dummy string parameter onto the stack
DIP Push a dummy integer parameter onto the stack
OPN Open the current file
ERR Perform error testing
NER End without error processing
JMC Jump on condition
GTL Go to line address

The LDA, LIC, LSC, DIP, and DSP operation codes are generic operations
that place values on the stack. The ERR, NER, JMC, and GTL operations
are the branching control operations needed to define the error branching. The
STA, LUN, DFA, DFN, DFR, DFS, and OPN operations are particular to the
operations of FORTRAN I/O processing.

It must be emphasized again that PROMULA.FORTRAN is a p-code com-
piler. These operation codes were designed to make it possible to execute FOR-
TRAN programs via a pseudo-machine. The translation to C works completely
independently of the compilation to the pseudo-code.

The OPEN Statement Description

To illustrate the point that the transformation to the intermediate opcodes as
listed above is independent of the output production, below is the actual state-
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ment description for the OPEN statement as entered in the translation description
file.

"OPEN" "(" ["UNIT="] u [( "IOSTAT=" ios)|( "ERR=" sl )|
( "FILE=" fin )|( "STATUS=" sta )|( "ACCESS=" acc )|
( "FORM=" fm )|( "RECL=" rl )|
( "BLANK=" blnk ) ]... ")" .
Where:

u = integer_parameter
ios = long*
sl = statementlabel
fin = string
sta = string
acc = string
fm = string
rl = integer_parameter
blnk = string

Emissions:
IF(ios & sl) EMIT(ios LIC 1 STA)
ELSEIF(ios) EMIT(ios LIC 0 STA)
ELSEIF(sl) EMIT(LDA 0 LIC 0 STA)
EMIT(u LIC 0 LUN)
IF(fin) EMIT(fin DFN)
ELSE EMIT(DSP)
IF(ios) EMIT(ios DFS)
ELSE EMIT(DSP)
IF(acc) EMIT(acc DFA)
ELSE EMIT(DSP)
IF(fm) EMIT(fm DFF)
ELSE EMIT(DSP)
IF(rl) EMIT(rl DFR)
ELSE EMIT(DIP)
IF(blnk) EMIT(blnk DFB)
ELSE EMIT(DSP)
EMIT(OPN)
IF(sl) EMIT(ERR JMC 5 GTL sl)
ELSE EMIT(NER)

End

Very briefly, statement descriptions consist of four parts:

1. The left-hand-side recognition symbol. In this case the OPEN statement is
recognized when the token OPEN is found at the beginning of a statement.

2. The actual syntax description, which consists of formal symbols, such as
(, ), [, ], {, }, ., |, etc., terminal symbols enclosed in quotes, and non-
terminal symbols. The syntax is designed to look as much as possible like
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the syntax usually used in FORTRAN reference manuals, but formalized
to make it equivalent to contemporary Backus-Naur notation.

3. The where section, which specifies what each nonterminal symbol is. On
the right-side of these specifications is either a type specifier—meaning an
expression of the indicated type—or the identifier of another statement
component description defined like the above.

4. The emission specification which specifies how the actual intermediate
code is to be structured.

We are omitting from this discussion the description of the basic expressions,
which uses an entirely different notation. The linkage between expressions and
statements is made in the where section above.

The bulk of the above notation should be at least readable by those who
are used to formal language descriptions. However, the emission section is
unique to PROMULA.FORTRAN. Its purpose is to specify how the actual
code sequences associated with the nonterminal symbols are to be combined
in the context of this statement. In the conditional portions of the notation, a
nonterminal symbol is true if it has any code associated with it, and false if not.
Testing a conditional does not affect its code. In the EMIT clauses constants
and operation codes are emitted exactly as entered. For nonterminal symbols,
the code associated with that symbol is emitted. This notation is very powerful
and is able to deal with most of the FORTRAN syntax—in particular the I/O
statements.

The Biased Surface-Form Descriptions

Once statements have been processed into the intermediate language as defined
by the opcode list using specifications of the statement syntax and emissions,
the intermediate language can be output as C using the biased surface-form
descriptions. As was discussed in Part I, there are three distinct views of how
the C output should look.

The first bias wants an optimal C which is quick to compile and which
minimizes additional runtime code. The translation for this bias was presented
earlier in order to introduce the runtime library. The translation gives an
optimal use of this library with no additional overhead.

The second bias wants a C code that can be easily read and maintained,
but which follows C conventions as closely as possible. Our default translation
under this bias is shown below.

#include "fortran.h"
void demo()
{
static long errcod;

fiostatus(&errcod, 1);



270 The Journal of C Language Translation – March, 1990

ftnopen(1, "d.o", 8, "NEW", NULL, NULL, 0L,
NULL, 0L);

if(fioerror(1)) goto S900;
ftnopen(2, "d.i", 8, "OLD", "DIRECT", NULL,

50, NULL, 0L);
S900:

return;
}

The error processing logic is the same as before, but an additional interface
routine ftnopen is introduced which combines all of the possible parameters to
the OPEN into a single function call with a fixed parameter list. This function
itself then calls the fioopen and fiodata functions based on the parameter
list. This implementation is clearly easier to read, but it requires slightly more
runtime code.

The third type of user wants to retain as much of the original FORTRAN
flavor as possible. He is used to maintaining the FORTRAN code and he wants
to make the transition to C as painless and error-free as possible. For this user,
the C output is as follows:

#include "fortran.h"
#include "ftnsymb.h"
void demo()
{
static long errcod;

if(IO_ERR(OPEN(1, O_IOSTAT, &errcod, O_FILE,
"d.o", 8, O_STATUS, "NEW", 0))) goto S900;

OPEN(2, O_FILE, "d.i", 8, O_STATUS, "OLD",
O_ACCESS, "DIRECT", O_RECL, 50, 0);

S900:
return;

}

Note first that an additional file ftnsymb.h is included. This file contains
definitions of various constants intended to remind the user of the original FOR-
TRAN. Also a new function OPEN is introduced, which is defined as fiofopn
in the include file. This function takes a variable number of arguments, each
preceded by an integer code with the last argument being zero. The integer
codes themselves are represented by the symbols O_IOSTAT, O_FILE, etc., in the
include file. In addition, the OPEN function itself returns the error exit condi-
tion so that it can be nested in the IO_ERR function which is simply defined as
fioerror in the include file. The advantage of this translation is that there is
a one-to-one correspondence between input statements and output statements
and that the form of the C is at least reminiscent of the original. The disad-
vantages are that an additional runtime function is needed and extra time is
needed to compile the additional symbols.
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Having presented the three biased outputs, all that remains are the surface-
form descriptions themselves. (See Part I for more details.)

DFS PATTERN
F 3, 0, "%1d,O_STATUS,%2d"
C 2, 0, "%1d"
* 2, 0, "fiofdata(2,%1d,%2d);\c"

LUN PATTERN
F 3, 0, "%2d%1d"
C 2, 0, "%1d"
* 2, 0, "fiolun(%1d,%2d);\c"

LSC PATTERN 0, 0, "\ks"
DFA PATTERN

F 3, 0, "%1d,O_ACCESS,%2d,%3d"
C 2, 0, "%1d"
* 2, 0, "fiofdata(3,%1d,%2d);\c"

DFN PATTERN
F 3, 0, "%1d,O_FILE,%2d,%3d"
C 2, 0, "%1d,%2d"
* 2, 0, "fiofdata(1,%1d,%2d);\c"

DFR PATTERN
F 2, 0, "%1d,O_RECL,%2d"
C
* 1, 0, "fiofdata(5,NULL,%1d);\c"

DSP PATTERN
C 0, 0, "NULL"
*

DIP PATTERN
C 0, 0, "0L"
*

OPN PATTERN
F 1, 0, "OPEN(%1d,0)"
C 8,0,"ftnopen(%1d,%2d,%3d,%4d,%5d,%6d,%7d,%8d);\c"
* 0, 0, "fioopen();\c"

DFF PATTERN
F 3, 0, "%1d,O_FORM,%2d,%3d"
C 2, 0, "%1d"
* 2, 0, "fiofdata(4,%1d,%2d);\c"

ERR PATTERN
F 1, 0, "O_ERR(%1d)"
* 0, 0, "fioerror(1)"

NER PATTERN
F 1, 0, "%1d;\c"
C 1, 0, "\c"
* 0, 0, "\c"
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As described before, in the above descriptions those operations that have a
single set of pattern specifications use the same pattern for all output biases.
Those that have multiple patterns use the one specified for a given bias type if
present, else they use the last pattern introduced by the ‘*’. Consider the OPN
operation itself.

For the FORTRAN bias the following pattern is used:

1, 0, "OPEN(%1d,0)"

In this form, by the time OPN is executed by the string-machine, there is a
single pattern string on the stack, which contains the concatenation of the other
parameters as they occurred. This string is entered into the expression followed
by a zero, which terminates the parameter string. The string thus formed is not
yet cleared to the output file since it may yet be concatenated into the error
function call.

For the C bias the following pattern is used:

8, 0, "ftnopen(%1d,%2d,%3d,%4d,%5d,%6d,%7d,%8d);\c"

In this form, by the time the OPN is executed by the string-machine, there
are eight independent parameters on the stack. It is interesting, but not really
important, that the order of the operators in the string-machine varies wildly
depending upon the output bias. The pattern string concatenates the eight
parameters into a single function call. The stack is then cleared, since the error
processing is performed via a separate statement.

For the optimized bias, the following pattern is used:

0, 0, "fioopen();\c"

In this form, the stack has already been cleared prior to the execution of the
OPN operation by the string-machine. There are no parameters. The operation
itself merely writes the appropriate function call and clears the string stack.

The additional pattern strings may be analyzed in the same manner.

Other Bias Switches

In addition to the actual statement translations, which are controlled via the
surface-form description language, there are several other translation features
and optimizations which can be individually controlled by the user. Each has
a default setting for the three output biases, though these settings can always
be overridden by the user. These are best described via an example. Consider
the following FORTRAN subroutine which computes the mean and variance of
a set of values. This is followed by the optimized bias C translation. All flags
are on for the optimized bias.
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SUBROUTINE EX001(VAL, N, XBAR, VAR)
DIMENSION VAL(N)
XBAR=0.0
VAR=0.0
DO 10 J = 1, N
XBAR = XBAR + VAL(J)

10 CONTINUE
XBAR = XBAR/N
DO 15 J = 1, N
S = VAL(J) - XBAR
VAR = VAR + S*S

15 CONTINUE
VAR = VAR/(N-1)
RETURN
END

void ex001(val, n, xbar, var)
int n; (1)
float *val, *xbar, *var;
{
auto int j;
auto float s;

*xbar = *var = 0.0; (2)
for (j=0; j<n; j++) *xbar += *(val + j);(3)-(7)
*xbar /= n; (5)
for (j = 0; j < n; j++) { (3) (4)

s = *(val + j) - *xbar; (7)
*var += (s * s); (5)

} (8)
*var /= (n-1); (5)

}

Note 1: The parameter n is not declared as a pointer, since it is not changed
within the routine. PROMULA.FORTRAN uses prototypes of subpro-
gram arguments so that it can generate optimal calling sequences. These
prototypes may be specified by the user or may be determined internally
by the translator. The above was internally determined by the translator.
When this particular feature is turned off, all parameters are passed as
pointers. This is the default for FORTRAN and therefore it is turned off
for that bias.

Note 2: C allows multiple assignments of the same value to be written to-
gether. The translator looks for such assignments and combines them
whenever possible. Since the FORTRAN bias wishes to maintain a one-
to-one correspondence between input and output statements this feature
is off for the FORTRAN bias.
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Note 3: In FORTRAN the default base for a subscript is 1. Thus, all do loops
which generate subscripts tend to start at 1. In C, however, subscripts
start at zero. This fact makes for much more efficient code. The trans-
lator looks for DO loops whose only purpose is to move through array
subscripts and reduces their range to start at zero, thus producing a very
natural looking for statement and optimizing subscript expressions. This
feature is left on even for the FORTRAN bias, since it makes the subscript
expressions look more natural.

Note 4: C has ++ and -- operators which take advantage of the fact that most
computers have increment and decrement operators. The translator uses
these operators whenever possible. This is turned off in the FORTRAN
bias.

Note 5: C has operators like +=, -=, *=, /=, etc. The use of these operators
ensures that the address of the left-hand-side of the assignment will only
be computed as often as necessary. PROMULA.FORTRAN uses these
operators, except in the FORTRAN bias.

Note 6: The DO loop running to statement 10 in the FORTRAN code is col-
lapsed into a single compound statement, and that the now unneeded
statement label is removed. This feature is retained in the FORTRAN
bias.

Note 7: the subscript expression for the val vector is converted to the C
pointer notation, which we have always preferred. The alternative nota-
tion using brackets is apparently preferred even by many C programmers.
The flag is still by default on, for all but the FORTRAN bias, but we may
just turn it off for everyone.

Note 8: Though the DO loop statements in loop 15 cannot be reduced to a
single statement, the statement label can still be removed. Again this
feature is the default in all biases.

Conclusion

The intent of this paper was to give a clear view of a problem faced by transla-
tion software which is not faced by other compilers. When the target language
is human-readable, then humans want some say in its form. This fact greatly
complicates the design of the software.

Fred Goodman is a mathematician/linguist and the author of PROMULA.
FORTRAN. He is currently applying the translation methodology discussed
here to BASIC, PASCAL, and COBOL. Fred is at (614) 263-5454.
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36. Electronic Survey Number 3

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an e-mail report on the results.)

The following questions were posed to 50 different people, with 19 of them
responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

Definition and Representation of NULL

How do you define NULL? Is the null constant pointer actually represented as
all-bits-zero? What different internal pointer representations do you support?

• 3 – #define NULL (void *) 0

• 9 – #define NULL 0

• 1 – #define NULL 0L

• 16 – All-bits-zero

• 1 – Not all-bits-zero

• 10 – Only one pointer representation

• 3 – Two pointer representations

• Comments:

1. As an extension, we support long pointers, declared with ^ instead
of *. They are 64-bit space-offset pairs.

2. NULLmust be #defined as 0 because some existing applications have
misused this definition, and would break if it changed.

275
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3. On my word-addressable architectures, pointers to aligned objects
are word addresses while char * typically adds a byte index within
the word via additional high-order bits (low order still being the word
address).

4. All pointers visible to the user are byte addresses, but internally we
use word addresses to pass large structures and unions by value.

5. Although not necessary for any of our present implementations, there
are (at least) two pointer sizes understood by the common front-
end/code-generator.

6. On our 24-bit word machine we support two formats, one for char-
acter pointers, and one for pointers to everything else. All pointers
are 24 bits in size, but in a character pointer the most significant
two bits indicate which byte in a word to use.

Importance of the ANSI C Standard

Assuming you implement most of the goodies required/defined by ANSI C, how
important is provable ANSI-conformance to your market place? Not at all,
somewhat, absolutely necessary.

• 0 – Not at all concerned

• 6 – Somewhat concerned

• 11 – Very important or absolutely necessary

• Comments:

1. Provable? Nonsense! Demonstrable via some kind of test suite?
Important. Claimable? Absolutely necessary.

2. Somewhat, but people are still confused about what ANSI standard
conformance means.

3. Our applications require either ANSI C or System V C support;
dealing with other C variants would be too much of a support burden.
Computer procurement specifications will start requiring ANSI C
once vendors have had a fair amount of time to prepare, and no
deviation will be tolerated.

4. Conformance is probably less important than efficiency (in our par-
allel target environment.)

5. As soon as there is really a standard (either ANSI or ISO) it will be
important. When there is a FIPS (US Federal Information Process-
ing Standard) it will be vital even to non-government sales.

6. Very important to absolutely necessary (depending on the particular
customer.)
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7. ANSI C conformance used to be a big deal. Now I’m looking toward
conformance with AT&T C++ 2.0.

8. Having an ANSI C conforming compilation is very important for
the market, but in practice, is not the compilation mode used. The
problem is the name space restrictions which make it impossible to
compile existing code. Practical conformance to other “standards”
(e.g., POSIX) also makes strict adherence to the ANSI name space
rules essentially impossible.

9. It’s very necessary since we want to bid on government contracts.

10. Somewhat but mostly for government bids only.

Validation Suites Used

Do you have a home-grown or commercial validation suite? If so, which?

• 2 – No suite

• 10 – Home grown

• 2 – ACE/HCR

• 1 – Metaware

• 4 – Perennial

• 10 – Plum Hall

• Comments:

1. No. That is what users are for.

2. We also have Rex Jaeschke’s preprocessor and header test suite
(available from Rex under license at no charge).

3. Not yet but we’re looking at the ACE/HCR suite and using Plum
Hall’s Sampler.

4. I’ve found that commercial suites tend to only test the parser, not
the optimizer or code generator.

5. We also use the X/OPEN XPG3 Suite.

POSIX and IEEE Floating-Point Standards

Is POSIX conformance an issue for you? What about IEEE floating-point stan-
dards support?

• 13 – POSIX conformance is important
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• 4 – POSIX conformance is not important

• 12 – IEEE floating-point conformance is important

• 4 – IEEE floating-point conformance is not important

• Comments:

1. IEEE 1003.1 conformance will become more important in the future.
Our applications rely much more heavily on SVID than on POSIX.
I think the other 1003 so-called standards are completely berserk.

2. Our applications neither need nor want IEEE floating point features.
As an experienced numerical software developer, I disagree with the
whole philosophy behind IEEE 754.

3. Isn’t life hard enough for us ANSI compiler writers without having
to worry about other standards too?

4. POSIX is vital because of the FIPS, and corresponding standards in
the European market.

5. Floating-point speed has been more important than IEEE support,
though this is starting to change.

6. POSIX conformance is just as important as ANSI C conformance.
Our math libraries go out of their way for accuracy in supporting
IEEE fp standards.

Shortcomings of ANSI C

What do you see as the biggest shortcoming of the ANSI C Standard, as a lan-
guage standard or in some missing functionality (in the library or preprocessor,
for example)?

1. Editor’s note: Each of the following 16 comment sets represents the input
from one person. As far as I can tell, at least 13 of the respondents
were either represented on X3J11 or followed its activities closely. As the
marketing person said, “We have to leave something for the next release.”

2. The worst thing about it is that nearly all extensions are prohibited.

The fact that const ** pointers cannot be assigned without a cast from
ordinary pointers is annoying. Many users are confused by this.

Then there is the fact that a function that returns a structure value which
it gets through a pointer must use bcopy to copy it into the return area,
because the function value is not an lvalue and is allowed to come from a
place that overlaps the place where the value is being stored.

3. I think that most of our headaches will relate to the fact that ANSI C is
a slightly different language from our current PCC implementation.
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4. Not many shortcomings. The various weasel-words to avoid making de-
cisions is the worst source of trouble. One gets used to them. Also, the
preprocessor stage could have used grammars more effectively. The one
in the X3J11 report is misleading but this is not a big deal.

5. The inability to partially initialize data structures. UNIX I/O seems to
be important among our users (and we’re not UNIX-based), but missing
from the standard. Also the sleep and fgetname functions.

6. The use of a global state in library functions, particularly errno in the
math library, causes a variety of problems.

Lack of adequate array support, particularly for matrix parameter variable
dimensions, unduly burdens numerical applications.

Lack of typeof(object) makes generic macros hard to write.

The six-character limit on portable external identifiers (more than the
monocase aspect) really gets in the way of programming. I understand
why it’s specified that way, but it is a deficiency in the language specifi-
cation.

Multibyte character sequences are unwarrantedly difficult to program for
and should not have been sanctioned; a simple scalar data type for large
character code would have been far better. To avoid having to have a
parallel set of str* functions or a strcoll kludge, that data type should
have been char, with another type such as short char introduced to
allow access to smaller objects such as bytes or bits. As it now stands, the
traditional, straightforward way to write text-handling programs doesn’t
work in an international environment, but it would have worked if a better
approach had been adopted. I think this is a case of system analysis
failure due to taking too literally what the users’ detailed perceptions of
their needs were, coupled with vendor commitments to existing poorly
engineered solutions.

The constraint on the character code set that '0'..'9' be represented in
a certain way was unwarranted and outside the proper scope of X3J11.
Other solutions could have been found to address that issue.

Note: We do not need standardized access to special hardware features
such as multithreading, vector processors, etc. I think rigid standards in
such areas are harmful to the evolution of computing as a whole. Certainly
these are not essential for the production of portable applications.

7. The biggest problem I see has to do with modularity, data hiding, and the
like. I find it increasingly hard to write good modular, self-documenting
code, with everything hidden, etc. I wouldn’t mind nested functions,
operator overloading, macros with a variable number of arguments, and
macros that can deal with every possible type of argument (a typeof
operator, perhaps). Hmmm ... I guess what I’m saying is that I want C
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to become C++. I’ve never used C++ but feel the need for something
like it.

The second biggest problem would be the lack of support for multiproces-
sors, vector processors, and the like. Very much understandable though,
given the lack of common practice.

And, of course, the issue NCEG is tackling: making C a replacement for
FORTRAN in the scientific world.

8. Biggest: Not a standard yet because of the blatant unresponsiveness of
X3J11 to international input (or anyone else’s, for that matter!).

Second: Waffles too much around the edges on the functions.

Third: Namespace rules are too tight to allow for backwards compatibility,
yet not even guidance was provided in that area. (__STDC__ isn’t done
well enough.)

9. It’s very complicated—it will be hard for beginners to learn things like
const and volatile.

Also, the automatic coercion on function call is dangerous. For example,
if you have

extern int abs(int);

then abs(-5.4) very unexpectedly yields 5 or 6.

10. Its internationalization capabilities.

11. As a programmer: varargs macros.

As a compiler writer: the grouping rules (which say they are like other
languages but aren’t like FORTRAN), and the lack of something like
noalias makes optimization with pointers almost impossible.

12. The biggest problem is that it is now impossible to make a non-tokenizing
preprocessor. The preprocessor now must have far more complexity than
before. The committee stepped out of bounds on this one, by inventing
features and standardizing them before trying them out in an implemen-
tation.

13. It would be nice if there were a way to handle the great optimization
needs that the “noalias wars” made so evident, but I’m hoping for a
clear direction to come from future implementations. Also, I’d have been
happier with a system that allowed type qualifiers to be added as necessary
at any type depth instead of the existing one level scheme. I’m convinced
that the next version of the standard will have to loosen the rules along
these lines.
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14. Too many machine- or implementation-dependent features and poor float-
ing point support.

15. The standard never solved C’s aliasing problems. Ultimately this limits
the effectiveness of global optimizers since they have to make very pes-
simistic assumptions about the effects of pointer indirections. This in
turn forces the use of non-standard extensions to support vectorization
and just to improve global optimizations. Something like the proposed
noalias extension (but better thought out) would have been useful.

Left too many area’s with implementation-defined behavior.

Preprocessing numbers are broken.

16. Since the naming conventions don’t match existing practice (at least in
UNIX environments) they might as well have gone further towards mak-
ing all implementation support routines whose names start with strange
characters (e.g., use a __ prefix for everything).

17. While I see no major shortcomings in the Standard, I would have liked to
see something in the Rationale justifying the change in the behavior of the
preprocessor from that of the “standard” UNIX character preprocessor.

Representation of long double

Do you or will you implement long double with a different representation than
double? If so, will that make three different floating-point representations or
are float and double mapped the same?

• 5 – float, double, long double all different

• 10 – float and double different, long double maps to double

• 1 – float and double the same, long double different

• 0 – float, double, long double all the same

• Comments:

1. My guess is we are going to provide a lot of compiler flags and do
everything.

Future Polls

Some of the topics planned for future polls are:

• Have you implemented or do you plan to implement locales other than
the required "C"? If so, for what purpose?
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• What do you think the following expressions should produce? Are the
parentheses part of the sizeof operand or do they represent the cast
operator? Note that both - and & can be either unary or binary operators.

sizeof (char *) 0
sizeof (double) -1
sizeof (unsigned) &p

• Do you permit the output of the preprocessor to be saved for inspection?
Is all white space (including comments) retained? Do you provide a way
to merge or easily compare this output with the original source? Do you
have a way to indicate which source lines were selected and skipped over
as a result of conditional compilation?

• Do you recognize main as a special function and treat it differently than
other functions?

• Can main call itself recursively in your implementation?

• Given that trigraph processing can slow down compilation do you (plan
to) have a compiler option to disable trigraph recognition?

If you have any topics to add to a poll, please send them to me. I will
provide the responses to you as soon as they are collated, and publish them in
a future issue. You don’t need to have an e-mail address to propose topics, only
to be polled.

∞



37. Parallel Programming: Linda Meets C, Part IV

Jerrold Leichter

Abstract

Linda is a programming model for developing explicitly parallel programs.
In earlier parts of this series, we introduced the model and discussed
several different “injections” of it into C, as well as the implementation
of a compiler for our dialect, VAX LINDA-C. In this final part, we discuss
the eval operator, which is used to dynamically create new processes.

Introduction

In Part I of this series, we described a parallel programming language as one
supporting process creation and coordination in the same way that traditional
languages support sequential operations like looping. The operators we have
discussed in detail up until now — in, out, and rd — support communication
and coordination, but not process creation.

In Part I, we mentioned the eval operation, which is used for exactly that.
Recall that eval is a variation on out. Like out, it inserts a tuple into tuple
space. However, the tuple is unevaluated. For example, if g is a function
producing a float then

eval(g(x)+5.)

produces an active tuple:
〈g(x)+5.float〉

This tuple cannot be matched by any in or rd operation, and begins evaluating
as soon as it is created. In our example, when g completes execution and returns
(if it ever does), the active tuple becomes an “inactive” tuple, specifically,

〈(g’s value + 5.)float〉
This tuple can be matched in the usual way.

The Difficulty With eval

The in, out, and rd operators cannot be implemented directly as function calls
as they depend on the types of the tuple field to which they are applied. Once
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that information is available — whether provided explicitly by a programmer
or determined by a compiler — it can be passed in a function call along with
the tuple fields. With minor variations, this is just the strategy chosen by all
the implementations of which we are aware.

This strategy, however, cannot be generalized to eval. Any C function call
will evaluate its arguments before passing them, and the whole point of eval
is to avoid such evaluation. We’ll need a different approach.

Our inability to use a function call should be seen as a hint to search for other
problems; after all, function evaluation is central to the semantics of traditional
languages. Such a search quickly reveals a difficult semantic issue involving
variable scoping. In Linda-C, we had to make some minor adjustments to
the semantics of C expressions used as tuple fields. In particular, we had to
reverse C’s bias toward addresses and away from arrays. The problems with
eval are more pervasive: C at least supports arrays, not just pointers; but there
is nothing at all in C corresponding to an unevaluated expression tuple.

While these problems may seem obvious in retrospect, in practice they were
ignored in favor of quick experimentation. We’ll begin by examining some of
those experiments.

Investigators

The earliest implementation of eval was done by Robert Bjornson at Yale Uni-
versity several years ago. He has since done several additional implementations,
which will form part of his upcoming dissertation. Some of Bjornson’s recent
work has been done in conjunction with Nicholas Carriero. As far as we are
aware, none of this work has yet been published.

We explored the problems surrounding eval in our dissertation2 and de-
scribed, but did not implement, the stack frame approach we describe later.
We also suggest that eval is too blunt an instrument and that better alterna-
tives are available. Discussing them here would take us too far afield, however.

Simple Approaches: “Let Joe Do It”

On UNIX systems, a simple approach is available to Linda implementers: punt-
ing the problem to the implementers of the operating system. We simply re-
write

eval(tuple);

as
2“Shared Tuple Memories, Shared Memories, Buses and LAN’s — Linda Implementations

Across the Spectrum of Connectivity.” Available as Yale Department of Computer Science
Technical Report TR-714, July 1989.
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if (fork() == 0)
{ out(tuple);

exit(0);
}

A variation of this theme is available on some systems, particularly shared-
memory multiprocessors. Rather than using fork(), we can use some equiva-
lent call from a light-weight threads package. This is likely to be much faster.
Bjornson’s experiments using fork() gave reasonable results with tens or per-
haps hundreds of eval’s. His experiments using threads worked well with many
thousands.3

All such implementations are obviously limited to a single shared-memory
system. They also leave effective control of the created processes in the hands
of the operating system.

Semantics

The semantics of an implementation based on fork() is fairly straightforward.
We need a bit of language to describe it, however. Call the totality of variables
accessible to a program, and their values over time, an environment. There
are two environments of interest here: The creating environment within which
the eval statement itself is executed, and the execution environment within
which the field values are evaluated. For a fork() implementation, the two
environments are initially identical, but disjoint. Any subsequent changes to
either environment have no effect on the other.4

When we move on to thread implementations — which at first appear to
be simple optimizations of fork() implementations — things become much
more complex, since threads generally share at least part of their environments.
Typically, variables on the stack are copied, and all others are shared. The exact
details are implementation-dependent.

The result is implicit and sometimes unexpected communications paths.
Writing code for such an implementation requires that the programmer either
avoid using any parts of the shared (read-write) environment, or write a pro-
gram that uses shared memory communication in addition to the tuple space
operations.

Joe Doesn’t Do It Too Well

While fork() and thread implementations are simple, they have few other
virtues. In the case of fork(), the semantics are clear but an efficient im-
plementation is difficult. Thread implementations have complex and varying

3Bjornson eventually implemented a fairly portable, if rudimentary, threads package using
sigstack to create and switch among thread contexts.

4This description ignores “external” parts of the environment, such as files. The fact that
UNIX-level file descriptors are shared but stdio-level file pointers are not in any practical
sense leads to no end of confusion.



286 The Journal of C Language Translation – March, 1990

semantics, to the point that Linda implementations using them, in the time-
honored tradition of experimental lash-ups, have a semantics best described as
“it does what it does — try it and see.”

Neither style of implementation extends beyond shared-memory multipro-
cessors, and both cede control over critical issues such as how much of the
creating environment to pass, how many actual processes to create, and so on,
to an external package.

Explicit Environment Passing

An alternative approach is to make all environment passing explicit. In this
style, we re-write

eval(tuple);

as (roughly) the following:

out("eval-request",func-id,id1,id2,...);

Here, the id i’s are all the identifiers occurring anywhere within the original tu-
ple, and func-id somehow identifies a unique piece of generated code which must
be added to the program. The code itself is simply a function with arguments
id1,id2,. . . , and having the single line

out(tuple);

Additional code is needed to create a “server program” that repeatedly
in’s eval-request tuples, determines the function identified by the func-id
received, and calls the function with the arguments received in the tuple. There
are many details to be dealt with, beginning with the such trivialities as the
need for a means to receive tuples containing a variable number of id i’s. None
are particularly challenging, and it is beyond our scope to explore them.

This approach has much to recommend it, and has been used by Bjornson
and Carriero in their recent work. Since all communication is through tuple
space, it will work anywhere the underlying tuple space implementation works
— there is no implicit communication through a shared memory. Conversely,
there are no possible hidden communication paths between the creating and
execution environments. The implementer retains complete control over what
in the environment will be passed, and over the processes to be used to provide
execution environments.

There remain, however, questions of semantics.

What Should Be Transferred?

Consider the Linda program in Figure 1. Which of the eval operations do we
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1 int x1;

2 int x2;

3 static int s;

4

5 LindaMain()

6 { int l;

7

8 eval(l);

9 eval(s);

10 eval(x1);

11 eval(f());

12 }
13

14 f()

15 { return(x2); }

Figure 1: Examples of the eval Operation

wish to support? Ideally, all of them — and, indeed, the fork() and thread
approaches would allow us to. But other approaches have problems.

The operations of lines 8 through 11 in Figure 1 successively require larger
and more comprehensive definitions of what should be transferred between the
creating and execution environment. Transferring more may make things sim-
pler for the programmer, but in general will be more difficult to implement
efficiently. We will consider the various operations on a case by case basis,
attempting to find compromise semantics that are clear and useful while re-
maining implementable.

• Line 8 requires the value of an integer stored in a local variable be trans-
ferred. The actual value in this case is small, a single integer, but the
same principles would also have to be applied to “large” values. If l were
instead an array of 1000 integers, the entire array would, in general, have
to be transferred.

Clearly any useful implementation must support the ability to use some
kind of variables in fields of eval operations; the ability to create new
processes to evaluate constants seems rather pointless! Local variables are
at least as easy to support as global ones, as we will see, so we might as well
consider the ability to use local variables in eval’s a basic requirement.

• Lines 9 and 10 refer, respectively, to static and globally-known variables.
We could transfer them as well. However, the utility of doing so is less
than for local variables. Static and global variables are used for two main
purposes in C programs. To provide implicit communication among a set
of procedures (whether within a single file or across an entire program),
and to retain state across successive calls to a procedure. Transferring the
values of such variables serves the first of these purposes only partially,
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and the second purpose not at all. Except in a thread implementation,
communication can only be one-way. From the creating to the execution
environment. If programmers try to use static and global variables in the
usual ways, the lack of communication back to the creating environment
is likely to cause obscure bugs.

We don’t argue that there is any fundamental difference between local
and static or global variables here; but in practice there is a difference in
the way they are perceived and used by the programmer. In C, a variable
local to a procedure can be changed only by code lexically within that
procedure5, and the value is meaningful only as long as the procedure
remains in execution. Neither of these are properties of static or global
variables. As a result, it seems reasonable to distinguish between local
variables on the one hand and static or global variables on the other.

• So far, we have dealt with situations in which a static analysis of an
eval expression is sufficient to determine the entire context potentially
required to evaluate it. Line 11 poses a more difficult problem: The eval
expression refers only to f, but the evaluation of f requires access to a
global (equivalently, static) variable, x2. This example makes it clear
that providing access to static or global variables explicitly referred to in
an eval expression is merely the first step. It is difficult to rationalize
a design in which the values of global or static variables are available
within eval expressions — but only within the expression themselves,
not in procedures called from them. In C, it is possible to replace any
expression by a call to a function containing the same code, with perhaps
trivial re-writing to allow modified variables to be passed by reference.
Conversely, any function call can be replaced by the code for the function,
again with trivial re-writing to avoid name clashes. If we chose to support
the examples of the previous item, but not examples like this one, both of
these properties would be lost for functions containing references to static
or global variables not otherwise referred to in the eval statement. This
would mean that replacing a macro definition by a call to a real function
could break working code.

Given the nature of C it is impossible, except in unusual circumstances,
to determine a restricted set of procedures, and thus global or static vari-
ables, accessible as x2 is here via a procedure call chain starting at the
eval expression. Hence choosing to support eval expressions such as
the call to f that we have here would require copying the entire global
and static data space of the executing program. Also, it means that it
is impossible for the compiler to even determine that code is vulnerable
to the kind of bugs we discussed above. On the other hand, it can easily
diagnose references to static or global variables within eval’s.

Note that, because C does not support nested procedures, local variables
5Unless its address is passed to another procedure.
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behave very differently from statics and globals: Locals in f are not a
problem, since they can receive no value from the environment at line 11.
Further, f cannot refer to any of the locals, such as l, that are in scope
at line 11.

A Semantics For eval

Synthesizing these ideas, we obtain the following semantics:

• The values of all local variables in scope at the point of the eval operation
are copied to the execution environment.

• The values of static and global variables are taken exclusively from the
execution environment. No value is passed for them from the creating
environment. While the values of static and global variables are not
passed between the environments, it is guaranteed that the same set of
such variables is available in both environments.

• The creating and execution environments execute the same code. Further,
at some point, they start out with the same initialization code. That is,
the same initializers for static and global variables were executed in both
environments at some point. If there is any code within either environ-
ment that can modify those initialized variables, it is unpredictable how
many times that code has been executed since the initialization was done.

Note that function names in C are static or global read-only variables,
initialized to point to the entry points of the functions they name. The
rules of the previous paragraph ensure that the functions they name are
always the same in both environments.

• In no case is any information passed back from the execution environment
to the creating environment, except by explicit tuple space operations.

Environments As Stack Frames

If we accept the semantics of the previous section, another implementation al-
ternative exists. Rather than passing the individual variables actually used in
the environment, we can copy the entire stack frame. In many cases, the differ-
ence in the amount of data passed will be small. Further, on many hardware
architectures we can pass the saved program counter as part of the stack frame.
Where this can be done, there is no need to generate a function to evaluate the
tuple — it can be done “in place.” In sketch, such an implementation translates

eval(tuple);

into



290 The Journal of C Language Translation – March, 1990

if (SendEval())
{ out(tuple);

Idle();
}

The functions SendEval and Idle, which are similar to setjmp and longjmp,
constitute the control code of the evaluator. SendEval packs up its caller’s
stack frame, including the saved program counter, sends it off in a tuple of the
appropriate form, and returns 0. In the creating environment, this return value
causes the if statement to skip the out.

A server program in its idle loop retrieves a tuple sent by SendEval, pushes
the contained stack frame, and simulates a return of 1. In the resulting exe-
cution environment, the if statement proceeds to evaluate the out and then
calls Idle. Idle clears both the call to itself and the frame pushed by SendEval
from the stack and jumps to the idle loop.

Passing Pointers

The implementation we have just outlined has one significant limitation. If
some local variable is a pointer, the value transferred will be an address that
will not generally be meaningful in the execution environment. If we had used
explicit environment passing in Linda-C, the generated out would have ei-
ther converted the pointer to an array reference and transferred the array —
if the pointer had been declared varying — or produced an error message.
A complete stack frame implementation should check for pointers and handle
them specially, perhaps by falling back to explicit environment passing.6 The
ability to fall back in this way would in any case be useful as an optimization
when the compiler can determine that the stack frame is large while the actual
environment required is small.

Conclusions

We can’t claim to be completely satisfied with the semantics we have defined for
eval. Given the nature of C, however, we feel that no completely satisfactory
solution can exist. eval is just too different from the other constructs in the
language. Ultimately, only experience with actual programs will determine
how useful the different possible interpretations are, and up to this point that
experience is limited.

6Depending on the hardware, it may be possible to copy the data onto the stack, extending
the stack frame, and change the pointer transferred so that it points to the new copy. This
limits the special-case code necessary.
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Summing Up

In this series, we’ve examined the Linda programming model and some of the
alternatives available for embedding it into C. We’ve also had a fairly detailed
look at one implementation.

Linda has proved to be a useful tool in a variety of problem domains, and
is beginning to move from the laboratory into the work of practical computing.
There are many issues we have not been able to explore, ranging from experience
to programming techniques and beyond. The interested reader may wish to
examine the papers we’ve referenced along the way.

Availability

Our implementation of Linda-C for VMS VAXes has been made available to
several laboratories on an experimental basis. We are developing a commercial
version for initial release early this year. Later versions will support different
hardware, as well as judicious additions to the language as experience dictates.

Jerrold Leichter recently received his doctorate from the Yale University De-
partment of Computer Science. His dissertation includes an implementation
of Linda for shared-memory and networked VAXes. He was a long-time em-
ployee of Digital Equipment Corporation, whose Graduate Engineering Educa-
tion Program supported him during some of his work. He may be reached elec-
tronically as leichter-jerry@cs.yale.edu; at 24 Old Orchard Lane, Stam-
ford CT 06903; or by phoning (203) 329 0921.
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38. Complex and VLAs Revisited

Tom MacDonald
Cray Research, Inc.
1345 Northland Drive

Mendota Heights, MN 55120

Abstract

In previous articles I have written about numerical deficiencies in C, and
have proposed solutions for some of these deficiencies. Two of the pro-
posals were to add complex and variable length array types. In light of
comments I have since received, I wish to revisit these topics. I’ll discuss
changes to the original design along with some alternate viewpoints of
those who communicated their opinions to me.

Introduction

In the March 1989 issue of The Journal, I wrote an article, C Language and
Numerical Programming, that contained a discussion of some deficiencies in
traditional C and ANSI C in supporting the requirements of numerical and
scientific programmers. Subsequent articles contained proposals for two of the
deficiencies mentioned: complex arithmetic and Variable Length Arrays (VLA).
These proposals were based on plans by Cray Research to extend their Stan-
dard C implementation in these directions. Since these articles were written the
topics have been debated by numerous readers, by the Numerical C Extensions
Group (NCEG), and the actual implementors. This paper describes some of
the differences between the original design and the actual implementation. I
will also mention other proposals that have been made.

Complex Arithmetic

The original article titled Adding Complex Arithmetic to C appeared in the
June 1989 issue of The Journal. The issues to be reviewed here are: the new
keyword, the new arithmetic type, the new operator, and the usual arithmetic
conversions.
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Complex Types

The original article proposed a new header file <complex.h> which contained
a typedef something like the following:

typedef _Complex complex

However, in the actual implementation the typedef was replaced with:

#define complex _Complex

The primary motivation for this change was due to two concerns raised
at NCEG meetings. The first concern was that three different complex types
should be accommodated: float complex, double complex, and long double
complex.

The second concern was that a declaration containing the keyword complex
should always be accompanied by either float, double, or long double, be-
cause then there is less chance for ambiguity about the underlying floating-point
type of the real and imaginary parts. Making complex a macro name instead
of a typedef name provides the needed flexibility for adding additional type-
specifiers in a declaration.

#include <complex.h>

complex cx1; /* error */
float complex cx2;
double complex cx3;
long double complex cx4;

The initial Cray Research implementation only supports the types float
complex and double complex.

Complex Constants and the Complex Operator

A new constant was proposed in the original article. It had the form:

2.1i

which expands upon the existing suffix notation for constants to create a new
complex constant. This complex constant specifies that the imaginary part is
2.1 and the real part is zero (0). Since the real part is always zero in a complex
constant this is viewed by some as a deficiency. However, in my opinion it is
the very nature of the mathematics involved in describing the complex plane
that complex numbers are mapped onto. Since it takes two numeric values to
represent one complex number, I believe that an expression such as:

2.3 + 3.4i
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is a natural way of representing a complex number.
A new operator was proposed to create a complex number out of two

floating-point values. The following is an excerpt from the original article:

The complex operator creates a complex number out of two
floating-point values. Several different approaches are possible:

cmplx(real, imag) /* new keyword */
<real, imag> /* grouping */
real %% imag /* infix */

New keywords are, again, controversial because of the potential
to break existing code. Both the grouping and infix approach can
be made to work.

However, I received a comment from Walter Bright at Zortech that a new
complex operator was not necessary because the following:

real + imag * 1.0i

converts the two floating-point numbers, real and imag into a complex number.
This eliminates the need for a new keyword or a new operator. To make this
idea as easy as possible to use, an extension to the complex constants makes 1i
equivalent to 1.0i. Thank you Walter.

Usual Arithmetic Conversions

The original article proposed adding the following:

If either operand has type complex, then the other operand is
converted to complex.

to the usual arithmetic conversions. However, several people commented that
this simple rule allows precision to be lost for expressions like the following:

#include <complex.h>

long double x;
float complex cx;

cx + x /* loses precision */

Losing precision is not in the best interest of numerical programmers. The
usual arithmetic conversions need to be modified to preserve both precision and
value when complex and floating types are converted. Therefore, the following
is proposed as a replacement for §3.2.1.5 Usual arithmetic conversions.
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3.2.1.5 Usual arithmetic conversions

Many binary operators that have operands of arithmetic types cause
implicit conversions of one or both operands. The purpose of the
conversions is to yield a common type for the two operands, which
is also the type of the result. These implicit conversions of the
operands are called the usual arithmetic conversions.

The conversions shall preserve the original magnitude and pre-
cision of both operands, except that precision may be lost when an
integral type is converted to a floating type. This will occur if the
magnitude of the integer is too great for the mantissa of the floating
type to represent it exactly.

The result type is determined by three type attributes of the
operands, called the dimension, the format, and the length. The
dimension attribute specifies whether the values of the type can
be represented on a one-dimensional line, i.e., real numbers, or on a
two-dimensional plane, i.e., complex numbers. The format attribute
specifies whether the values of the type are represented with an
exponent part, i.e., floating numbers, or without an exponent part,
i.e., integral numbers. The length attribute specifies how many bits
are used to represent the absolute values of the type. The values
for each of these attributes are ranked, from highest to lowest, as
shown below. For example, complex ranks higher than real for the
dimension attribute.

Dimension complex, real
Format Floating, Integral
floating length long double, double, float
integral length unsigned long, signed long,

unsigned int, signed int

The rules for the usual arithmetic conversions are:

1. The dimension of the result type is that of the higher ranking
dimension of the operands.

2. The format of the result type is that of the higher ranking
format of the operands.

3. If the format of the result type is floating then the length of
the result type is that of the higher ranking floating length
of the operands; else the format of the result type is integral,
and the integral promotions are performed on both operands.
The length of the result type is that of the higher ranking
integral length of the promoted operands, with one exception.
The exception is that if one operand has type signed long
and the other has type unsigned int and if a signed long
cannot represent all the values of an unsigned int, the length
of the result is unsigned long.



296 The Journal of C Language Translation – March, 1990

4. After the result type is determined and before the binary op-
eration is performed, any operand that does not already have
the same type as the result type is promoted to the result type.

As long as the result of the binary operation is mathematically
equivalent to the result as if the promotions had been done, an
implementation is not required to actually promote the operands.

Mathematical Equivalency

The notion of mathematical equivalency is applied to the as if rule to permit
optimizations when one operand of a binary operator has a complex type and
the other operand has a floating type. Consider the following example:

double x;
double complex cx;

x + cx; /* convert x to double complex? */

From an optimization point of view it is more efficient to add only the real
part of cx with x. However, implementations supporting IEEE arithmetic have
both a positive and negative zero to worry about. If x is converted to double
complex then the imaginary part becomes zero. The question that arises is,
“Which zero?” Since adding positive zero to certain operands yields different
results than adding negative zero, there is a concern.

-0 + +0 == +0
-0 + -0 == -0

This example shows that the age old axiom that x + 0 == x for every x
is no longer true from an optimization point of view. Certainly there is no
basis in mathematics for signed zeros that can be used for guidance. This is
another reason for explicitly stating that in this case the as if rule applies to
the mathematical concept of zero and the conversion from real to complex does
not dictate which kind of zero is used.

Variable Length Arrays

Several sections of the Variable Length Arrays article that appeared in the De-
cember 1989 issue of The Journal were controversial and generated interesting
discussions. Since this topic will receive additional time at the March 1990
NCEG meeting in New York City, there will certainly be more to report in the
future.

One controversy surrounds the independent order of parameter names in
function definitions containing a prototype. This independent ordering allows
VLA function parameters in prototypes to be declared in any order. The fol-
lowing is an excerpt from that article:
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All of the examples used so far have declared the parameter n
before the VLA parameter. This is an undesirable restriction to
place on programmers since they currently do not need to worry
about the order in which formal parameters are specified. Consider
the following prototype declaration and old style function definition:

Example 5

/* prototype for an old style definition */
void f(double a[*][*], int n);

void f(a, n)
int n;
double a[n][n];

{
/* . . . */

}

The order in which the names are specified in the parameter list
is independent of the order of the declarations for those parame-
ters. The accompanying prototype declaration is compatible with
the definition. For this reason it seems appropriate to allow a similar
prototype definition such as

Example 6

void f(double a[n][n], int n) {

/* . . . */

}

to exist with the same meaning. That is, the order in which the
parameters are specified remains unimportant.

The controversy surrounds the burden placed on the implementation, and
how to specify such a feature in a future standard.

The first implementation burden is that the compiler must now be able
to parse a VLA declaration without knowing the types of variables found in
between the [] tokens that specify the length of the array. The second imple-
mentation burden is that the compiler must now remember the token sequence
that constitutes the entire declaration of the VLA parameter and parse it again
when the ) token that terminates the function prototype is detected. I certainly
agree that C compilers have never in the past had to worry about typeless pars-
ing nor rescanning an arbitrary number of tokens.
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The first problem was solved in the Cray Research implementation by in-
troducing the concept of typeless parsing. This technique permits the parsing
of a VLA declaration such as:

void f(double a[xyz.m1 & n + *p >> count])

Since all identifiers in between the [] tokens (xyz, m1, n, p, count) might
appear in subsequent parameter declarations, there is no way to detect that the
types of operands are incompatible with their operators. Therefore, a universal
type is assigned to every operand and operator found. The universal type is
compatible with every operator. This permits syntax errors such as:

void f(double a[n +])

to be detected but semantic checking is delayed.
The second problem can be solved in several ways but requires a rescan of

an arbitrary number of tokens. This can be accomplished by scanning just the
tokens (Cray Research approach), or by scanning the original source characters
again. Neither is trivial but neither is insurmountable. The second pass over the
tokens exposes any semantic problems with the types of operands and operators.
Since the names of all parameters in the prototype are now known, they can
be used to resolve the VLA expression. Since VLA parameters are incomplete
types until the ) token that terminates the function prototype is parsed, VLA
parameters cannot be used in certain contexts. This avoids ambiguities in
pathological cases such as:

void f(double a[n][sizeof(b[0])],
double b[n][sizeof(a[0])])

This is consistent with the current requirement that the operand of sizeof
cannot have an incomplete type.

One reader commented that this additional compiler machinery is unneces-
sary because the old style function definition already permits parameter names
to be specified in an arbitrary order. However, the ANSI standard specifies,
“... the use of function definitions with separate parameter identifier and dec-
laration lists (not prototype-format parameter type and identifier declarators)
is an obsolescent feature.” Perhaps a future committee will decide that the old
style function definition still provides a useful service after all.

Dennis Ritchie favors an entirely different approach. His approach involves
the introduction of a descriptor that contains all of the information about the
array bounds. For example:

void f(double desc[?][?]) /* tentative syntax */

declares a parameter desc that is a descriptor with three pieces of information:
an address, length of first dimension, and length of second dimension. Dennis
is working on a full specification of this approach and plans to present this idea
at the March meeting of the NCEG.
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The sizeof Operator

When the sizeof operator has a VLA operand, the expression is no longer a
constant expression. This is a fundamental change to the language. As someone
who teaches C seminars, Rex Jaeschke has urged caution in this area. Teaching
that sizeof generates a compile-time integer constant expression except when
it doesn’t, will, likely add considerable confusion. He suggests that since you
can always compute a VLA’s size from the dimension expressions used in its
definition, perhaps sizeof(VLA) should be disallowed on the first pass. It can
always be added later on.

I feel that the semantics of sizeof is not that severely affected because the
size of a VLA is still invariant as long as it is visible. This preserves the current
behavior with respect to malloc, which is one of the primary uses of sizeof.
Our implementation supports the use of sizeof with VLAs as operands.

Variable Length Objects

A Variable Length Object (VLO) is a structure or union that contains a VLA
member. The original article exposed a major weakness of a VLO type: it
cannot be passed to a function. For that matter, a pointer to a VLO cannot be
passed either. For these reasons, several people expressed reservations about
implementing this feature. As a result, we did not add it. We may, however, if
an acceptable solution is found and the merits of this feature are significant.

Conclusions

The position taken in my original article was motivated by the needs of pro-
grammers wanting to write numerical and scientific programs in C and not
necessarily the needs of compiler writers. However, C compilers exist on many
small computers, so features that might unduly burden these implementations
should be scrutinized.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is Cray Research Inc’s representative to X3J11 and a major
contributor to the floating-point enhancements made by the ANSI standard.
He specializes in the areas of floating-point, vector, array, and parallel process-
ing with C language and can be reached at (612) 681-5818, tam@cray.com, or
uunet!cray!tam.
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Abstract

Microsoft has incorporated a variety of attributes, keywords, and compiler
invocation switches to aid in developing applications with components
written in multiple languages. These conventions solve most, but not all,
interfacing requirements between languages such as C and FORTRAN.
This article describes these conventions and limitations, as well as future
implications for possible extensions to C and FORTRAN.

Introduction

Earlier in this century, each European country had its own distinctly sized
railroad lines. This required people and goods to be transferred to a new train
at each border. Not so coincidentally, it also made military attack by rail
nearly impossible. Modern times now require the rails to be of uniform size
and separation to allow for efficient trade.

Procedure calling conventions within programming languages (not so coin-
cidentally, I sometimes think) provide similar barriers to transferring flow of
control and data between program components written in different languages.
Unfortunately, we have not yet gotten to the point where a single procedure
calling and argument passing mechanism is accepted for all programming lan-
guages. Nevertheless, plenty of applications wish to utilize existing libraries or
components that have been written in another language, so various implemen-
tations have come up with ways to bridge the gap.

At Microsoft, we decided to solve the problem by introducing keywords
and type attributes that describe most of the possible procedure calling and
argument passing conventions. This has been a fairly successful strategy, with
its only shortcomings in areas where the languages do not have similar data
types. For the purposes of this paper, I will restrict my description to C and
FORTRAN, although Pascal and BASIC are also supported at an equal level.

In this paper, I am using the term calling convention as a global term cover-
ing all the areas of procedure naming requirement, procedure calling method, ar-
gument passing order, argument passing method, and value-returning method.

300



Interfacing Microsoft C and FORTRAN – Allison 301

Defining the Problem

Before getting to the solution, let’s try to fully describe the problem. Form
tends to follow function and C and FORTRAN specify the function of proce-
dure names and argument lists explicitly. Most implementations of a language
have settled on many of the same conventions, and Microsoft is no exception.
Fortunately, the Microsoft implementation uses a stack-based calling convention
for FORTRAN, so interfacing is simpler.

In C, the external name of a function is an underscore, followed by the
name the user-specified, case sensitive, truncated to 31 characters. The user-
specified name must consist of an alphabetic character, followed by alphabetic
characters, numbers, or underscores. In FORTRAN, procedure names are all
upper case and limited to six characters in length (although in the latest release
this was increased to thirty-one characters). The first character must be an
alphabetic character or dollar sign, followed by alphabetic characters, numbers,
underscores, or dollar signs.

In C, arguments are passed by value and placed on the stack in reverse order
from their specification. In FORTRAN, arguments are passed by reference and
placed on the stack in the order declared. FORTRAN character strings are
passed by address, with the length of the string placed in a global vector.

In both C and FORTRAN, a function returns its value in register(s) if the
value is four bytes or less in size and not a floating point value. In C, floating
point values are returned in a global variable, and objects larger than four bytes
in size are allocated a location, whose address is returned in one or two registers.
In FORTRAN, floating point values and values whose size is larger than four
bytes are stored into a location allocated by the calling routine whose address
is passed as a hidden argument. Character values have their length returned in
the global vector for character arguments. In C, the calling routine adjusts the
stack frame. In FORTRAN the called routine adjusts the stack frame.

New Keywords and Type Attributes

To provide a generalized calling convention that allows mixed-language pro-
grams in C and FORTRAN, with calls in each direction, one could try to whit-
tle down the defined interface to areas of commonality. Unfortunately, there
aren’t any in the area of procedure naming convention and procedure calling
convention. There are only a few areas in terms of argument passing and they
aren’t practical (you can’t require C programmers to reverse the arguments
and always pass by reference). So, Microsoft implemented the reasonable parts
of both calling conventions in both languages and enabled the programmer
to switch between the calling conventions via keywords, type attributes, and
compiler invocation switches.

In C, Microsoft supports the fortran keyword in extern statements. This
indicates that the prototype represents a FORTRAN function and should be
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called using the FORTRAN procedure naming, procedure calling, argument
ordering, and value returning conventions. The code must explicitly pass the
address of the arguments, if desired. The function name is not implicitly trun-
cated by the compiler (except to 31 characters). An example of a declaration
might be:

double fortran sum(double *vector, int len);

In FORTRAN, the closest similar functionality is to declare a name to be
an external function via the EXTERNAL statement, and use the type attribute
extensions ([C], for example) to declare it as a procedure to be called using the
C calling convention. For example:

DOUBLE PRECISION SUM[C]
EXTERNAL SUM

This indicates that the procedure is to be called using the C procedure
naming (well, the name will be _sum since the attribute is defined to make
everything lower-case as a reasonable approximation of typical C coding style),
procedure calling, argument ordering, argument passing (by value), and value
returning conventions. However, this is a limited method, since the name might
not be all in lower case, and not all of the arguments may be intended to be
passed by value.

To support a more generalized calling scheme, more keywords and type
attributes were added. In Microsoft FORTRAN, there is an equivalent of the
C function prototype statement, called the INTERFACE TO block. It allows the
programmer to define the prototype of a procedure via a stub-like mechanism.
For instance, in C, a prototype might be declared as:

int foo(double d, int i);

In Microsoft FORTRAN, a similar function would be prototyped as:

INTERFACE TO FUNCTION FOO(D,I)
INTEGER FOO
DOUBLE PRECISION D
INTEGER I
END

In Microsoft FORTRAN, these can only occur outside of other procedures.
This allows for detailed description of the procedure name and each of the
arguments via type attributes. For instance, in the EXTERNAL statement above,
if the function had in fact been named _Sum, and it had two arguments, one
passed by value and another by reference, then the INTERFACE TO block could
be specified as:
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INTERFACE TO FUNCTION SUM(VECTOR, LEN)
DOUBLE PRECISION SUM[C, VALUE:’_Sum’]
DOUBLE PRECISION VECTOR[REFERENCE]
INTEGER LEN[VALUE]
END

In Microsoft FORTRAN, the VALUE type attribute can be used on external
identifiers to precisely specify the desired external spelling of the identifier.
The C attribute is still desirable to specify the other attributes of the C calling
convention. The REFERENCE attribute specifies that calls to the function should
pass this argument by reference. The VALUE attribute is not required in this
example, due to the existence of the C attribute on the function, but is provided
to introduce it. There is also a VARYING function type attribute which can be
used in conjunction with the C type attribute and specifies that a varying
number of arguments are allowed when calling the function.

Of course, keywords and type attributes require a lot of tweaking of the code
by hand. Most cases are pretty straightforward and could be solved by using
some form of switch during the invocation of the compiler. The C compiler
supports the switch /Gc to indicate that the FORTRAN calling convention
should be observed. In both compilers the significant number of characters on
external names can be set with the /H switch. Note that when compiling a C
module with /Gc, the default calling method for all functions in that module
is that for FORTRAN. If one of the functions defined or declared inside that
module really needs to use the C conventions, its declarations must include the
cdecl keyword to override the default.

Some Problem Areas

Using the various keywords, type attributes, or compiler invocation switches al-
lows most arguments to be passed across languages, assuming that a correspond-
ing type exists in both languages. Unfortunately, FORTRAN’s COMPLEX and
CHARACTER data types do not have a corresponding type in C. The CHARACTER
data type can be worked around by cautiously passing it to C as a character
array of known length, but issues like null-terminated strings must be watched
carefully. Similarly, COMPLEX can be worked around by using a structure in
C, but the solution is not entirely satisfactory. Microsoft FORTRAN supports
structures in its latest release, which relieves the reverse problem of user-defined
types in C. Also, multiply dimensioned arrays in FORTRAN must be declared
as pointers to the scalar object in C, not pointer-to-pointer-etc., which is mod-
erately inconvenient. At the moment, there are no satisfactory solutions to
these problems on the horizon.

However, there are two significant developments expected in the future
which could substantially change current approaches to inter-language call-
ing between C and FORTRAN. First, is the Numerical C Extensions Group
(NCEG) work currently in progress. One area which seems to have a very good
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chance of appearing in the final proposal from NCEG is a complex data type for
C. Also, some interest has been displayed in making arrays “first-class objects,”
but those efforts are less likely to result in a final proposal. Second, Fortran 8X
is winding its way through the standards process (it is finishing its second pub-
lic review), and once implementations appear it will be extremely difficult to
pass arrays between C and FORTRAN, since the new array type in Fortran 8X
is strictly oriented around a descriptor whose internal representation will ob-
viously be implementation-specific. There is a pointer type in Fortran 8X as
well, but it is also oriented around a descriptor (although the descriptor may
not be required for pointers to scalar objects). However, none of these areas is
a serious issue for at least two years.

As it happens, FORTRAN COMMON blocks present no problem: you just
declare an external structure in C that has the same name and mapping as the
COMMON block.

Conclusion

At Microsoft, we solved the problem of inter-language calling conventions by
implementing as much as possible of each calling convention in each language
and then providing various mechanisms for activating the various conventions.
This limits the problem to those areas where there isn’t any decent congruence
between the languages, and the fundamental problem of requiring human inter-
vention. Overall, though, it has been a very effective strategy and people have
worked successfully within the boundaries of the solution. Unfortunately, fu-
ture definitions of C and FORTRAN will probably both simplify and complicate
inter-language calling conventions.

Bob Allison works at Microsoft as Development Manager, FORTRAN. He is
also their representative to ANSI X3J3 (the Fortran 8X standards committee)
and to the Numerical C Extensions Group. Bob may be contacted at (206)
882-8080 or uunet!microsoft!bobal.

∞



40. Pragmania

Rex Jaeschke

Intel’s iC-86/286 C Compiler Controls

The information in this section is reprinted with permission of Intel Corpora-
tion. This material is extracted from their iC-86/286 Compiler User’s Guide,
c© Intel, 1989.

The exact operation of the compiler may be specified by compiler controls
which specify such things as the model of segmentation used by the compiler,
the type and format of listings produced by the compiler, the destination of
the object file, composition of the object module, etc. Compiler controls may
be specified as part of the command invoking the compiler or within #pragma
preprocessing directives.

There are two types of compiler controls: primary and general. Primary
controls may be specified in either the command line or in a #pragma prepro-
cessing directive. However, the only thing which may precede primary #pragma
directives in a source file are other preprocessing directives and white space,
including comments. Primary controls may not be changed within a module.
General controls may be specified either in the command line or via a #pragma
preprocessing directive. A #pragma directive for a general control may be lo-
cated anywhere within a source module and may be changed freely within a
source module.

A primary compiler control specified within the command line has prece-
dence over the same control specified by a #pragma preprocessing directive. If
the compiler finds a primary control within a pragma that has been specified
on the command line a warning is issued.

A primary control duplicated on the command line causes a fatal error and
results in termination of the compilation.

The following apply to compiler controls:

• Most compiler controls have a two-character abbreviation which may be
substituted for the full control name.

• Most compiler controls have a default that reflects the most frequently
used value. Therefore, although there are many controls, in most cases
few are actually needed to compile a module.

• Arguments are required by some controls.

305



306 The Journal of C Language Translation – March, 1990

• Every control name itself in all forms is case-insensitive. Control argu-
ments may be case-sensitive depending on the host environment.

The following table summarizes the compiler controls. As shown, some
controls have an optional no prefix.

Intel’s iC-86/286 Compiler Controls
Control Name Abbreviation Control Type Affected File

noalign noal general object
nocode noco general listing
compact cp primary object
nocond nocd general listing
nodebug nodb primary object
diagnostic dn primary listing
noextend noex general –
fixedparams fp general object
interrupt in general object
large la primary object
nolist noli general listing
nolistexpand nole general listing
nolistinclude nolc general listing
medium md primary object
mod86 – primary object
mod186 – primary object
nomod287 – primary object
modulename mn primary object
noobject nooj primary object
optimize ot primary object
pagelength pl primary listing
pagewidth pw primary listing
noprint nopr primary listing
ram – primary object
rom – primary object
nosearchinclude nosi general –
nosignedchar nosc primary object
small sm primary object
subsys – primary object
nosymbols nosb primary listing
tabwidth tw primary listing
title tt primary listing
notype noty primary object
varparams vp general object
noxref noxr primary listing
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A brief description of each control follows. Unless otherwise shown, the
control takes no arguments.

noalign – Aligns structures on a specified boundary of 1, 2, or 4 bytes.

#pragma align [(structure tag[=size][,...])]
#pragma noalign [(structure tag[,...])]

nocode – Generates or suppresses pseudo-assembly language code in listing file.

compact – Specifies the compact segmentation memory model.

nocond – Includes or suppresses uncompiled conditional code in the listing file.

nodebug – Includes or suppresses debug information in the object file.

diagnostic – Specifies the level of diagnostic messages.

#pragma diagnostic (level)

noextend – Recognizes extended keywords from previous versions of C com-
pilers from Intel.

fixedparams – Specifies fixed parameter list calling convention.

#pragma fixedparams [(function [,...])]

interrupt – Specifies the function is an interrupt handler.

#pragma interrupt [(function[=n][,...])]

In the iC-86 compiler, the argument n can be used to associate the handler
with an interrupt number from 0–255.

large – Specifies the large segmentation memory model.

nolist – Includes or suppresses source text in the listing file.

nolistexpand – Includes or suppresses macro expansion in the listing file.

nolistinclude – Includes or suppresses header contents in the listing file.

medium – Specifies the medium segmentation memory model.

mod86 – Specifies the 8086/8088 instruction set.

mod186 – Specifies the 80186/80188 instruction set.
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nomod287 – Generates code for an 8087 or 80287 numerics coprocessor. In-
cludes or suppresses FWAIT instructions.

modulename – Names the object module.

#pragma modulename (name)

noobject – Generates and names, or suppresses object file.

#pragma object [(filename)]

optimize – Specifies the level (0, 1, 2, or 3) of optimization.

#pragma optimize (level)

pagelength – Specifies the lines per page in the listing file.

#pragma pagelength (lines)

pagewidth – Specifies the line length in the listing file.

#pragma pagewidth (chars)

noprint – Generates or suppresses the listing file.

#pragma print [(filename)]

ram/rom – Specifies the placement of constants in the object module.

nosearchinclude – Specifies the search paths for headers.

#pragma searchinclude (pathprefix [,...])

nosignedchar – sign-extends or zero-extends chars when promoted.

small – Specifies the small segmentation memory model.

subsys – Reads a subsystem specification.

nosymbols – Includes or suppresses the identifier list in the listing file.

tabwidth – Specifies the characters per tab stop in the listing file.

#pragma tabwidth (width)
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title – Specifies the listing file page title.

#pragma title ("string")

notype – Includes or suppresses debug information in the object file.

varparams – Specifies variable parameter list calling convention.

#pragma varparams [(function [,...])]

noxref – Includes or suppresses symbol table cross-reference in the listing file.

Apple’s MPW 3.0 Compiler

The following material is extracted from Apple’s manual Macintosh Program-
mer’s Workshop 3.0 C Reference, c© Apple, 1988.

Segmentation

Generated code can be placed in named code segments instead of the default
segment Main.

#pragma segment segment-name

Since segment names may contain spaces, leading and trailing spaces around
the segment name are significant except for the single space following the token
segment.

Precompiled Headers

Two pragmas are provided to save and restore precompiled versions of headers.
A precompiled header allows for more efficient processing and is stored in a disk
file in a compressed format.

#pragma dump "filename"
#pragma load "filename"

Unused Identifiers

Normally, unused identifiers are flagged by the compiler. Such warnings can be
suppressed using the following directive.

#pragma unused ( identifier [, identifier ,...])

Since only local variables and formal parameters are flagged, this directive must
appear inside a function definition.

∞



41. Cray C: C in a 64-bit World

Tom MacDonald
Cray Research, Inc.
1345 Northland Drive

Mendota Heights, MN 55120

Abstract

The C implementation on Cray Research supercomputers exposes many
of the erroneous portability assumptions that exist in many C applica-
tions. Most of these non-portable assumptions reflect the behavior of
many existing implementations. A description of some aspects of the
Cray Research C implementation is given along with a discussion of how
they affect some non-portable applications.

Introduction

When someone plans to port a C application to a Cray supercomputer, his
initial attitude typically is, “We have ported this application to several different
computers and all of the porting problems have been solved. Our standard
porting package allows us to get it working in x weeks.” However, I always
fear the worst because a truly portable application is a rare find. The same
porting problems are encountered over and over again. These problems are
never easy to find and yet I know they are there. When a porting problem
is finally tracked down and identified, there is a good chance it is one of the
non-portable constructs that I will describe in this article.

c-world

The inhabitants of c-world are called C programmers. Many C programmers
live on Main Street in c-world which consists of a byte-addressable machine
with two’s-complement arithmetic and a linear address space. It also has 8-bit
chars, 16-bit shorts, and 32-bit longs. All pointers have exactly the same
representation, and characters are represented in ASCII.

C programmers have heard that some implementations only support six
character external names, but these implementations are considered to be de-
ficient. Many choose to ignore the REF/DEF model for external names that
the ANSI standard imposes on portability. When a C programmer leaves Main
Street his environment often changes, and drastically.
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The Cray Research Implementation

Before describing the most common non-portable constructs encountered while
porting codes to the Cray Research implementation of C, I will explain some-
thing about that implementation.

Currently, all of Cray Research’s computers are 64-bit word-addressable
machines. They have three different sizes of registers: Address (A), Scalar (S),
and Vector (V) registers. The S registers are 64 bits wide, and the A registers
are 24 bits wide on older machines and 32 bits wide on newer machines. The
V registers have 64 elements, each 64 bits wide. However, V registers are not
really relevant in this article. The following is the data mapping for various
types:

Cray C Type Representations
Type Precision Register

char 8 bits S
short 24/32 bits A
int 64 bits S
long 64 bits S
float 64 bits S
double 64 bits S
long double 128 bits 2 S
byte pointers 64 bits S
word pointers 24/32 bits A
aggregates N/A V

One important aspect of the short type and word pointers is that even
though there are only 24/32 bits of precision in A registers, they still occupy
a full 64-bit word of memory. Therefore, the following expression evaluates to
true with the Cray C implementation:

sizeof(short) == sizeof(long) && SHRT_MAX < LONG_MAX

This means that even though the short type and word pointers are mapped
onto the A registers they are not packed in memory. For these types, all traffic
to and from memory is through an A register, which leaves the bits in the
upper half of the word unused. The non-short integral types (including char),
floating types, and byte pointers travel to and from memory through S registers,
thus their upper bits are not affected by register length.

Byte Pointers

The type array of char is packed in memory with eight bytes per 64-bit word.
This means there are no unused bits. Since the char type is packed, a byte
pointer must represent the byte in the word the char is stored in. The infor-
mation contained in a byte pointer represents both the word address and byte
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offset. This uniquely identifies all possible byte addresses. A 64-bit S register
is used to hold the values of byte pointers. The format of the byte pointer
has the byte offset (B/O) stored in the left most (high) 3 bits and the word
address stored in the right most 24/32 bits, with unused bits in the middle.
The following figure depicts how this would look in an S register.

byte offset unused word address

Pointer arithmetic on byte pointers is done by performing the following
instructions:

• Left circular shift the B/O around to the lower part of the word.

• Perform the arithmetic.

• Right circular shift the B/O back around to the left-most three bits.

Using this representation for a byte pointer has several advantages. First,
both the word pointers and byte pointers have the same representation when
they reside in memory. Second, since the word address is right justified, a single
instruction can transfer it to an A register. Finally, there is no change in bit
pattern when converting the value of a word pointer to a byte pointer.

These advantages outweigh the disadvantages encountered when byte point-
ers are converted to an int and used in non-portable ways. Consider the fol-
lowing program:

#include <stdio.h>

main(){
char *cp = "abcdefghijklmnopqrstuvwxyz";

int i = (int) cp;
printf("<%s>", (char *)(i + 2));

}

When this program is compiled with a Cray C compiler, the generated
output is <qrstuvwxyz>. This shows that converting a byte pointer to an
int does not change the bit pattern. The expression (char *)(i + 2) causes
the word address to be incremented by two. This is a common portability
problem. On many byte-addressable machines this causes the byte address to
be incremented by two.

Another common porting problem occurs when an application attempts to
compute the byte offset of a member of a structure. Consider the following
example:
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#include <stdio.h>

struct tag {
int m1;
float m2;
char m3;

};

int offset = (int) &((struct tag *)0)->m2;

main() {
printf("<%d>", offset);

}

When this program is compiled with a Cray C compiler the generated out-
put is <1>. The value that is stored in offset is a word offset, not a byte
offset. Again, on many byte-addressable machines the value would have been
a byte offset. The ANSI standard specifies that an implementation-defined
macro named offsetof must exist in the header <stddef.h>. This allows the
following:

int offset = offsetof(struct tag, m2);

to be used to find the byte offset of a structure member. Unfortunately, appli-
cations exist that require the first argument to a macro similar to offsetof to
be a pointer to a structure. One example of this is the X-Windows package. X-
Windows requires a macro similar to offsetof except that the first argument
must be a pointer to a structure. Something like the following is used:

int offset = Xoffset(struct tag *, m2);

Unfortunately this macro cannot be defined in terms of the ANSI offsetof
macro. Technically speaking, X-Windows is not portable.

Integral Types

The type short is 16 bits on most systems. However, it is not 16 bits on any
Cray supercomputer. Unfortunately, there are applications that read two bytes
from a device and store those two bytes into the elements of an array of shorts.
On a Cray, this inevitably ends up writing into the unused bits of the memory
word used to store a short. There is a surprising amount of code that exploits
this non-portable technique.

Similarly, the type long is 32 bits on most systems, and again this is not
true for the Crays. One networking code changed a declaration from:
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char a[4];

to:

long a;

because, after all, both types are 32 bits, right? Again, the assumption that
certain types are a certain size makes the code non-portable.

Other Porting Issues

Some less common porting problems are due to the following assumptions:

• A character pointer has the same representation as a function pointer.

• A pointer can represent negative values.

• An int bit-field designates a signed value.

• Floating-point arithmetic with integral values is exact (For example, as-
suming that the expression (int)(6.0/3.0) == 2 is true.)

• The sizeof operator yields a signed type.

These assumptions may be true on some machines but they are not portable.
There are many aspects of Cray’s C implementation that make it easy to

port certain codes that are technically speaking, non-portable. The following is
a list of features that comply with common beliefs of the C programmers from
c-world:

• 8-bit char type.

• ASCII representation.

• Two’s-complement representation.

• Linear address space.

• 255 character external names.

• External names reside in FORTRAN style COMMON blocks (no REF/DEF
model is supported).
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Summary

The following is a list of portability issues with the Cray C implementation
raised by this article. Hopefully, they will help lead to more portable code
being written.

• Byte pointers converted to an int do not necessarily represent a byte
offset.

• Converting a pointer type to an int type to perform arithmetic is unwise.

• A short is not necessarily 16 bits.

• A long is not necessarily 32 bits.

• Pointers can be unsigned values.

• There can be unused bits in an object for certain types.

Conclusions

Many decisions must be made about how a particular C implementation is
developed. Some of these decisions are influenced by the non-portable assump-
tions made by C programmers from c-world. For example, if at all possible,
an implementation should strive to provide external names that are longer than
six characters even though the ANSI standard does not require it. Too many ap-
plications have been written with non-portable external names that are longer
than six characters.

Therefore, my advice on this subject is, “Do what makes sense.” It certainly
is not profound advice, but it comes from years of experience with a C im-
plementation on a 64-bit word-addressable supercomputer that is outside the
mainstream of c-world. A supercomputer is built to provide performance. If a
decision must be made between performance and supporting non-portable cod-
ing practices, Cray Research will undoubtedly decide in favor of performance.
Most portability issues involve solutions that please some but not others. The
best solution to these portability issues is the one that is best for your market
place.

And perhaps you can do me a favor. Since no one buys a Cray as their
first machine, code that runs on Crays inevitably comes from other systems.
As such, I urge you to mention these issues in the portability section of your
manual set, not just for Cray’s sake but for vendors of like architectures.

Tom MacDonald is Cray Research Inc’s representative to X3J11. He can be
reached at (612) 681-5818, tam@cray.com, or uunet!cray!tam.

∞



42. Miscellanea

compiled by Rex Jaeschke

size_t, ptrdiff_t, and Some Magic

Intel’s Memory Models

Anyone with more than a little experience in developing software on Intel’s
80x8x segmented architecture family will have learned all aboutmemory models
and will probably have come to hate them. (Just in case you don’t recognize
this chip family, it’s the one IBM made famous by using it for its PCs in 1981.)

Simply stated, when you compile a program you must select one of a number
of memory models for your code and data. Since the low end of the CPU family
has only 16-bit registers, it’s much more efficient to use 16-bit (near) pointers
rather than 32-bit (far) pointers. (ints are always 2 bytes and longs are 4.)
The four basic memory models then are:

Intel 80x8x Memory Models
Model Code pointer Data pointer

Small near near
Compact near far
Medium far near
Large far far

Different compiler vendors use different names for these memory models.
However, in this article Microsoft’s names will be used. One restriction on
the Large memory model is that no object can exceed 64K bytes. To have
objects larger than this you must either use the huge keyword explicitly in the
declaration or compile using a huge option (the latter having been used in the
following examples).

Some Hard Choices

This CPU family is interesting because it is a 16-bit architecture and it can
directly address more than 64K bytes of memory. (Most 16-bit machines require
various disk and/or memory overlay techniques to shoehorn large programs into
a 64K byte address space.)

This gives rise to the problem that size_t could be of type unsigned long
since 16-bits isn’t large enough to store the size of the largest possible object.
The real problem is that 32-bit operations are not directly supported by the
low-end CPUs. The choice then becomes one of the following:
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1. Make size_t the (2 byte, very efficient) type unsigned and forbid objects
larger than 64K bytes.

2. Make size_t the type unsigned long and pay the price of the extra data
and code space and execution speed all the time even though very, very
few objects are (typically) ever larger than 64K bytes.

3. Conditionally compile the typedef for size_t based on the memory
model chosen at compile-time. Also, make sizeof behave differently for
various models and have a corresponding set of matching library functions
for each version.

Similarly, ptrdiff_t could be of type long since 16-bits isn’t large enough to
store the size of the largest possible pointer difference. Note though that while
some standard library function prototypes use size_t, none uses ptrdiff_t.

One Vendor’s Solution

Consider the following program, which was compiled using Microsoft C V5.1.

#include <stdio.h>
#include <stddef.h>

char c[100000];

main()
{

unsigned long size1;
unsigned size2;
long diff1;
int diff2;

printf(" sizeof(unsigned): %lu\n",
(unsigned long) sizeof(unsigned));

printf("sizeof(unsigned long): %lu\n",
(unsigned long) sizeof(unsigned long));

printf(" sizeof(size_t): %lu\n",
(unsigned long) sizeof(size_t));

printf(" result of sizeof: %lu\n",
(unsigned long) sizeof(sizeof(int)));

printf(" sizeof(c) #1: %lu\n",
(unsigned long) sizeof(c));

printf(" sizeof(c) #2: %u\n\n",
sizeof(c));
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size1 = sizeof(c);
printf(" size1: %lu\n", size1);
size2 = sizeof(c);
printf(" size2: %u\n\n", size2);
printf(" sizeof(int): %lu\n",

(unsigned long) sizeof(int));
printf(" sizeof(long): %lu\n",

(unsigned long) sizeof(long));
printf(" sizeof(ptrdiff_t): %lu\n",

(unsigned long) sizeof(ptrdiff_t));
printf(" result of ptr sub: %lu\n",

(unsigned long)sizeof(&c[90000]-&c[0]));
printf(" &c[90000] - &c[0] #1: %ld\n",

(long) (&c[90000] - &c[0]));
printf(" &c[90000] - &c[0] #1: %d\n\n",

(&c[90000] - &c[0]));

diff1 = &c[90000] - &c[0];
printf(" diff1: %ld\n", diff1);
diff2 = &c[90000] - &c[0];
printf(" diff2: %d\n", diff2);

}

The output produced is:

sizeof(unsigned): 2
sizeof(unsigned long): 4

sizeof(size_t): 2
result of sizeof: 2

sizeof(c) #1: 100000
sizeof(c) #2: 34464

size1: 100000
size2: 34464

sizeof(int): 2
sizeof(long): 4

sizeof(ptrdiff_t): 2
result of ptr sub: 2

&c[90000] - &c[0] #1: 90000
&c[90000] - &c[0] #1: 24464

diff1: 90000
diff2: 24464

As you can deduce from the output, Microsoft C types size_t as unsigned
and ptrdiff_t as int. (They do this in all memory models.) However, the
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correct size of a large object can be found using sizeof, and a large pointer
difference can also be correctly determined. How do they do it? Well, they
pack 32 bits of information into 16 bits. What? You don’t believe it?

The critical part of the code is as follows:

unsigned long size1;
long diff1;

(unsigned long) sizeof(c)
size1 = sizeof(c)

(long) (&c[90000] - &c[0])
diff1 = &c[90000] - &c[0]

Even though sizeof produces an unsigned int result, by casting that to
unsigned long you magically get 32 bits of precision out of the 16-bit unsigned
value that you started with. As the output also shows, the same occurs when
a sizeof result is directly assigned to an unsigned long object.

Similarly, casting (or assigning) a huge pointer difference to long produces
the correct answer.

Clearly, this is not intuitive to the programmer and it’s certainly not ANSI-
conforming. However, the approach does work, it’s a reasonable trade-off given
the host environment, and very, very few programmers will ever care since
they rarely have objects larger than 64K bytes. About the only time you get
into trouble is when you use printf with %u and %d to display size_t and
ptrdiff_t expressions, respectively, as shown in the example.

Extensions

In this issue we debut a new section. It covers extensions to compilers, pre-
processors, or run-time libraries. To have your product considered for coverage
in this section, send a manual set to the editorial offices or submit a technical
description of its interesting features by electronic mail or magnetic media. The
extensions discussed will not necessarily by upwards-conforming to ANSI C.

Pixar’s Chap C

Pixar builds a special purpose graphics processor called the ChapTM Channel
Processor. Their Chap C Compiler enables graphic algorithms to be developed
for the Pixar Image ComputerTM using the C language.

The hardware has a 4-way Single Instruction Multiple Data (SIMD) archi-
tecture with tesselated access modes to the picture memory. The C compiler
supports extensions for this hardware and its four ALUs.

The Chap’s memory is addressable in 16-bit units. As a result, a byte, word,
char, int, and all pointer types are synonymous. long, float, and double all
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use 32 bits. (Like float, doublemaps to IEEE’s single-precision.) By selecting
16-bit chars, character pointers have the same representation as word pointers
and a string literal is equivalent to an array of ints with a trailing null word.

The type modifiers parallel and component provide parallel access to the
graphics-oriented data format used by the hardware. A pixel is a vector of four
ints (representing the red, blue, green, and alpha elements) and all parallel
data types are composed from pixels. Consider the following example:

void f(pixel, ppixel)
register parallel int pixel;
register parallel int *ppixel;
{

ppixel->chan[0] = pixel.chan[3];
ppixel->chan[1] = pixel.chan[2];
ppixel->chan[2] = pixel.chan[1];
ppixel->chan[3] = pixel.chan[0];

}

pixel is a vector of four ints each of which is accessible by the predefined
name chan[x] where x is 0–3. While a pixel is not really a structure, structure
notation is conveniently used to access its elements.

A component is a group of four pixels. It looks like an array of four parallel
objects. Also, an array of parallel objects can be treated as a component simply
by casting the address of the first array element to a component pointer. A
pixel in a component is accessed using the following notation, where comp is a
predefined name.

component int compon;
parallel int pixel;

pixel = compon.comp[2];

Other interesting aspects of the implementation include: Arrays, structures,
parallel objects, and component objects are aligned on 4 word boundaries.
sizeof returns 1 for short, int, and pointer types as well as for char. It
returns 2 for long, float, and double.

Several interesting operators exist. According to the Chap C Compiler Tech-
nical Summary, Feb 1988:

The state of parallel processing may be checked through the spe-
cial functions any() and all(). These expressions return a scalar
Boolean value based on the evaluation of the parallel Boolean value
given as an argument. The any() function returns TRUE if the
argument expression evaluates to true on any processor. The all()
functions returns TRUE if the argument expression evaluates to true
on all processors.
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The force() operator is used to modify the runflags within a
block of code. It takes as a parameter a scalar expression whose low
four bits will become the new runflag (which indicates the subset of
the four parallel channels that are to be active). The effect of the
force will persist until the end of the following statement.

Ed: Mike Paquette, a principal contributor to the Chap C Compiler con-
tributed the following information.

One thing worth noting is that the parallel types are first order objects, not
aggregates. That means a parallel type can participate in any operation that
a scalar type can, with the result being promoted to a parallel type. This lets
us speed up operations on small matrices significantly. For example, here is a
vector combiner from a ray tracer:

typedef double Vec[3];

VecComb(A, a, B, b, c)
double A, B ;
Vec a, b, c ;
{

c[0] = (A * a[0]) + (B * b[0]);
c[1] = (A * a[1]) + (B * b[1]);
c[2] = (A * a[2]) + (B * b[2]);

}

Using the parallel data types we can collapse the six multiplies and three
adds into two multiplies and one add, executing on multiple channels of the
hardware. Here is the same function, written using parallel doubles.

typedef parallel double Vec;

VecComb(A, a, B, b, c)
double A, B ;
Vec a, b, c ;
{

c = (A * a) + (B * b);
}

For more information on their hardware and/or C compiler contact Pixar
at 3240 Kerner Blvd., San Rafael, CA 94981, (415) 258-8100.

Free Software Foundation

The following information is taken from Using and Porting GNU CC c© 1988,
1989 Free Software Foundation, Inc. As required by the the copying terms of
the manual, the following text is included here.
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Permission is granted to make and distribute verbatim copies
of this manual provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the section entitled “GNU General Public License” is included
exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for mod-
ified versions, except that the section entitled “GNU General Public
License” and this permission notice may be included in translations
approved by the Free Software Foundation instead of in the original
English.

The Journal recognizes and respects the GNU Manifesto and the intent and
effort put into all software and documentation produced by the Free Software
Foundation. As such, this section is explicitly not included in the copyright
claim for this issue. The text was taken verbatim from the GNU TEX sources.
However, it has been translated into the LaTEX typesetting package. Any error
or change introduced during that conversion is unintentional.

GNU is a licensed (at no charge) software project involving an operating sys-
tem, compilers, linker, debugger, and other language development tools. It is
run by Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
USA and was instigated by Richard M. Stallman. Their E-mail address is:
uunet!tower@wheaties.ai.mit.edu. The GNU project sources and documenta-
tion are available electronically from numerous public sites around the world,
including uunet.

GNU Extensions to the C Language

GNU C provides several language features not found in ANSI Standard C. (The
‘-pedantic’ option directs GNU CC to print a warning message if any of these
features is used.) To test for the availability of these features in conditional
compilation, check for a predefined macro __GNUC__, which is always defined
under GNU CC.

Statements and Declarations inside of Expressions

A compound statement in parentheses may appear inside an expression in
GNU C. This allows you to declare variables within an expression. For ex-
ample:

({ int y = foo (); int z;
if (y > 0) z = y;
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else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the
absolute value of foo().

This feature is especially useful in making macro definitions “safe” (so that
they evaluate each operand exactly once). For example, the “maximum” func-
tion is commonly defined as a macro in Standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand
has side effects. In GNU C, if you know the type of the operands (here let’s
assume int), you can define the macro safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the
value of an enumeration constant, the width of a bit field, or the initial value
of a static variable.

If you don’t know the type of the operand, you can still do this, but you
must use typeof or type naming.

Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration
with an initializer. Here is how to define name as a type name for the type of
exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature.
Here is how the two together can be used to define a safe “maximum” macro
that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \
_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables
is to avoid conflicts with variable names that occur within the expressions that
are substituted for a and b. Eventually we hope to design a new form of
declaration syntax that allows you to declare variables whose scopes start only
after their initializers. This will be a more reliable way to prevent such conflicts.
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Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax
for using this keyword looks like sizeof, but the construct acts semantically
like a type name defined with typedef.

There are two ways of writing the argument to typeof, with an expression
or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions. The type described is that of the
values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointer to int.
If you are writing a header file that must work when included in ANSI C

programs, write __typedef instead of typedef.
A typeof-construct can be used anywhere a typedef name could be used.

For example, you can use it in a declaration, in a cast, or inside of sizeof or
typeof.

• This declares y with the type of what x points to.

typeof (*x) y;

• This declares y as an array of such values.

typeof (*x) y[4];

• This declares y as an array of pointers to characters:

typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be
a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, ‘array (pointer (char), 4)’ is the type of arrays of 4 pointers to
char.
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Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are
declared like any other automatic arrays, but with a length that is not a constant
expression. The storage is allocated at that time and deallocated when the
brace-level is exited. For example:

FILE *concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len])
{
...

}

The length of an array is computed on entry to the brace-level where the
array is declared and is remembered for the scope of the array in case you access
it with sizeof.

Jumping or breaking out of the scope of the array name will also deallocate
the storage. Jumping into the scope is not allowed. You will get an error
message for it.

You can use the function alloca to get an effect much like variable-length
arrays. The function alloca is available in many other C implementations (but
not in all). On the other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with
alloca exists until the containing function returns. The space for a variable-
length array is deallocated as soon as the array name’s scope ends. (If you use
both variable-length arrays and alloca in the same function, deallocation of a
variable-length array will also deallocate anything more recently allocated with
alloca.)

Quality of Implementation

Borland’s Turbo C V2

Ever since Borland released the first version of Turbo C I’ve been recommending
it as a front-line quality assurance tool. Not only is the interactive development
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environment very easy to work with, the number of code quality checking op-
tions available is significant. This is not surprising considering that the original
author of the compiler, Bob Jervis, also had a commercial version of the static
analysis tool lint. (This program was called Pre-C and is no longer sold.) In
fact, prior to selling his compiler and company to Borland, Bob’s version (called
Wizard C) actually had lint integrated in it pretty much as Turbo C has now.

To demonstrate Turbo C’s quality checking I contrived the following test
program:

/* 1*/ struct tag {
/* 2*/ int i;
/* 3*/ double d;
/* 4*/ };
/* 5*/
/* 6*/ f(int i, double d, long l)
/* 7*/ {
/* 8*/ char *pc;
/* 9*/ char c;
/*10*/ int *pi = &i;
/*11*/ int (*pf)(int, double, long);
/*12*/ struct tag st = {10, 1.2};
/*13*/
/*14*/ c = *pc;
/*15*/ i = l;
/*16*/ pf = &f;
/*17*/ *pi;
/*18*/ test(st, 123456);
/*19*/ goto label;
/*20*/
/*21*/ pi++;
/*22*/ label: ;
/*23*/ if (i = 10)
/*24*/ ;
/*25*/
/*26*/ if ((i = 10) != 0) /* no warning */
/*27*/ ;
/*28*/ }
/*29*/
/*30*/ g(int j)
/*31*/ {
/*32*/ if (j + sizeof(int) > -1)
/*33*/ return;
/*34*/ else
/*35*/ return (20);
/*36*/ }
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The messages produced when this was compiled were:

line 14: Possible use of ’pc’ before definition
line 15: Conversion may lose significant digits
line 16: Superfluous & with function or array
line 17: Code has no effect
line 18: Constant is long
line 18: Structure is passed by value
line 18: Call to function ’test’ with no prototype
line 21: Unreachable code
line 23: Possibly incorrect assignment
line 28: ’pf’ is assigned a value which is never used
line 28: ’c’ is assigned a value which is never used
line 28: Parameter ’d’ is never used
line 28: Function should return a value
line 32: Constant out of range in comparison
line 35: Both return and return of a value used

Other options available when configuring the compilation and linking envi-
ronment include:

• Plain char signedness selection.

• Alignment on byte or word boundaries.

• Merging of duplicate strings.

• Testing for stack overflow at run-time.

• Identifier significance length from 1–32 characters.

• Case-sensitive external names.

By the way, more than a few implementers had told me over the years
that a C compiler has no business doing all this checking—that’s what lint
is for. To avoid a repeat of this argument let me say that: There are many
environments for which lint is not available at all. In those (outside UNIX
systems) where it is, it comes from a vendor other than that of your compiler.
As such, incompatibilities are bound to occur. Also, users prefer to deal with
fewer vendors since that reduces the finger pointing when interfacing problems
occur. Since anyone buying a C compiler can benefit greatly from a lint-like
tool, why not built lint into the compiler to begin with?

Calling Undeclared Functions

When a function is called and no prototype is in scope, the behavior is well
defined. No argument list count or type checking can be done and the func-
tion is assumed to return an int value. As such, ANSI C does not require
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any diagnostic. However, this is an occasion to seriously consider issuing an
informational message.

By calling a function without having a prototype in scope, the following
may occur:

• If the function’s return type is not int and the return value is used, bad
code may be generated. (For example, if int and long are different sizes.)

• If the number and/or types of the arguments is incorrect, this could lead
to a non-trivial debugging effort.

• If the function has a variable argument list, the behavior when calling it
is undefined.

• Type conversion of arguments to prototype declarations cannot occur.
(Even with a declaration of double sqrt(); sqrt(10) will produce an
interesting result.)

• Arguments with narrow types will always be widened.

I have seen a few implementations that warn of this situation and I strongly
encourage the rest of the implementers to do likewise. I find that this
single message can save programmers many hours of debugging in each project.
The main cause of the message is the failure to include the correct header.

Calendar of Events

• April 9–11,USENIX C++ Conference – Location: San Francisco Mar-
riott. Contact Jim Waldo at waldo@apollo.com for more information.

• June 18–19, SC22/WG14 ISO C Meeting – Location: British Stan-
dards Institute, London, England. The expected major work items will
be a discussion on the UK’s Normative Addendum proposal, Denmark’s
alternate trigraph proposal, and numerous wide-character function pro-
posals from the Japanese group ITSCJ.

• July 9–13, ANSI C++ X3J16 Meeting – Location: Microsoft to host
somewhere in the Seattle, Washington area. For more information, con-
tact the convener Dmitry Lenkov at Hewlett-Packard, 19447 Pruneridge
Avenue, MS 47LE, Cupertino, CA 95014, (408) 447-5279, or electronically
at dmitry%hpda@hplabs.hp.com.

• August 13–17, International Conference on Parallel Processing –
Location: Pheasant Run resort in St. Charles, Illinois. Call David A.
Padua on (217) 333-4223 or padua@a.cs.uiuc.edu for more information.
(David is the contact for software-related papers.) The deadline for sub-
mitting papers is Jan 10.
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• September, ANSI C X3J11 Meeting – At press time the date had
not been set but Lawrence Livermore National Labs and SSI have of-
fered to host somewhere near Livermore California (an hour east of San
Francisco.) This one-and-a-half day meeting will handle questions from
the public, interpretations, and other general business. Address corre-
spondence or enquiries to the vice chair, Tom Plum, at (609) 927-3770 or
uunet!plumhall!plum.

• September, Numerical C Extensions Group (NCEG) Meeting –
The fourth meeting will be held to consider proposals by the various
subgroups. It will follow the X3J11 ANSI C meeting being held at the
same location earlier that week (see above entry) and will likely run for
two full days. For more information about NCEG, contact the convener
Rex Jaeschke at (703) 860-0091 or uunet!aussie!rex, or Tom MacDonald
at (612) 681-5818 or tam@cray.com.

• September 19–21, International Workshop on Attribute Grammars
and their Applications – Location: Paris, France. For information,
contact: INRIA, Service des Relations Exterieures, Bureau des Collo-
ques, B.P. 105, F-78153 LE CHESNAY Cedex, France. Telephone: [33]
(1) 39.63.56.00; Telex: 697 033 F; FAX: [33] (1) 39.63.56.38; E-mail:
waga@minos.inria.fr.

• October 8–10, Frontiers of Massively Parallel Computation – Lo-
cation: University of Maryland, College Park, MD (greater Washing-
ton D.C.). Call Prof. Joseph JaJa on (301) 454-1808 for more information.
The deadline for extended abstracts is Mar 15.

• November 12–16, ANSI C++ X3J16 Meeting – Location: Hewlett-
Packard to host in the San Francisco, California area.

News, Products and Services

• Since late in 1989 we’ve heard much of the upheaval in the Eastern Eu-
ropean Bloc. Until you can relate to it personally, it’s just another news
item. What’s this to do with The Journal? Well recently I received a
letter from a Senior Software Engineer in Romania. The relevant extract
follows:

Prior to, and during, the recent revolution in Romania we at the
Research Institute for Computers suffered much. Much hard-
ware was damaged or destroyed and we also lost considerable
software and many books.

I would be very grateful if you could help me, by ap-
pealing to your readers, rebuild our collection of books
and documentation on C, C++, and expert systems.
Also software and even hardware if possible.
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I have put together a shipment of books and manuals that I intend to
send. I encourage you to do the same. If you have any doubts about
export restrictions on certain items (hardware, for example) consult your
national Trade Commission or relevant government agency. Since I know
they are using Borland’s Turbo C it appears they at least have IBM-PC
compatibles.

The address to send computer care packages is:

Doru Turturea
Research Institute for Computers
Strada Clucererului No 1, Sector 1

Bloc 40, Scarad
Bucuresti 71308
ROMANIA

I’m sure that, apart from doing a good deed for our colleagues abroad,
someone in your marketing department would love the press coverage a
generous donation could bring. Think about it. Wouldn’t your company
like to get a foot in the door of the newly opened Eastern European
marketplace?

• C lives [again] on the venerable PDP-11. DEC has announced and
is shipping PDP11C, their ANSI-conforming compiler for DEC PDP-11s.
The compiler can be hosted on VAX/VMS, RSX, and RSTS, and supports
these targets as well as POS and RT-11.

• BCPL anyone? Various implementations of BCPL, one of C’s ancestors,
are available from RimStar Technology, 1 Commodore’s Court, Suite 503,
Hull, MA 02045. (617) 925-2718. A DOS hosted kit runs $79.95, which
includes the BCPL text by the language’s designer, Martin Richards.
Source to the compiler and library is available for $229.95. Code gen-
erators are available for VAX, MC680x0, IBM 370, and Data General
machines. [Ed: I have recently installed this product and plan to report
on it and the language in a future issue.]

• Available from ACE is the 1989 edition of “Benchmarking UNIX Sys-
tems,” which includes the results of the execution of the ACE Benchmark
Suite on more than 100 different major UNIX systems. The ACE Bench-
mark Suite integrates most of the established benchmark programs and
provides versions of these in all of C, Pascal, Fortran77 and Modula-2.

ACE has completed the validation and benchmarking phase of ACE EX-
PERT C for a variety of systems. Like all members of the ACE EXPERT
Compiler family (C, Pascal, Fortran77, Modula-2, and COBOL) the new
release employs heavy global optimization at intermediate-code level (UN-
COL).
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ACE also offers a portable IEEE Floating-Point Emulation Pack-
age, ACE Libf80, written in C. For more information contact: John van
Brummen or Doeke Harkema at ACE Associated Computer Experts bv.,
Amsterdam, The Netherlands, (31) 20 6646416 (phone), (31) 20 750389
(fax), 11702 (ace nl) (telex), uunet!ace.nl!john.

• ACE, along with HCR of Canada, recently announced the latest version of
their combined ANSI C validation suite SuperTest. The site license
fee is US$32,000. For information contact ACE (see entry above) or HCR
in Toronto on (416) 922-1937 or uunet!attcan!utzoo!hcr!paul.

• More on validation suites. Early in February, Plum Hall held a press
conference announcing support for the final ANSI C Standard in their
validation suite. The license fee varies from one country to the next, but
in the U.S. is US$9,500. Contact: U.S: Terri Chandonnet at Plum Hall
(609) 927-3770; U.K: Neil Martin at BSI (908) 220-908; Japan: Takashi
Kawahara at Advanced Data Control Corp., Tokyo (03) 576-5351.

• Quantitative Technology Corporation offers a C language library package
that provides a full IEEE implementation of floating-point arith-
metic, using only integer operations. The routines include the arithmetic
operations (add, subtract, multiply, and divide), utility routines, and a
full suite of translation routines to and from ASCII, IEEE single and
double precision, and integer. The precision of the numeric representa-
tion can be set by the user, and is limited only by memory size. Rounding
mode and rounding precision can be set as required, and full exception
handling can be added. A companion software package provides elemen-
tary transcendental functions to the selected precision (up to 512 bits,
more upon special request). For more information, contact QTC, 8700
SW Creekside Place, Beaverton OR 97223, or 1-800-234-0168. E-mail:
uunet!sequent!qtc!law.

• ANSI C Quick Reference Guides by Rex Jaeschke. This 8 1
2 inch by

3 1
4 inch 16-page booklet contains the complete language and preprocessor.

Library identifiers are listed alphabetically within each header and across
headers. Everything from escape sequences to trigraphs. Contact Rex
at the The Journal for copies or to license the artwork for your own
customization.

• Liant (parent company of Ryan-McFarland and LPI) announced NEW C,
an ANSI- and X/Open-compliant implementation for Motorola’s 88000
RISC-based systems. Contact Jillian Harvey-Asquith on (508) 626-0006.
Liant Software Corp., 959 Concord St., Framingham, MA 01701-4613.

• Perennial, vendor of a C language validation suite, has announced a
validation suite for C++ Release 2.0 that runs on UNIX systems. Peren-
nial, 4677 Old Ironsides Drive, Suite 450, Santa Clara, CA 95054. (408)
727-2255. uunet!sun!practic!peren!beh.
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• Amalgamated Software of North America has released DIPLOMA/C
for the IBM AS/400. Anne Ferguson, ANSA, 4041 McArthur Blvd.,
Suite 300, Newport Beach, CA 92660. (714) 752-7991. Not to be outdone,
IBM has released IBM C/400 for the same machine.

• Late in 1989, Ken Thompson and Dennis Ritchie of AT&T Bell Labs
received the 1989 Computers and Communications Prize, sponsored by
NEC Corp. (Japan) for their work on UNIX and C.

• To get a copy of AT&T’s C++ Release 2.0 manual call them on
(800) 432-6600. Price is $25 and the product select code is 307-146.

• Jensen & Partners International have released TopSpeed C, a highly
optimizing compiler for DOS and OS/2. There’s an unconditional 30-day,
money-back guarantee. 1101 San Antonio Road, Suite 301, Mountain
View, CA 94043. (415) 967-3200.

• Late in 1989, a self-paced training textbook called Mastering Modern C
was published by Professional Press. It is written in ANSI Standard C,
covers the complete language and is designed as a training book suitable
for seminars. Written by Rex Jaeschke, copies are available from the
publisher at (215) 957-1500. To license the companion training materials
contact Rex at The Journal.

• Chorus Supercomputer, Inc., is now shipping version 1.1 of its Linda C
language implementation for the Macintosh. Cost $450. Chorus
also sells a line of hardware called ComputeServer which also supports
Linda C development. 100 Varick Street, New York, NY 10013. (212)
925-1715.

• Silicon Valley Software announced SVS C for UNIX (on MC68K, Intel
386/486, and N32x32) and 32-bit DOS-based systems. 1710 South Am-
phlett Blvd, Suite 100, San Mateo, CA 94402. (415) 572-8800. Has K&R,
pcc, ANSI, and POSIX modes.

• Note: Copies of final ANSI standards are available from:

American National Standards Institute
Sales Department
1430 Broadway

New York, NY 10018
(212) 642-4900

fax (212) 302-1286

The ANSI C Standard’s official designation is ANSI X3.159-1989.

∞


