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10. Variable-Size Arrays in C

Dennis M. Ritchie
AT&T Bell Laboratories

Murray Hill, New Jersey, USA

Abstract

Both the original C language and ANSI C handle vectors of indefinite
length, but neither caters for multidimensional arrays whose bounds are
determined during execution. Such a facility is especially useful for nu-
merical library routines, but is currently painful to program. Many of
the issues, and some suggested language changes, were discussed by Tom
MacDonald in Volume 1, number 3 (December, 1989, pp. 215–233). Some
compilers, for example the GCC compiler from the Free Software Founda-
tion, already have extensions in this area. This paper discusses problems
in these approaches, and offers a differing proposal for an extension.

Introduction

Previous thoughts (including my own) have fixed on the idea of allowing gen-
eral expressions, and not merely constants, as bounds for automatic arrays.
Although this extension, with careful restrictions, seems to fit into the struc-
ture of the existing language, and is useful by itself, it presents implementation
difficulties in some run-time systems. Moreover, I argue that this proposal alone
does not properly resolve the question of function parameters that involve vary-
ing arrays. The rules for both the GCC and MacDonald schemes are difficult
to use and comprehend, and are difficult to formalize even to the level of the
current ANSI standard; in particular, the type calculus for variable-sized arrays
is murky for both.
In the existing ANSI C language, the type and value of an object p suffice

to determine the evaluation of operations on it. In particular, if p is a pointer,
the code generated for expressions like p[i] and p[i][j] depend only on its
type, because any necessary array bounds are part of the type of p. In the
MacDonald and GCC extensions, the values of non-constant array bounds are
not tied firmly to its type.
My proposal, by contrast, is to avoid allowing variable-sized arrays as de-

clared objects, but to provide pointers to such arrays; the pointers carry the
array bounds inside themselves. This will preserve the property that pointer
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arithmetic and dereferencing depend only on the type and value of the pointer.
Allocation of varying-size arrays can be done by already existing facilities.
I intend that the proposed amendments to the Standard not change any

currently conforming programs.

New Rules

To simplify the description, let us call the types ‘array of T ’, ‘array of array
of T,’ and so forth matrix types.
The first extension permits array declarators to be written

D [ ? ]

which imputes to the declarator D the type ‘adjustable array.’ Adjustable arrays
are heavily restricted: no object, or structure or union member, may be a matrix
type with any adjustable bound. However, pointers to matrices, some of whose
bounds are adjustable, are permitted.
The second extension permits any integral expression to appear as a bound

in an array declarator that occurs in a cast (but nowhere else). Such a cast may
appear only in a function, and the expression is evaluated in the scope in which
the cast appears. The type of the resulting array is the same as if the bound
had been the constant expression of equal value. (The implied constraints here
are not statically checkable.)
The final extension specifies that the sizeof operator, when applied to

an expression involving a pointer to an adjustable matrix, need not yield a
constant; there is a corresponding constraint that the value of such a sizeof
expression is undefined unless the value of the pointer is defined. (This implies
that the argument of sizeof must be evaluated when its type involves an
adjustable array.)
Pointers to adjustable matrices (that is, matrices at least one bound of which

is adjustable) are ‘fat pointers’ whose representation will include the space to
store the adjustable bounds at run-time. It is crucial to arrange the rules so
that these bounds can always be filled in properly. Therefore, the following
restrictions are necessary.

• The type of an adjustable array of an element type is compatible only with
another adjustable array, and only if the element types are compatible. In
particular, an adjustable array is not compatible with an ordinary array
or an incomplete array.

• Pointers to adjustable matrices may be assigned (or initialized or passed
as arguments). If p is a pointer to an adjustable matrix, then p = q
is permitted if the types are compatible, or if q fails to be compatible
with p only because one matrix has a known array bound where the
other has an adjustable bound. If the LHS p has a known bound at a



Variable-Size Arrays in C – Ritchie 83

particular position and q has an adjustable bound, it is necessary (though
not statically checkable) that the actual bound for q at that position be
the equal to the known bound of p.

• Although the ANSI standard made void * pointers a generic type for
pointers to objects, it exempted function pointers from this universality.
Similarly, this proposal forbids automatic coercion of void * pointers to
pointers to adjustable matrices; a cast specifying the bounds must be
used.

These rules for casts and assignments are not simple generalizations of ex-
isting rules; they are formulated so that no pointer to an adjustable matrix can
be constructed unless there is a way of finding the appropriate bounds at run
time.

Examples

A function with a general two-dimensional array as a parameter might be de-
clared:

void f1(int (*a)[?][?]);

and defined as:

void f1(int (*a)[?][?]) {
int i, j;

... (*a)[i][j] ...
}

The type of the argument is ‘pointer to adjustable array of adjustable array
of int.’ This formulation has the advantage that both array bounds are auto-
matically available to the function; the first and second bounds are respectively:

sizeof(*a) / sizeof((*a)[0])
sizeof((*a)[0]) / sizeof((*a)[0][0])

This suggests that macros like the following be provided:

#define UPB1(x) (sizeof(*x) / sizeof((*x)[0]))
#define UPB2(x) (sizeof((*x)[0]) / sizeof((*x)[0][0]))

If the function needs a temporary array of the same size and shape as the
argument, it can be allocated using:

int (*b)[?][?] = (int (*)[UPB1(a)][UPB2(a)])
malloc(sizeof(*a));
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In order to call the function f, an ordinary array can be used:

int aa[100][100];

f1(&aa);

because the pointer to the constant-bound, complete array aa is converted to
the argument’s type.
The ugliest aspect of this formulation is that uses of the argument need to

be explicitly dereferenced; we must write (*a)[i][j] inside of f1. One way of
ameliorating the effect, within the function, is to generate a pointer to the first
row of the array:

void f1(int (*a)[?][?]) {
int (*ap)[?] = *a;
... ap[i][j] ...

}

This example was explicit in passing a pointer to the two-dimensional array.
It can also be written in the more usual style, in which the pointer’s explic-
itness is somewhat suppressed; this gives an alternate way of simplifying the
references:

void f2(int a[][?]) { ... a[i][j] ... }

or equivalently,

void f2(int (*a)[?]) { ... a[i][j] ... }

Here the type of the argument is ‘pointer to adjustable array of int,’ and
what is passed is a pointer to the first row of the two-dimensional array, instead
of a pointer to the entire array. This function could be called using:

int aa[100][100];

f2(aa);

This formulation is in some ways more natural, but just as in ANSI C, the
function loses the ability to compute the first bound of the array.

Discussion

Previous attempts to generalize C to adjustable arrays have taken the appar-
ently straightforward approach of allowing array bounds (in carefully chosen
circumstances) to be arbitrary expressions, instead of constants. I suggest that
the straightforwardness is only apparent, and that the necessary rules are in
fact quite complicated; neither the FSF nor MacDonald have really worked
out their consequences. For example, the GCC language extension envisions
function definitions like:
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int f(int n, int m, int (*a)[n][m]) { ... }

in which the bounds are passed explicitly to the function (somewhat in the style
of FORTRAN). Such proposals can possibly be made to work, but manifest
unpleasant difficulties.
For example, what is the type of this function f, and how does one write a

prototype for it? In GCC, one says:

void f(int, int, int (*)[][]);

while MacDonald makes the adjustability indicator more syntactic:

void f(int, int, int [*][*]);

The type int (*)[][] here, if one has only non-constant arrays, is strange;
it is a notation that has to be introduced only for function declarations, and is
of no use elsewhere. More seriously, one cannot determine, simply by looking
at the declaration and at a call to the function, whether the call is type-correct,
because there is no language-visible way to determine where the array bounds
come from.
Other problems occur because of the way the function definition is written.

In the example,

void f(int n, int m, int (*a)[n][m]) { ... }

the bounds come lexically first, before the array that depends on them. The
arguments really have to be processed by the compiler left-to-right, in order
that n and m be defined before the appearance of a. If the user wrote

void f(int (*a)[n][m], int n, int m) { ... }

then, in GCC, n or m would either be undefined, or would be captured by
an outside declaration. (This is, in part, an unfortunate aspect of the ANSI
function prototype syntax; the problem wouldn’t occur with the old syntax.)
MacDonald suggests rules that cause all the arguments be processed simul-

taneously, or in two passes, but the rules would be messy, and dissimilar to the
approach taken in the rest of the language. One example of the problems is
arguments that depend on each other:

void g(int (*p)[sizeof(*q)], int (*q)[sizeof(*p)]) { ... }

Thus this approach seems fraught with difficulties. Either there are strange
rules about the order in which parameters are mentioned, or there are strange
rules about how parameter lists are parsed.
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Conclusion

This paper proposes to extend C by allowing pointers to adjustable arrays and
arranging that the pointers contain the array bounds necessary to do subscript
calculations and compute sizes. In this way, the problem of handling variable-
size array references is solved in a way that can be made consistent with the
rest of the language. By contrast, the apparently most obvious language gen-
eralization (that is, allowing general expressions instead of constants in array
bounds) complicates the type structure of the language, causes difficulties with
the calculus of data types, and causes nonuniformity in discovering the sizes of
arrays.

An earlier version of this paper was presented at the March 1990 meeting of
NCEG and at the UKUUG Conference in London in July.

Dennis Ritchie is a Distinguished Member of the Bell Labs Computer Science
Research Center. He is the principal designer of the C language and a major
contributor to the UNIX operating system. Dennis actively participates in
the Numerical C Extensions Group where he is the focal point of the variable
dimensioned array subgroup. He can be reached at dmr@research.att.com.
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11. Standard C: What Barely Works

P.J. Plauger

Abstract

The ANSI standard for C perforce contains compromises. Many of these
balance the conflicting needs of users and implementors. Some balance
conflicts between different classes of users, some between different styles
of implementation. Whatever the driving force, some of the compromises
are better than others.

This article discusses a number of the less successful compromises in
the C standard. It describes machinery that barely works, or that is
easily misused. As much as possible, it explains how the compromise
came about and why the language was not made better. It also suggests
ways to minimize problems that can arise as a result of the compromise.

Users care about the weak spots in C because they need to avoid them.
There is no point in stressing an already weak part of the language. Im-
plementors care about the weak spots because they need to craft carefully
around them. There is little point in trying to make them too sound, how-
ever. A program that depends upon a good implementation of a weak
feature will only break when moved to another system.

Introduction

I know of nothing more complex, or harder to standardize, than a program-
ming language. A general purpose language has a broad range of uses. Each
use requires an extremely precise description of the language. Each use has a
constituency with strongly held views about how the language should behave.
It is hard to be at once ecumenical, precise, and accommodating for diverse
applications.
One of the least understood aspects of making a programming language

standard is the need for compromise. A user with a limited viewpoint sees only
that the language is weakened for his or her particular application. How to fix
it is patently clear. Should someone else object to the fix, it must be because
that person has only a limited viewpoint.
The hardest to defend are the compromises that accommodate implementors

at the expense of users. In a competitive marketplace, users are accustomed to
making outrageous demands and having them met. A standard cannot be so
brazen.
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It’s one thing to expect all PC compilers, say, to provide a certain service.
Chasing a market measured in tens of millions of machines is a real incentive
for implementors to work late into the night. To demand that a compiler for
an eight-bit embedded microcontroller offer the same service, however, is quite
another thing. Make too many silly demands and you encourage nonstandard
subsets. Or you starve an already lean market.
Conflicts can occur between different implementors as well, or between dif-

ferent users. In all cases, the standard must compromise as best it can. If
it cannot compromise creatively, it can only weaken the language. Where the
language is weak, all users must beware. The chance of writing erroneous or
nonportable code is high. Implementors, too, must step cautiously in these ar-
eas. It is too easy to step outside the bounds of conformance when the bounds
are fuzzy.
For all its successes, the ANSI C standard contains a generous helping of

unfortunate compromises. This article explores a number of the significant
weak spots. It attempts to explain why they are weak, how they escaped better
fixes, and why you should tread lightly around them.

Pointers and Addresses

Computers vary widely in how they address storage. It is remarkable that
C permits the aggressive manipulation of addresses, yet remains efficient and
portable. Nevertheless, here is an area that is fraught with dangers.
As recently as five years ago, I might have labelled pointer arithmetic in C

an area of weak compromise. The C that grew up on the PDP-11 and VAX
was facing serious portability problems:

• Early C assumed that pointers had the same representation as type int.
More and more machines had pointers that were incommensurate with
integers. You had to be much more careful about declaring function
arguments and return values properly.

• Early C assumed further that pointers looked like unsigned integers that
counted bytes in storage. More and more machines had pointers that were
composites of two or more fields. You had to be much more careful about
converting between pointer and integer representations.

Fortunately, many C programmers were willing to program more carefully.
In the area of pointers, they got sophisticated in a hurry. Perhaps it was the
surge in popularity of the IBM PC, with its bizarre 8086 memory addressing.
Perhaps it was the need to port UNIX-based tools to multiple platforms to
reach an adequate market. Whatever the reason, C programmers soon left
behind their wild and wooly ways with pointers.
The situation has almost reversed itself. C started out on a machine with 16-

bit pointers and 16-bit ints. That remains a valid implementation, but it has
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become an uncommon one. Today, a 16-bit computer is more likely to be found
in an embedded application. Serious computers for applications programming
now need larger pointers, to address millions of bytes of memory. Try to move
an application to such a small computer and it will likely break in a dozen
places.
If the purpose of standards conformance is to maximize portability, then

here is arguably a weak spot in the standard. What’s the use of promising
some form of portability if the promise isn’t kept?
The question is, of course, rhetorical. Embedded systems and large applica-

tions represent diverse user communities. Both want to use Standard C. Both
want to buy C translators with the cachet of standards conformance. Both
deserve to have their interests represented in the C standard.
If you’re looking for portability across implementations, however, it’s not

enough simply to ask for conformance to the C standard. You must also look
for implementations from the same subculture as the original host. It would be
nice if a standard could define these subcultures with some degree of precision.
X3J11 tried in some areas, and mostly failed. In other areas, the committee
didn’t even try.
If you accept that pointers have inscrutable representations, your code will

be largely portable. If you accept that a machine can simply be too small to
host certain applications, you will be disappointed far less often. That leaves
only one area where I feel that the standard still contains a weak compromise
on pointers.
If you subtract two pointers, you get a signed integer result. The result

counts the number of bytes between the places designated by the pointers.
Naturally, both pointers had better point within the same data object. They
should, in fact, designate elements from the same array. (Remember that any
data object can be treated as an array of some character type.) The result can
be positive, zero, or negative.
The result can also overflow, at least on some machines. Overflow is most

likely to occur on 16-bit computers, since they are cramped to begin with. It
can occur on a machine of any size, however. All the implementor has to do is
choose the type of ptrdiff t properly (or improperly).
If you can declare a data object sufficiently large, you can generate an over-

flow when subtracting two pointers. Say, for example, that ptrdiff t has type
int and size t has type unsigned int. If the implementation lets you declare
an object with more than INT MAX bytes, you can get in trouble. The size of the
object is well defined, but not the difference between any two pointers within
it.
Nothing prevents an implementation from choosing a larger signed type for

ptrdiff t. Assuming one exists, that is. And assuming that old C code doesn’t
break because it assumes a certain type for the difference between two pointers.
Sadly, at least one of these assumptions often fails.
In the days when 16-bit computers were more common, I habitually tested

code for this class of failures. Contrive a data object that fills more than half
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of memory and something invariably broke. It was a rare programmer who was
always alert to this weak spot in C.
I predict that this problem will return to haunt us in the next few years.

We will see more and more applications that strain the bounds of memory even
on 32-bit machines. And programmers who are alert to the dangers of large
objects will be rarer still.

Integer Sizes

If machines with small pointers are becoming rare, machines with small ints
persist. The Intel 8086 and the Motorola 68000, to name two very popular
chips, favor 16-bit integers. They can work with 32-bit integers, to be sure, but
at a penalty. The penalty is always in time and frequently in code size.
Here is one of the most interesting compromises in the C standard. The

language has recognized from the outset that each computer has a preferred
computational type. With its 16-bit roots, C has always tolerated ints as
small as 16-bits. X3J11 decreed, after only a brief debate, that int should
never be smaller. It can certainly get much larger.
Today, great gobs of C code originate on machines with 32-bit ints. I would

be astonished if many of those gobs survive porting to machines with 16-bit
ints. At least not without some careful attention and a few judicious changes.
You could argue that portability is not well served by tolerating machines with
ints smaller than 16 bits.
I was one of the first people to push the limits of portability by writing

commercial software in C. My goal was to write as much code as possible to run
unchanged on half a dozen different architectures. Those architectures ranged
from 8-bit Intel 8080s to 32-bit IBM System/370s. (I doubt that anybody has
been quite that ambitious even to date.)
One of my earliest discoveries about C was most ironic. I found that the

type int was the greatest impediment to portability. Wherever it appeared in
code was a likely source of difficulty in moving code among machines. It was
so bad, I learned never to declare a data object with type int. I also learned
to contain places where the type crept into expressions willy nilly.
The irony, of course, is that int is a pervasive type. It is the type to which

character and short integers gravitate when they appear in expressions. It pops
up whenever you write a Boolean expression. It is the default type when you
call a function that you do not declare.
The elasticity of type int is one of those fundamental aspects of C that

is both a strength and a weakness. Many rules in C help an implementation
generate good code by adapting to the peculiarities of each machine. But those
same rules put an extra burden on programmers. Unless you learn to be wary
of elastic types, you can easily sacrifice much of the portability that supposedly
comes free with using C.
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Integer Representations

Integers can also be elastic in another dimension. The C standard tries to be
ecumenical about how an implementation encodes integers. It doesn’t allow
every form that has ever been wired into hardware, but it does allow a certain
variety. My guess is that many C programs will fail if moved to some of these
variations.
The one thing you can depend on is that integers have a weighted binary

encoding. That means that a positive integer always has a least significant bit
that contributes zero or one to the value. It has a next least significant bit that
adds zero or two. And so on. The value zero always has all bits zero.
Not all binary encodings are weighted, by the way. Gray code has the

peculiar property that adjacent values have codes that differ in one bit position.
N bits can represent 2N distinct values, as usual, but not in the usual way. C
does not permit Gray code for representing integer types.
Where the variety comes is in representing negative values. I know of three

encodings. They are called twos-complement, ones-complement, and signed
magnitude. In all cases, a negative number has its most significant bit set.

• Twos-complement gives the most significant of N bits the value −2N−1.
An unsigned integer would give this bit the value +2N−1. To negate a
number, complement all the bits and add one. (Ignore a resultant carry
off the end.) Only the value −2N−1 overflows when negated.

• Ones-complement is similar to twos-complement, with negative values dif-
fering slightly. To negate a number, simply complement all the bits. No
values overflow when negated, but zero comes in two flavors (all one bits
and all zero bits).

• Signed magnitude multiplies the value by −1 if the most significant bit
is set. To negate a number, simply complement the sign bit. As with
ones-complement, you avoid overflow on negation at the cost of having a
distinct code for −0.

The vast majority of modern computers use twos-complement arithmetic,
for integers at least. Floating point numbers typically use signed magnitude,
but that is much less of an issue. Floating point operations are more intricate,
and more stylized, than integer operations. Even −0 causes few floating point
surprises, provided comparison operators work sensibly.
X3J11 decided to permit all three encodings for integer arithmetic. Twos-

complement is expensive to simulate if a computer doesn’t do it naturally. And
there are some important processors that can host C well in all other respects.
It would be unacceptable to hamstring them, or to rule them out, on the matter
of arithmetic alone.
Nevertheless, you can expect numerous and subtle surprises moving code to

a machine that does not use twos-complement arithmetic for integers. Some can
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come, as with floating point, if an implementation is shoddy about its treatment
of −0. Most, however, come from the bitwise operators.
Most programmers learn the power of bitwise operations sooner or later.

They let you manipulate integers as individual bits or groups of bits. You use
bitwise AND to mask or clear specific bits. You use bitwise OR to merge or set
specific bits. You use bitwise XOR to complement specific bits.
Stick with positive values for all operands and you’re in good shape. Re-

member that C requires a weighted binary representation for all integers. That
means zero and positive values always have the same bit patterns. Your only
uncertainty is the number of bits. Even there, you have rigorous lower bounds.
Once an operand gets its sign bit set, however, you are asking for trouble.

Mix it with an unsigned operand and it may well get converted to unsigned
itself before the bitwise operation is performed. Twos-complement values suffer
no change of bit pattern. The other two forms get curdled in various ways. The
low-order bits may not be what you expect.
Smart programmers have also learned the dangers of right-shifting signed

operands containing negative values. Implementations have altogether too
much latitude in deciding what to do, even with the low-order bits. But even
smart programmers tend to be cavalier about bitwise operations. Expect trou-
ble if you have to move code away from a twos-complement implementation.

Argument Lists

Another notoriously spongy area concerns how arguments get passed on a func-
tion call. Most of the time, you don’t really care. It is only when you need
to move a pointer from one argument to the next that storage layout matters.
Even here, you should only care when you write code that processes a varying
number of arguments. The C standard encourages a fairly disciplined approach,
but even this approach has plenty of soft spots.
In the earliest days of C, this was a nonproblem. Everyone knew how the

PDP-11 compiler passed arguments. It laid them out in a solid brick on the
stack. Successive arguments occupied increasing addresses. Arguments had
only a handful of distinct representations—a character type became an int, for
instance. It was easy to learn the possibilities and to write code that walked
any argument list.
As C moved to other environments, various problems arose. In some cases,

the implementor chose to match an existing calling sequence. That let you mix
C code and, say, FORTRAN, to advantage. In other cases, the machine itself
was unsympathetic to the PDP-11 way of doing things.
Perhaps it was easier to put arguments on the stack in reverse order. Or

perhaps it was necessary to leave various sized holes between arguments. Or
arguments got scattered through registers. In some cases, arguments had to be
accessed through a chain of pointers.
Several of us settled on the obvious solution about ten or twelve years
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ago. We each introduced a set of macros for accessing arguments and step-
ping through argument lists. Naturally, the various solutions differed in detail.
But they were similar enough in spirit to make it possible to port code among
the different schemes.
X3J11 was able to pick and choose among the best aspects of the various

approaches. Since the Berkeley <varargs.h> was best known, it served as
the basic prior art. We introduced enough changes to warrant renaming the
standard header <stdarg.h>. That is the machinery you should use for walking
varying length argument lists in Standard C.
The approach is basically flawed, however. Few operations require a more

intimate knowledge of implementation details than walking an argument list.
Prior art let you do so with macros, and X3J11 was committed to preserving
prior art wherever possible. But that prior art barely worked.
Consider. You have to prime the macros with the address of the rightmost

declared parameter. Some implementations require this information to deter-
mine where the varying arguments begin. That rules out functions with no fixed
arguments. A perfectly sensible possibility is ruled out by an implementation
kludge.
You also have to know the type of an argument after it has suffered default

conversions, in the absence of function prototype information. That’s not im-
possible, but it is often tedious and occasionally tricky. Thanks to the value pre-
serving rules, for example, an argument of type unsigned short might become
either type int or type unsigned int. If you think that’s of no consequence,
go reread the previous section.
Finally, you are constrained as to the types of arguments you can pass. Put

simply, you must be able to write an asterisk after the type specifier for an
argument to make the appropriate pointer type specifier. That is not always
possible.
In summary, you had better not be ambitious in your use of the <stdarg.h>

macros. Keep it simple or expect portability problems.

Nonlocal Jumps

The last item I will discuss is probably the biggest kludge in Standard C. It is
the machinery for performing nonlocal jumps. These are control transfers that
do violence to the normal stack discipline of nested function calls and returns.
They are implemented by the functions setjmp and longjmp, defined in the
standard header <setjmp.h>.
A call to setjmp memorizes information about the current function call

environment in a data object provided by the caller. A later call to longjmp
restores the calling environment back to that memorized in the data object.
The net effect is that control once again returns from setjmp. Any intervening
function calls are forgotten.
It is very hard for a C translator to optimize much in the presence of calls to
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setjmp and longjmp. The last thing an implementor wants to worry about is
having the stack wrenched about in the middle of a block of code. Nevertheless,
that is exactly what happens.
As a sop to implementors, the C standard allows a scary bit of uncertainty. It

leaves open what happens to dynamic data objects declared in a scope contain-
ing a setjmp call. The environment might snapshot one of these data objects
when setjmp is called. In that case, the value gets rolled back by longjmp.
Or a data object might be left out of the environment. In that case, the value
remains unchanged.
You’d think that you could devise a simple rule for determining what hap-

pens. “register data objects are part of the saved environment, auto data
objects are not.” Sounds good, but it doesn’t work. The translator may choose
not to honor a register declaration. Or it may choose to promote an auto
data object to a register.
X3J11 realized that it could seriously limit such optimizations if it insisted

that setjmp be more predictable. Or it could effectively require that all imple-
mentations recognize setjmp and longjmp as magic functions. (Any implemen-
tation can do so if it chooses. The committee wanted to avoid requiring such
behavior.) So it opted for a kludge definition.
As a result, programmers had better be careful using these functions. You

should confine any setjmp calls to very simple expressions. Place these expres-
sions in the smallest possible functions. Use them only where you must.
Like <stdarg.h>, the machinery in <setjmp.h> more properly belongs in

the C language proper. Since it isn’t there, it barely works.

Conclusion

I could add more items to the list of things that barely work. The error reporting
machinery built around errno, for example, is notoriously klunky. And signal
handling has been so emasculated that it has almost no portable semantics. I
consider these so clearly flawed, however, that even naive C programmers soon
learn to be cautious.
I confined my remarks in this article to more subtle issues. These are areas

that at least look like they might be properly thought out. That is part of their
danger. Were they as well engineered as many people think, they would cause
less trouble. Or were they more clearly flawed, they would invite less trouble.
None of the machinery described here is outright broken. If you use it right,

it will work for you. Just don’t push it.

P.J. Plauger serves as secretary of X3J11, convener of the ISO C working
group, and as Technical Editor of The Journal of C Language Translation. His
latest book, Standard C, written with Jim Brodie, is published by Microsoft
Press. He can be reached at uunet!plauger!pjp.
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12. Electronic Survey Number 5

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an e-mail report on the results.)
The following questions were posed to 60 different people, with 16 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

The GNU C Compiler

Do you actively use the GNU C compiler? Have you packaged it for general
distribution to your customers? If so, do you support it as your primary or
alternate compiler? Any comments on gcc?

• 9 – No
• 7 – Use it
• 1 – Ship it (FSF)
• 1 – Support it (FSF)
• Comments:

1. I don’t personally use it routinely, but some others here do, and seem
happy enough with it.

2. We only use it to compare against our own ANSI C Compiler.

3. I use it as a reference against my compiler.

4. We value it for its ANSI C-ness rather than its code generation.

5. We don’t compile our products with it, nor do we distribute it. Some
people use it in-house. To a limited degree we support its use with
our product (which, among other things, loads object files produced
by compilers and reads the debugging information to learn types and
line numbers).
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6. gcc contains a number of extensions to the C language. Some are
nice, some not so nice. But anyone who writes code that uses those
extensions is insane, unless that code is to be thrown away. [Ed: Let’s
wait and see how many of these extensions become commonplace. I
think some will.]

7. The compiler has not been ported to our hardware yet. We do use
it on other vendors’ hardware that we have in-house, sometimes as a
primary compiler and sometimes as an alternate, depending on the
application and the machine.

8. In many areas, the compiler seems to be a reasonable compromise
between wanting a portable and effective implementation, and stan-
dard conformance. I think that more restraint could have been used
in its extensions, but it does serve a useful purpose as a trial balloon
for ideas.

Lexical Analysis

Do you use a commercial or third-party tool to produce your lexical analyzer?
Which? lex, Flex, LALR, other, home-grown? Do you have any comments on
the problem of tokenization of C in general or ANSI C in particular?

• 0 – lex

• 1 – Flex

• 12 – Home grown
• Comments:

1. No! Real compiler writers code up their own lexical analyzers.

2. I use a custom one since they are always faster, and lexers are rather
simple, so no need for a tool. I have problems with the tokenization
of ANSI C: 1) I hate the tokenization required between false condi-
tionals. It’s much faster to simply scan past characters until you see
a line beginning with #. 2) Trigraphs slow down the scanner, and
only will appear inside ANSI C test suites.

3. I used lex at first, but switched to a hand-coded lexer when it turned
out to be a bit faster. The typedef ambiguity is solved by the lexer,
of course, but this is easy. Some other things are tricky (contin-
uation lines, keeping track of original line and position therein for
diagnostics, trigraphs, etc.) but the actual tokenization is simply
enough.

4. The lexical scan is performed with routines especially written for the
C compiler. The only problem we can remember is the inconvenience
caused by trigraphs.
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5. The requirement to return type names and ordinary identifier as two
different tokens adds feedback from semantic analysis to the scanner,
and therefore adds a lot of unfortunate complexity.

6. My lexical analyzer is in straight C, custom written for the compiler.
The most agonizing problem of tokenizing C in the way that I do is
the problems of integrating the macro pre-processor into the lexical
analysis phase. For most C programs, most of the source of a file is
not in macro expansions, so if I interpose a complete layer of software
that does the preprocessing and passes on any text to the scanner
my compiler pays a penalty. So, the compiler tokenizes as much as
possible reading text directly from the input buffer. Only when a
macro expansion is encountered do I perform extra work to perform
the substitutions. ANSI C has created many new problems because
of the funky expansion rules for nested macros and stringizing.

7. I was using lex, then Flex, then went to an ad-hoc lexical scanner
because of the speed issue and partially because of the size of the
lexical tables.
I did have some problems with Flex, I think it has some nasty bugs
left in it, but it was considerably faster than lex. When we were
using Flex it was necessary to port Flex along with our own software
in some cases. Flex appears to want char to be signed char and
this is portability problem.

8. In general, automatically generated lexical analyzers are too slow.
The compiler spends a large fraction of its time in lexical analysis
and a hand-generated lexer really pays off.

9. Our tokenizer is hand written. C tokenization (except for the prob-
lem with <...> #include header names) is straightforward. The
pp-number grammar (first introduced in ANSI C) certainly simpli-
fies the tokenization of numeric constants and allows for extensions,
but doesn’t seem too popular with a vocal portion of C programmers.

Parser Generation

Do you use a commercial or third-party tool to generate your parser for the
compiler and/or preprocessor? Which? yacc, bison, occs, other, home-grown?
Do you have any comments on the problem of parser generation for C in general
or ANSI C in particular?

• 7 – yacc

• 4 – Home grown
• 2 – bison

• 1 – LLgen
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• Comments:

1. No! Real compiler writers code up their own recursive decent parsers.

2. I use a custom recursive-descent one. Again, parsing is not a big
problem for most languages, the problem is in the semantic analysis
which tools provide no help on.

3. Damned typedefs. I went through a lot to remove all conflicts but
one (if-if-else ambiguity) from the grammar. Error recovery is
hard, sometimes (especially at the top level: function definition ver-
sus declaration). Those braced-but-not-always initializers are really
annoying, as are typedef names as an argument for a prototyped
function.

4. We use LLgen, a recursive descent parser developed at our university.

5. We have our own tool that generates yacc output.

6. We use yacc to generate LALR parsing tables, but use our own parser
to interpret these tables in order to provide better error recovery than
the yacc parser allows. Error recovery for C is difficult because many
sequences of two or three tokens might be legal in some context.

7. I use a recursive descent parser written in C. I think that ANSI C
did create additional parsing problems for functions, but most of the
problems I encountered implementing those changes had to do with
the fact that I had to change an existing scheme that would no longer
work and I also had to add extensive MS-DOS specific extensions like
near and far that don’t mesh well with the ANSI syntax.

8. I use yacc. Speed has not been a problem (yet). It appears to me
that some minor adjustments to the yacc table lookups (especially
on one-to-one productions) could make it much faster. But again,
this hasn’t been a problem yet.

9. No, and we are sorry we don’t. Although some people complain that
yacc output is too slow, the compiler does not spend enough time
parsing for that to be a problem. The recursive descent parser we
have now is extremely convoluted and we will probably replace it
with a parser generated by yacc or from an attribute grammar.

10. C has two parsing “problems”. The obvious one is typedef names.
Fortunately, the yacc we use does provide a limited retry mechanism
that gives enough help to allow full handling for nested redeclarations
of typedef names. The other problem is, strictly speaking, not a real
parsing problem, but turns out to be the single biggest roadblock to
naive processing of C code: function definitions require a complete
parse to be recognized with confidence. ANSI C has had no negative
or positive effects on these parts of C.
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float and long double Math Libraries

Do you, or are you likely to, supply a float and/or long double version of
the math library?

• 7 – Yes, float
• 6 – No, float
• 5 – Yes, long double

• 8 – No, long double

• Comments:

1. On our machine float and double have the same representation.

2. We’re thinking about it.

3. It is very unlikely that we will supply a float library. The majority
of users interested in using a PC to do floating-point are willing to
buy the floating point hardware, which does all of its computations in
extended precision. The calling sequence we use allows one to write
a math library that performs long double arithmetic internally and
then narrow the results to double only when stored in the calling
program. Thus the standard math library could be modified to be
a dual precision library depending on how the function results are
stored. I don’t think that we have all of our math functions currently
working internally in long double precision yet, however.

4. There has been no demand for it from our customers. If that changes,
we will provide whatever libraries they need.

5. We have all the code in our FORTRAN library. However, we have
no immediate plans to incorporate it in the C library but we might
in the future.

6. The long double functions will be available only when long double
becomes distinct from double. To provide them now would only
cause more compatibility problems down the road.

Pragma Recognition

If you support pragmas, what does “recognizing” a pragma mean? Must you
recognize all tokens or is there a key first token that you recognize. That is, can
you diagnose a pragma you believe is intended for you but is misspelled.

• 5 – No pragmas supported
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• Comments:

1. In our previous release no special token was permitted. In the cur-
rent release all pragmas can optionally start with xxx where xxx
is a company-specific abbreviation. With the next release we will
only diagnose unrecognized pragma directives if they begin with this
token. Otherwise, they will be ignored.

2. I recognize and parse pragmas that start with a company-specific
abbreviation, and ignore all others.

3. I key off the first token. Pragmas are a pain, anyway.

4. We look at the first token to determine if the pragma is one we
recognize. But, since unrecognized pragmas must be ignored, any
unexpected parameters to the pragma give warnings, not errors.

5. We have interpreted “recognizing” to mean that if the first token af-
ter pragma is an identifier in our list of pragmas, then it is tentatively
recognized. If we are in strictly conforming mode (settable with a
command-line option) then if there is any irregularity of syntax or
semantics the pragma is unrecognized and is not diagnosed. In the
non-conforming default mode of operation, a tentatively recognized
pragma will be diagnosed if there are irregularities. Only pragmas
with unrecognized first tokens will be ignored without comment.

6. Currently all our own pragmas start with our company initials. No
intelligence has been put into the pragma parser as far as diagnosing
one of our own pragmas being spelled incorrectly. A warning message
is printed out on all pragmas that are not recognized.

7. We have added some System V Release 4 pragmas just so we can ac-
cept SVR4 source cleanly. (Of course, these do not have the company
initials in them).

8. We cannot tell the difference between a misspelling and a pragma
intended for someone else’s hardware. We print out a warning and
continue the compilation.

9. We mostly refuse to support pragmas.

10. We ignore #pragma and rely on compiler switches.

11. We have special purpose code in our scanner that recognizes the
pragmas we know about. It warns if it doesn’t understand the line
and throws it away. We don’t do any spelling correction.

12. In general, the recognition is determined by the identifier that follows
pragma. A warning is issued if the rest doesn’t work out. Any oth-
erwise unrecognized #pragma directive produces a warning anyway,
so the difference is academic.
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RISC System Support

Are RISC machines featured in your current or future plans? What do you see
the biggest challenge in developing translators for RISC targets?

• 6 – No
• 8 – Yes
• 1 – No comment
• Comments:

1. Just another code generator!

2. I’m just about to start an i860 back end. The problem is scheduling
(imagine keeping the core unit, FP adder and FP multiplier of an
i860 all busy at the same time!), with explicit timing information.
Something akin to the Multiflow TRACE compiler, perhaps (dealing
with the branches in a sensible way).

3. We ship on a couple of RISC machines (SPARC, DECstation) and
are porting to several others.
The biggest challenge in producing compilers for RISC targets is
making them reliable. Current compilers for RISC machines (I’m
talking about the compilers shipped by the hardware vendors!) are
not reliable. As a result, we ship our product compiled largely with-
out optimization. Our product runs 10–15% slower as a result, but
it’s worth it to avoid compiler bugs.
Compiler vendors should pursue reliability, even at the expense of
optimization. They should also make it as easy as possible to detect
when code will be broken by an optimizer.

4. Good RISC compilers will need to do most of the optimizations (loop
interchange, etc.) that are done by vectorizing and parallelizing com-
pilers to allow enough data to be delivered to the chip to take ad-
vantage of its high speed.

5. We only have RISC machines. They actually seem to be easier to
optimize for than CISC machines because the pipelines are exposed
to the compiler and because there is no need to choose between
several complex addressing modes.

6. Optimization.

∞



13. IEEE Floating-Point Arithmetic and C

Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121

Abstract

Currently, there is an effort to create a language binding between C and
the IEEE floating-point standard. Several new linguistic features are
needed to allow programmers to exploit the full capability of IEEE arith-
metic. These features are intended to help numerical programmers but
affect C, and other programming languages, by introducing performance
issues and new concepts unfamiliar in traditional programming languages.
IEEE features that have a major impact on C are discussed, along with
other issues concerning programming environments and computer archi-
tecture. Many vendors may consider implementing a subset of the IEEE
floating-point standard for both performance and linguistic reasons.

Introduction

Once upon a time, a group of computer scientists was explaining to a group of
mathematicians how floating-point arithmetic would be implemented on com-
puters. The mathematicians told them that this floating-point arithmetic im-
plementation would never work because it violated too many mathematical rules
and, in general, was error prone. The story goes that the computer scientists
replied, “Just trust us and try it out; we know you’ll like it.”
The problems with floating-point arithmetic are as prevalent today as they

were perceived to be back then. Someone relying on mathematically correct
assumptions often stumbles into numerical inaccuracies. The IEEE Standard
for Binary Floating-Point Arithmetic was defined to ameliorate some of the
floating-point peculiarities that make it so difficult to write numerically stable
algorithms. The Numerical C Extensions Group (NCEG) is attempting to make
C more suitable for numerical and scientific programming.
This article addresses the incorporation of IEEE floating-point arithmetic

into ANSI C, and explains the impact the IEEE floating-point standard can
have on programming environments and computer architectures. Vendors may
choose to implement a subset of the IEEE standard for both performance and
linguistic reasons.
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Floating-Point Arithmetic

Floating-point numbers are, in general, approximations for the mathematical
real numbers. They are approximate because a real number contains an infinite
amount of information, which cannot be represented in a finite floating-point
format. The following is a small (and incomplete) list of mathematical identities
that do not necessarily hold true for floating-point numbers:

(X + Y ) + Z ≡ X + (Y + Z)
(X × Y )× Z ≡ X × (Y × Z)
X × (Y + Z) ≡ X × Y +X × Z

1/(1/X) ≡ X for nonzero X
(X/Y )× Y ≡ X for nonzero Y
(X + Y )− Y ≡ X

X × (1/X) ≡ 1 for nonzero X

This means that mathematical correctness does not imply numerical correct-
ness. Consider the following simple C program run on a Cray Y-MP computer:

Example 1

#include <stdio.h>

double a, b;
double c = 524288.0;

main() {

a = c * (1 << 48); /* 524288 * 2**48 */
b = -a;

printf("(a + b) + c = %f\n", (a + b) + c);
printf("a + (b + c) = %f\n", a + (b + c));

}

The output from this program is:

(a + b) + c = 524288.000000
a + (b + c) = 0.000000

This contrived example demonstrates the need to minimize the amount of
relative error introduced by a floating-point operation to increase numerical
accuracy. The next example introduces another issue.
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Example 2

double x = 99999999999999.0;
double y = 999999999999999.0;

main(){
printf("x = %18.1f\n", x);
printf("y = %18.1f\n", y);

}

The output from this program is:

x = 99999999999999.0
y = 1000000000000000.0

The Cray C implementation converts a decimal floating-point number with
14 ‘9’ digits to double format and back to ASCII without loss of information.
However, the use of 15 ‘9’ digits introduces an unsafe conversion. A differ-
ent number is printed after it has been converted to binary and then back to
decimal.
Both of these examples demonstrate mathematically incorrect results for

the same underlying reason. That is, the benefits gained from the performance
available with floating-point arithmetic outweigh the numerical inaccuracies
that are introduced. There are formats other than floating-point that yield far
greater accuracy but they are not widely used. The balance between perfor-
mance and accuracy that a system offers is crucial to its viability in today’s
marketplace.

Performance Versus Accuracy

Performance sells computers. Vendors rarely claim their machines are numer-
ically accurate. They claim that their systems can execute millions to billions
of instructions every second. If an occasional digit is dropped on the floor, then
that is the price you pay for all of these billions of floating-point operations
every second. Most customer benchmarks do not directly test the accuracy of
the vendor’s floating-point implementation. Rather, an acceptable answer must
be reached in a minimum amount of time. Performance will continue to sell
systems until customers demand accuracy.
Of course there are two sides to the performance versus accuracy debate.

If you lose enough accuracy then the next automobile you purchase may not
be quite so aerodynamic, causing a decrease in your miles per gallon rating. It
might rain even though the weather forecast called for sunny skies. You might
drill the next oil well in the wrong location.
However, if performance is neglected in favor of accuracy then the design

phase of the new automobile you are manufacturing may take an additional
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18 months and increase development costs by several million dollars. Mean-
while, your competitor will beat you to the marketplace and undercut your
price. The 24-hour weather forecast may take more than 24 hours to generate.

IEEE Arithmetic

The IEEE standard defines a way to perform floating-point arithmetic. To
some extent this is a concession to performance. There are other formats that
yield greater accuracy, but none that I know of that can be implemented ef-
ficiently. The foreward of the ANSI/IEEE Standard 754-1985 contains the
following quote about its goals:

“Enhance the capabilities and safety available to programmers who,
though not expert in numerical methods, may well be attempting to
produce numerically sophisticated programs. However, we recognize
that utility and safety are sometimes antagonists.”

The impact of IEEE arithmetic on programming languages will definitely be
noticed by both users and vendors. Currently the impact on C is being explored
by the NCEG committee. The committee hopes to produce a technical report
that includes an IEEE binding for ANSI C. The following discussion does not
address all implications of the IEEE binding; but rather those with the greatest
impact on C, programming languages in general, and computer architecture.

Signed Zero

IEEE requires a floating-point representation for both +0 and−0. Although +0
and −0 have different representations they must compare equal! The intended
purpose of the sign is presumably to record the direction of underflow. The
linguistic implications are many. The compiler is no longer free to convert the
expression X + 0 to just X anymore because (−0) + (+0) yields +0. This has
been a long-standing acceptable optimization that IEEE floating-point arith-
metic forbids. It also adds the following identity to the list of mathematical
laws that are no longer numerically correct:

X + 0 ≡ X

This forced a change in one of the draft versions of the ANSI C standard.
The unary + operator was defined as:

“The expression +X is equivalent to (0 + X).”

To accommodate the IEEE standard, this definition was changed to:

“The result of the unary + operator is the value of its operand.”
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Similarly, the definition of the unary - operator changed. The definition
used to be:

“-X is equivalent to 0 - X.”

and was changed to:

“The result of the unary - operator is the negative of its operand.”

Since −0 represents a negative zero but 0 − 0 evaluates to a positive zero
the sign of the result appears to be arbitrarily chosen, unless the rounding
direction is toward minus infinity. Since the intent of signed zeroes in IEEE
arithmetic is presumably to record the direction of an underflow, sqrt(-0)
should be an invalid operation. However, sqrt(-0) is defined to return −0,
indicating that the rules are not consistent. It becomes unclear what a signed
zero really is. If −0 is recording the direction of an underflow, then −0 really
represents a negative number too small to represent, because underflow does
not occur when the result is exactly zero. Clearly, sqrt(-0) should then trigger
an invalid operation. An argument could then be made that

(+0) + (−0)

is invalid (and evaluates to a NaN which is defined below) because there is no
way to deduce the correct sign of the result when adding a too small negative
number to a too small positive number. IEEE floating-point arithmetic should
admit to that, instead of arbitrarily picking a sign out of the hat. The ultimate
failure of signed zeros is that now neither +0 nor −0 can be interpreted as a
mathematical zero because they mean ‘negligibly small’ instead.
The presence of signed zeros in the IEEE floating-point standard is unfor-

tunate. There is no basis in conventional mathematics for signed zeros and
the implications are many. For instance, many floating-point implementations
satisfy the following mathematical law:

X − Y ≡ −(Y − X)

However, IEEE floating-point arithmetic takes on the following interesting
property:

1 − 1 ≡ +0 and −(1 − 1) ≡ −0

(at least for most rounding directions) creating another optimization barrier.
Another justification given for the presence of signed zeros in the IEEE

floating-point standard is to support conformal mapping. Signed zeros permit
certain complex functions to remain formally continuous in some end-cases.
Some of these complex functions are: sqrt, log, asin, acos, atan, and pow.
The square root of z, where z is a complex number, is discontinuous over the
negative real axis. The straight line representing this discontinuity is called a
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slit. Signed zeros allow a numerical programmer to omit tests as the value of z
approaches the slit. The penalty that everyone pays by catering to these end-
cases is, in some cases, degraded performance. But mostly, it is inconsistent
and arbitrary specifications that require zero to have a sign. The trade-off is
definitely questionable.
Another justification given for signed zeros is that the following relation:

1/(1/X) ≡ X

is true for both the signed zeros and the signed infinities. This is because the
following relations are defined:

1/+∞ ≡ +0
1/ −∞ ≡ −0
1/+ 0 ≡ +∞
1/ − 0 ≡ −∞

However, as mentioned earlier, due to the very nature of floating-point arith-
metic, this same relation is not true for many finite values of X . This is not a
compelling reason to support signed zeros, especially when unnatural architec-
tural support must be present to force two different floating-point representa-
tions for +0 and −0 to compare equal.

Not a Number (NaN)

The IEEE floating-point standard defines an entity called Not a Number (NaN)
that represents the result for certain exceptional computations such as 0/0
and

√−1. Traditionally, the evaluation of 0/0 results in abnormal program
termination, or transfer of control to a signal handler. Generating a NaN result
allows normal program execution to continue for these exceptional conditions.
The introduction of a NaN representation means more mathematical laws

are violated. The following mathematical relations do not hold true when X is
a NaN but do apply to most other floating-point representations:

X × 0 ≡ 0
X − X ≡ 0
X == X is true
X ! = X is false
exactly one of X < 0, X == 0, and X > 0 is true

Again, many classic compiler optimizations are no longer permitted.
IEEE arithmetic has introduced a fourth comparison state called unordered.

That is, since a NaN does not compare equal to, less than, or greater than any
X , the relationship between a NaN and X is said to be unordered. Much of the
burden of this additional complexity is imposed on the programmer. There is
some debate within NCEG as to whether the following additional operators are
needed:
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!<=> unordered
<> less or greater
<=> less, equal, or greater
!<= unordered or greater
!< unordered, greater, or equal
!>= unordered or less
!> unordered, less, or equal
!<> unordered or equal

Other possible solutions include defining library functions such as isnan
and isunordered, or a more general function isrelation that handles all
relations. The addition of so many new operators to the ANSI standard has
been the subject of much debate. The argument against isnan is that it would
require pervasive use of the logical operators:

if ((!isnan(X) && !isnan(Y)) && X < Y) { /*...*/ }

The current consensus seems to be that the addition of so many new rela-
tional and equality operators is too great a change. The isnan or isunordered
alternative is not an attractive prospect. Therefore, I suspect that the function
isrelation will be adopted by NCEG. The isrelation function would likely
be declared in the header <numeric.h> along with the following macros:

#define FP_LESS
#define FP_GREATER
#define FP_EQUAL
#define FP_UNORDERED

The statement:

if (isrelation(X, FP_UNORDERED | FP_LESS, Y)) { /*...*/ }

could be written as:

if (X !>= Y) { /*...*/ }

if the additional relational operators are added. An equivalent way of writing
this statement using the isnan functions is:

if (isnan(X) || isnan(Y) || X < Y) { /*...*/ }

Again, common mathematical practice does not admit to the presence of a
NaN. This also requires special architectural considerations to ensure that two
identical representations compare unequal (remember, NaN == NaN evaluates
to false) Furthermore, the following example:

if (x < y) func1(); else func2();
if (x >= y) func1(); else func2();
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could surprise the IEEE-naive programmer because function func2 is called for
both cases if either x or y is a NaN. That is, the equivalence:

X < Y ≡ !(X >= Y )

does not apply to IEEE floating-point arithmetic.

Infinity

IEEE arithmetic defines both a positive infinity and a negative infinity. In
general, infinities are quite useful for determining the direction of overflow of
operations on real numbers. The only unfortunate aspect of signed infinities
is that they do not map onto Cartesian complex numbers in consistent ways
because they can only capture the notion of infinity in one of four directions:
0, π/2, π, and 3π/2. Section 6.2 of the IEEE standard states:

“Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infinities or
extremely wide range) that are not the subject of the standard.”

This is an explicit admission that the rules do not extend to IEEE complex
numbers. A projective infinity (without a sign) permits the use of polar coor-
dinates where magnitude (absolute value) infinity can come in the directions
(angles) 0 through 2π.
The IEEE notion of infinity is different from the geometric model described

below. Imagine a sphere and place it on the complex plane right on the origin.
A line drawn from the very topmost point of the sphere to any point in the
plane will intersect the sphere at one point. In this way, each point in the plane
can be mapped in a one-to-one way onto a unique point on the surface of the
sphere. All the points in the plane infinitely far from the origin, no matter
in which direction, map onto the topmost point of the sphere. The geometric
model defines a unique infinity.
However, there are other ways to map the points infinitely far from the ori-

gin. Imagine a hemisphere placed on the complex plane at the origin. (Similar
to a bowl sitting on a table). The top of the hemisphere is the top circle. Map
the entire complex plane one-to-one onto the surface of the hemisphere by draw-
ing a line from each point on the complex plane to the center of the top circle.
In this model there are infinitely many infinities, all along the circumference of
the top circle. This is the IEEE model where +∞ and −∞ are the two points
on the real axis that are infinitely far from the origin. This model is well suited
for real numbers but does not extend very well to a Cartesian representation of
complex numbers. Polar coordinates are a natural way to exploit the geometric
infinity because there is no sign. Unfortunately the IEEE standard does not
define a projective infinity, making it an excellent candidate for a future exten-
sion. So far, the NCEG committee has declined to consider the possibility of
directly supporting polar representations of complex numbers.
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Input and Output

Adding NaNs, infinities, and signed zeros to C also affects the I/O and string
conversion functions. There must be ways of reading and writing these new
linguistic entities. For instance:

scanf("%f", &x);

could be made to accept any of the following input lines (in either upper or
lowercase):

+NAN
-NAN
+INFINITY
-INFINITY

Similarly:

printf("%+e", x);

could be made to print any of the following output lines:

+nan
-nan
+infinity
-infinity

while:

printf("%+E", x);

could be made to print the same output but with the words spelled in uppercase.
While it is clear that some mechanism for printing NaNs and infinities is

required, there are still details to be worked out. For instance the format for a
signaling NaN is proposed to be:

+NAN(n-char-sequence)

There are questions about allowing INFINITY (without an explicit sign) to
be an acceptable numeric input line for scanf. The functions atof and strtod
are also affected by NaNs and infinities in a similar way.
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Decimal Conversions

Example 2 shows that the Cray Research Inc., implementation has a limit to
the number of decimal digits that can be converted to floating-point format and
back to decimal representation without losing any information. There has been
considerable debate recently about just what conversion requirements should be
imposed on IEEE floating-point implementations. The term correctly rounded
is used to describe a number that has been converted to match the closest
floating-point representation. Since a real number X is probably not exactly
representable, it is desirable to pick the correctly rounded value. This can be
viewed as:

<-------+--------+--------+--------+--------+------->
X0 X X1 X2 X3 X4

where X1 is the floating-point number that is closest to the real number X .
It is certainly possible to develop conversion functions that perform correct
rounding, but again there is a conflict between performance and accuracy. The
ANSI C standard (§3.1.3.1 Floating Constants) contains the following quote:

“If the scaled value is in the range of representable values (for its
type) the result is either the nearest representable value, or the
larger or smaller representable value immediately adjacent to the
nearest representable value, chosen in an implementation-defined
manner.”

This means that the ANSI C standard permits an implementation to choose
either X0, X1, or X2. The IEEE standard requires correct rounding for a large
but incomplete subset of decimal conversions. The current proposal before the
NCEG committee, however, states that:

“The value of a constant with DECIMAL DIG or fewer decimal digits
is correctly rounded (where DECIMAL DIG is the number of decimal
digits to which an implementation can correct round).”

The rationale given for this extension to the IEEE standard is that “practical
methods are now available.” This is a source of controversy. This rationale does
not address performance. It is easy to develop perfect conversion routines, but it
is not clear that the performance of these methods will compare favorably with
the current techniques. For instance, Cray floating-point format has eight times
the dynamic range of the IEEE 754 64-bit floating-point format. The worst case
requires simulating exact integer arithmetic with operands exceeding 8,000 bits.
Even the proposed DECIMAL DIG restriction is controversial. This is an obvious
concession to performance. If perfect conversion is the overriding concern, then
why not require a 1000 digit floating-point number to be correctly rounded?
The answer is that performance always wins.
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Conclusions

There are certainly many good things to be said about the IEEE floating-point
standard. It has done a great deal to promote portability for numerical and
scientific applications across implementations. It raises many thought provoking
questions, however. We will learn more about the impact of IEEE arithmetic
on programming environments by creating a C binding.
I do believe, though, that blind adherence to the IEEE standard is not

necessarily in the best interest of all vendors and their customers for both
performance and linguistic reasons. Vendors need to question the effects of
certain aspects of the standard when performance is an issue. Some of these
considerations are:

• signed zeros
• round to +∞
• round to −∞
• perfect rounding for decimal to binary conversions

Problem solving requires creative techniques and tools. Blind adherence to
everything in the IEEE floating-point standard could be the cause of losing
an important benchmark and thus an important sale. On the other hand, nu-
merical instability is a major source of irritation for customers. The ability to
balance these conflicting needs is a challenge. We may have to incur the bur-
den of providing multiple arithmetic environments to support diverse customer
needs. One environment provides slower but more accurate arithmetic and the
other provides high performance but less accurate arithmetic.

I would like to especially thank Tim Peters from Kendall Square Research,
Inc., for his insight and valuable opinions in preparing this article.
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Abstract

The ANSI C language standard contains information on how to process
signals directly from C. Since signal handling is machine dependent the
requirements of the standard are broad enough to allow compliance in a
general manner. Implementors are free to add extensions to support the
special characteristics of their target machines.

The C compiler and runtime library developed at Analog Devices con-
tains extensions that increase applicability of the C language to embedded
Digital Signal Processing (DSP) applications. In this article, we will look
at some of these extensions.

Introduction

The power of C has been available to developers of interactive software for
many years. However, the world of real-time embedded systems such as radar,
telecommunications, graphics engines, and control systems had been consigned
to the fate of hand-coded assembly language.
The past few years have seen a dramatic increase in the number of C com-

pilers available for embedded systems development. These compilers are often
used for developing control code for an application, but a lack of efficient code
generation and access to a processor’s hardware features has hindered the devel-
opment of complete DSP applications in C. While code generation is improving,
work must still be done to provide access to the hardware.
Signal handling enhancements can be used to access some of the special

purpose hardware provided with today’s processors. Applications that require
IEEE floating-point hardware, interprocessor communications, and external
communications need a way to interface to these functions. These resources
are often supported through the use of signals.
This article covers some of the work being done at Analog Devices to provide

a software interface to the hardware signals of the host processor.
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A Refresher Course in Signals

For the purpose of this article, signals will refer to two things, interrupts and
flags. An interrupt is a signal used to indicate a situation that requires the
immediate attention of the processor. (A common example of an interrupt is
the Control/C key combination on an ASCII keyboard.) If an interrupt occurs
that is not being ignored (masked out), normal program flow is altered. The
processor begins to execute an interrupt service routine.
An interrupt service routine is a small routine that is designed to deal with

a particular interrupt. It may take some corrective action, sample data, or per-
form some other task. These routines are characterized by their small size and
clearly defined purpose. A service routine to handle an inadvertent Control/C
might ask the user for confirmation before exiting the program, for example.
When the service routine has completed, the interrupted program resumes ex-
ecution. It is not obvious to a program that the interrupt ever happened.
A flag differs from an interrupt in that it does not indicate a critical con-

dition. The situation that activates the flag does not require the immediate
attention of the processor. A flag is activated and the program can test it
during normal program flow.
A flag might also be used for interprocessor communications. One processor

might inform another that data is available in common memory. The second
processor can test the state of the flag and act on the data when it has time.

Hardware Support for Interrupts

There are many different schemes for supporting interrupts in hardware. One
of the most common approaches, where a vector table is placed in memory, is
described in this section.
Interrupts generally come in two flavors, internal and external. Internal in-

terrupts are those that are generated within the processor itself. Two examples
are an internal timer and a floating-point operation that generates an exception.

External interrupts come from outside the processor. They are indicated by
a change of state on an external pin. A chip can provide separate pins for each
interrupt, or a single pin that connects to every interrupt source.
The vector table approach relates a specific memory range to each interrupt.

The range can be a single location, or several contiguous locations. When an
interrupt occurs, the processor jumps to the designated memory address. In
some cases, the service routine can fit within the memory range, otherwise the
location contains a jump to the actual routine.
There is an established protocol that the processor follows concerning how

and when an interrupt service routine can itself be interrupted. The simplest
method is to shut off (or mask out) other interrupts while executing a service
routine.
Ignoring interrupts has some disadvantages. If a more important interrupt

occurs (such as a stack overflow) while another is being serviced, information
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may be corrupted. It is also possible that an interrupt may lock-up or never
return. Since other signals would be masked out, the system might have to be
powered-down, or reset, to regain control.
The problems described above can be minimized by prioritized interrupts.

This technique assigns a rank or priority to each interrupt. A higher priority
interrupt will be serviced even if another (lower priority) interrupt is active.
There are other signals that may be included in the vector table but are not

usually considered interrupts. The reset signal often has a vector table entry.
Once the chip has completed the hardware reset operation, the first instruction
executed is located at the reset vector address.
This article ignores reset because it is not used to signal an event that a

program would handle. The reset signal may occur at system power-up or some
other extraordinary event. Reset will preempt all other actions of the chip, and
is usually referred to as non-maskable, meaning that it cannot be ignored.

Signal Handling in ANSI C

The signal handling capabilities of the ANSI C standard are open-ended to
allow implementors to customize the library to their particular environment.
The required support for interrupts is covered by two routines: signal, which
is called to identify a particular routine to be executed upon receipt of the
defined signal, and raise, which provides a mechanism to invoke the handlers
through software.
The signal routine has several drawbacks. The most significant problem

encountered by a real-time application is that signal only provides handling
for one invocation of an interrupt. After an interrupt has been serviced once,
handling is returned to the default state.
An application that is only interested in catching and handling a Control/C

in a clean fashion may not need to deal with multiple interrupts. Once the first
interrupt occurs, the program jumps to a cleanup routine and exits. The world
of real-time systems, however, does utilize repetitious interrupts. A periodic
interrupt might be designated as a sampling clock. The signal would indicate
that a converter or other device needs to be serviced. For example, an appli-
cation involving speech processing might sample a converter at 8000 times per
second.
A system for supporting interrupts that requires the interrupt service routine

to be re-designated after each invocation would incur an undesirable overhead.
Support for continuous handling of a signal can be provided by the addition
of a single routine. The new routine, referred to as interrupt, operates like
signal. The only difference is that once a handler has been designated by a call
to interrupt, it will continue to be invoked every time the specified interrupt
occurs. A routine that reads a sample from a converter at a specified interval
can now be used with little overhead.
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Analog Devices’ Implementation

The Analog Devices family of DSPs supports a vector table with prioritized
interrupts in hardware. Currently only non-prioritized interrupts are supported
by the library, but the library and C compiler in development for the ADSP-
21000 will support prioritized interrupts.
Analog Devices has two processor types with production grade C compilers

at this time. The ADSP-2100 microprocessor supports four external interrupts
(IRQ0, IRQ1, IRQ2, and IRQ3) that have a pin dedicated for each. A single
memory location is provided for each interrupt. The ADSP-2100 does not
generate any internal interrupts.
The ADSP-2101 microcomputer provides memory, serial ports, and a timer

on-chip. The timer and serial ports are supported by several internally gener-
ated interrupts. The interrupt vector table provides additional space to support
these interrupts, and also increases the space dedicated to each interrupt. There
are four memory locations assigned to each interrupt. Assembly routines that
are three cycles or less can be placed entirely in the vector table. No addition
jump is needed.
The software implementation begins with an interrupt controller. This code

is executed before the handler. The controller has three primary responsibilities:
saving registers, determining what will happen when this same interrupt occurs
next, and calling the service routine.
Whenever a C subroutine is entered, most registers are saved on the stack.

(Several scratchpad registers would not normally be saved during a subroutine
call. They must be saved on the stack before calling the server.) There are
also registers that the language assumes will contain specific values. Since
the interrupt may have occurred during a section of the user’s assembly code,
where their values may have been changed, the registers are saved and set to
the default values.
The last step before calling the service is to determine what action will be

taken the next time this interrupt occurs. This is accomplished by dedicating
two memory locations to each interrupt. The first location contains the address
of the handler for this invocation. The second contains the handler’s address
for subsequent invocations.
The first location is read and used for the CALL instruction. The second

location is copied into the first. The importance of this step can be seen by the
way signal and interrupt set these locations.
The signal routine sets the first memory location to the address of the

handler specified. The second location holds the address of a known Return-
From-Subroutine (RTS) instruction. The first invocation of an interrupt will
cause the handler to be executed. Subsequent invocations will be a call to an
RTS, which has no net effect.

interrupt sets both the first and second memory location to the address of
the handler. The interrupt controller re-loads the address of the handler (from
the second location), causing the same handler to be executed repetitively.
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Assembly Language Interrupt Support

The routines provided in the extended signal library are fast enough to be used
in many real-time applications. Those that cannot tolerate any overhead can
be hand coded in assembly language. Although these routines would not be
written in C, the language must still provide support for the programmer.
Special purpose hardware often has dedicated registers that can be used for

high speed operations. The ADSP-21xx microcomputer supports high speed
serial port/memory transfers called autobuffering. During a port write opera-
tion, autobuffering copies a single value from a memory buffer and sends this
value to the serial port. An interrupt is generated only after the entire buffer
is transferred.
The single instruction needed to execute this operation is generated by the

processor internally. The programmer has no way of altering the code (such
as saving registers). This requires that certain registers be dedicated to the
autobuffering operation. The three dedicated registers contain a pointer to the
next memory location, a step pointer, and an array length pointer.
When an entire buffer of data has been written (or read), a serial port

interrupt is generated. The program can provide a new buffer for output.
Program interruption is shifted from one interrupt per sample to one interrupt
per buffer (which can be up to 16k samples).
This operation provides such a dramatic increase in efficiency over a C lan-

guage service routine that there needs to be a way to support it. The ADSP-
21xx C compiler provides a pragma directive that reserves specific registers for
use in autobuffering operations.
When an application requires the use of autobuffering, the pragma directive

defines which registers will only be used for that purpose. The C compiler will
not use those registers during code generation. The efficiency of the compiler is
slightly reduced due to the register limitations, but the overall speed increase
can be significant.

Special Purpose Interrupts

When a processor contains an internal timer, it is often supported as an inter-
rupt. Although any support provided for interrupts in general will be applicable
to timers, there are other extension that are necessary for a program to be able
to utilize a timer.
A timer is different from the clock that maintains system date and time.

There may or may not be an actual clock associated with a timer. The timer is
also distinct from a clock in that it counts processor cycles. Since the compiler
is developed for the processor, not a complete system, the clock speed and other
architectural features are unknown.
The extensions developed for the ADSP-21xx library include three routines

that provide access to the internal timer. The activation/deactivation routines
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are timer on and timer off. These are very fast routines. They start or stop
the processor and return the current timer count. The parameters of the timer
are set using the timer set routine.

Other Signals of Interest

Not all signals of interest to an application generate interrupts. A flag input
signal is one such example. A flag might be connected to an external pin. This
provides a mechanism for the outside world to signal a program that an event
less critical (than an interrupt) has occurred.
The event signaled by a flag does not require the program flow to be in-

terrupted, but may be of interest for the program when time is available. A
flag may be generated by an internal event. A computational unit (such as
the adder) might signal that some input has exceeded a specified limit. The
program may, or may not, take action on this information depending on the
situation.
The extension provided in our compilers includes a routine to test the state

of various flags supported by the processors. The routine, poll flag in takes as
input the flag name (such as FLAG IN 0), and a condition to test. The routine
checks the specified flag and does not return until the specified condition is
satisfied.
There are five basic conditions against which a program might wish to test a

flag. The test may be for a flag state, such as low or high or a certain transition
might be desired, such as low-to-high or high-to-low. Finally, the program
might wish to test for any transition at all.

Conclusions

The ability to control a variety of signals directly is one important step in the
acceptance of C as a development language for embedded systems. The ANSI C
standard provides a very general framework which can be enhanced to provide
a useful signal handling environment.
The library and language extensions described in this article are being used

for some DSP projects. Further extension to the signal library are being con-
sidered by the Numerical C Extensions Group (NCEG). NCEG is expected
to include support for the floating-point exceptions that can generate runtime
signals.

Gordon A. Sterling is a Signal Processing Engineer at Analog Devices, Inc.,
a designer and supplier of DSP hardware and software development systems.
He can be reached at (617) 461-3076. Analog Devices is active in NCEG.
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Abstract

The C language has prospered for both its expressiveness and its brevity.
That expressiveness includes its suitability as a systems language, used to
express (among other things) the UNIX operating system. Yet, while the
UNIX System V development effort turns to supporting multi-threading
facilities, its “native language” C provides no explicit language facilities
for instantiating and controlling multiple threads. Concurrent C, a lan-
guage developed by Narain Gehani and William D. Roome at AT&T Bell
Laboratories, provides a concise notation for multi-processing on multiple
processors as well as multi-threading on a uni-processor, while supporting
full and correct C.

Concurrent C is a superset of the C language that provides facilities
for abstracting events into defined processes. These processes are created
dynamically, execute in parallel, and interact with each other to carry
out some unified and purposeful activity. The purpose of this article is to
provide both a conceptual and syntactical overview of the language, as
well as to demonstrate its orthogonality to another C extension, C++.

A C Extension for Multi-Processing

The guiding principles underlying UNIX system design—“small is beautiful”
and “less is more”—apply to the C language as well. Indeed, C, with a keyword
list of 32 words, might qualify as a “little language.” The simplicity of its design
and flexibility of its syntax rules can lead to concise and expressive code.
In keeping with other small languages supported under UNIX, C-related

semantics have been expanded by preprocessors and functions, leaving the base
language unchanged. For example, C has been extended grammatically to sup-
port explicit facilities for data abstraction, as described by Stroustrup [7]. (Im-
plemented as a preprocessor, C++’s cfront has assisted rapid language evolu-
tion, obviating repeated revisions to users’ compilers.)
C’s expressiveness includes its suitability as a systems language. Yet, as

UNIX System Laboratories, Inc. turns its attention to multi-threading, UNIX
System V’s “native” language C provides no explicit facilities for instantiating
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and controlling multiple threads. These semantics, however, have been provided
by the extension Concurrent C.
Concurrent C is an upward-compatible superset of C that provides facili-

ties for multi-processing as well as for multi-threading on a uni-processor. In
addition, Concurrent C supports multi-processing on a loosely coupled multi-
processor over a Local Area Network (LAN). Implemented as a C language
extension, it supports facilities for process creation, process control, and syn-
chronous and asynchronous transactions. Concurrent C transactions are mod-
eled after the extended rendezvous of Ada.
Like C++, Concurrent C is implemented as a language extension rather

than as a library of functions for concurrent tasking. Consequently, it is pos-
sible to provide a notation that is intuitive to the underlying problem domain.
Gehani [5] stakes out the position in favor of language extensions as follows:

Library functions for specifying concurrency are in general awkward
to use, for the following reasons:

1. Providing the needed functionality is often not straightforward.
2. Using them can have a negative impact on program readability
because they do not make the concurrent parts of a program
easily identifiable.

3. A compiler might not be able to perform type checking and
optimization because it would not be able to tell the difference
between concurrent and sequential programming facilities.

4. Function call overhead might result in a certain degree of inef-
ficiency.

5. It might be difficult to design a standard set of functions that
can be implemented efficiently on a wide class of machines.

Beginnings

Multiple CPU environments, both loosely and closely coupled, are becoming
increasingly common. Concurrent C has been designed to exploit these pro-
cessors. The language’s inventors (in [2]) list four primary motives for having
designed Concurrent C:

1. Concurrent programming facilities are notationally convenient and con-
ceptually elegant when used for writing systems in which many events
occur concurrently, for example in operating systems, real-time systems
and database systems.

2. Inherently concurrent algorithms are best expressed when the concurrency
is stated explicitly; otherwise, the structure of the algorithm may be lost.

3. Efficient use of multiprocessor architectures requires concurrent program-
ming.
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4. Concurrent programming can reduce program execution time even on
uniprocessors, by allowing input/output operations to run in parallel with
computation.

Language Overview

As the function is the basic building block in C, so the process is the basic
atom in a Concurrent C program. Under Concurrent C, processes are created
dynamically, execute in parallel, and interact with each other to carry out some
unified and purposeful activity. Software construction, then, begins by isolating
and analyzing the events that must be carried out.
Each event may be defined in terms of a separate Concurrent C process.

The interface to each process is declared in a specification (using the keyword
spec). The implementation of each process is defined within a process body
(using the keyword body).

Process Interaction

Processes may interact by way of named transactions. Each process can initiate
a transaction (by naming it) and/or accept a transaction (using the keyword
accept). Information exchange can be bidirectional; transactions, therefore,
can return values (using the keyword treturn). Transactions are declared using
the keyword trans.
A transaction may be accepted according to a rich set of conditions set forth

in suchthat clauses, which set forth tests for acceptance, and by clauses, which
establish priority for acceptance. A timeout mechanism allows transactions to
be withdrawn if they are not processed within a specified interval (using the
keyword within).
Beyond the conditional acceptance of transactions supported by the accept

statement itself, a higher level of abstraction may be applied to transaction
acceptance using a select statement. This statement allows one of multiple
accept statements (as well as alternatives to transaction acceptance) to be
selected based on the return value of Boolean expressions, or guards. The
select statement is specified using the keywords select and or.

Process Scheduling and Assignment

One of Concurrent C’s strengths is its highly intuitive interface to both tightly
coupled multi-processors and loosely coupled processors connected via a LAN.
(Concurrent C has been ported to loosely coupled systems of unlike machines.)
While process scheduling is handled by an underlying scheduler (process

priority and the duration of each process run are left to the implementation
of each Concurrent C port), individual processes may be delayed (using the
keyword delay) and timed out (using the keyword within). In addition, a
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process may specifically be assigned a processor (using the keyword processor),
provided that multiple processors exist.

Process Model

Posing a basic question at this point brings to light several important issues:
“What is a process in the context of Concurrent C?” In general, we would say
that it is a single “thread of execution” with its own stack and machine registers.
But this answer begs further questions: “How do we differentiate between a
dynamic instance of a Concurrent C program, which is a process, and the
multiple, concurrent processes instantiated within each program?” “Are the
concurrent processes within a Concurrent C program independent a.outs?”
Answers vary depending upon the environment to which the language has been
ported.

Heavy-Weight vs. Light-Weight Processes

The UNIX system (under which Concurrent C was developed) supports multi-
processing, of course. UNIX system calls (e.g., fork, exec, and pipe), how-
ever, are not primitive to Concurrent C’s parallel programming facilities [4].
The UNIX pipe, expecting interprocess communication (IPC) to be linear and
unidirectional, does not support generalized IPC. In addition, the use of UNIX
system calls to create and control processes imposes a significant performance
penalty. Each such process occupies its own address space and is known as a
heavy-weight process. By contrast, Concurrent C processes running on a uni-
processor can occupy the same address space. Not being bound to a particular
address space, these light-weight processes allow for fast context-switching. Be-
cause the UNIX system kernel must change address spaces when it changes
processes, a UNIX process context switch can be quite expensive (≈1 ms on
a VAX 11/780). A Concurrent C process switch is significantly more efficient
(≈50 µs).
Processes in a multi-processor environment, however, may be instantiated

as independent a.outs. Each such process may be assigned its own processor,
carry out separate tasks, and later rendezvous to exchange information.

Concurrent Programming Model

The programming model selected for Concurrent C is based on message passing.
(A shared memory mechanism, called capsules, has been proposed for a future
release of the language [6].)
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Message Passing Facilities

Multiple processes communicate with each other using both synchronous and
asynchronous transactions. The model of information transfer during a syn-
chronous transaction is that of the extended rendezvous. That is, two processes
interact, exchange information bidirectionally, and then part, all within in a
single rendezvous.
The relationship is frequently described in terms of a client and a server. The

client requests the services of another process via a transaction. The process
furnishing the service, called the server process, rendezvous with the client,
carrying out the client’s request while the client waits for (blocks on) the server
process. When the server has completed its task, the client receives the results,
and the two part (though they may rendezvous again).
Concurrent C also supports asynchronous transactions. Here, processes can

compute and perform message sends in any way they want. Asynchrony maxi-
mizes parallelism; potential performance is further enhanced because no process
synchronization is required, and information exchange is only unidirectional. A
process sending a message does not block until the receiving process gets around
to accepting the transaction.

A Concurrent C Program

It is time for a taste of Concurrent C. The following example expresses the
client-server process relationship notationally (though its ambition as a pro-
gram is modest). A process client reads a character stream from stdin and
asks another process server to convert all lowercase alphabetical characters to
uppercase, then print the result on stdout.
The example programs below are a review of the concepts and keywords

introduced thus far.

Process Specifications

The Concurrent C keyword for declaring a process is spec. The following two
process specifications are stored in the file cli serv.h:

process spec client(process server Client);
process spec server()
{

trans void serv(int ch);
};

These expressions show the two primary roles a process may play—initiating
and accepting transactions. In fact, a single process may play both roles.



124 The Journal of C Language Translation – September, 1990

Processes that initiate transactions, such as client, must declare the pro-
cesses with which they will transact. Here, client specifies in its parameter list
that it will initiate a transaction with process server. In addition, it specifies
that the point of rendezvous will be called Client. Consequently, Client will
be defined within the client process, not the server process.
By contrast, processes that accept transactions declare those transactions

within braces. Process server specifies that it will accept a transaction (using
the keyword trans) named serv and that serv will involve the transfer of
integer-valued objects. We do not know the name of the process that will
initiate this transaction. This is appropriate, as many clients may call upon
a server process. Transaction serv does not return information to process
client, so it is declared to be void. (Transactions can be declared to return
information: all synchronous transactions are potentially bidirectional.) Note
that all transactions are synchronous by default.

Process Bodies

The keyword for defining a process is body. The bodies of the two processes,
stored in the file cli serv.cc, are as follows:

#include <stdio.h> // getchar, putchar, and EOF
#include <ctype.h> // islower and toupper
#include "cli_serv.h" // process declarations
process body client(Client)
{

int ch;
while ((ch = getchar()) != EOF)

Client.serv(ch);
Client.serv(EOF);

}

process body server()
{

int do_up;
for (;;) {

accept serv(ch)
do_up = ch;

if (do_up == EOF)
break;

if (islower(do_up))
putchar(toupper(do_up));

else
putchar(do_up);

}
}
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main()
{

create client (create server());
}

This program could have been simply a C program; Concurrent C is a
superset of C. As such, it includes preprocessor directives and C language
constructions. In addition, Concurrent C is orthogonal to another C exten-
sion: C++. Consequently, C++ constructions, such as the comments in the
preceding example, are valid input to Concurrent C.
The processes in this program are defined using a facility similar to the one

for defining functions in a C program. Two processes are defined: client,
which rendezvous with a process server. The point of rendezvous is named
Client: process client sends characters from stdin to Client, expecting
acceptance via the transaction serv (Client.serv); process server accepts
(using the keyword accept) these integer-valued objects via its transaction
serv (serv(ch)).
How do the two processes synchronize? They are created in main such that

the process identification number (PID) of process server is passed to process
client.

Compilation and Execution

Concurrent C programs are named with the suffix .cc and are compiled with
the command CCC. For example:

$ CCC -o cli_serv cli_serv.cc
$ cli_serv
cli_serv.cc:
$ cli_serv
hello, world!
HELLO, WORLD!
control-D
$

Instantiated Processes

We have said that a process, in the context of a uni-processor, is one of (po-
tentially) many threads of execution in a single address space. In the context
of a multi-processor, it is one of (potentially) many cooperating a.outs. Nota-
tionally speaking, we would say that a process is the instantiation of a process
definition. It is the creation (using the keyword create) of a process that has
been defined in the same program.
We have commented on the similarities of Concurrent C process definitions

to C function definitions. These similarities extend beyond the merely formal.
For example:
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• As a function body is a static block of code, so a process body is a passive,
static entity.

• As a function body is unique within a C program, so a process body is
unique within a Concurrent C program.

• As a function body can have variable declarations and receive copies of
variables, so a process body can declare and receive copies of variables.

• As a function body can be activated, so a process body can be instanti-
ated. Each can terminate and begin activation/instantiation again.

• As there can be multiple activation records of the same function on the
stack (as in recursive calls), so multiple instantiations of the same process
body can occur at any time during the life of the program.

Functions such as printfmay be called within an instantiated process; such
a function is said to be executing on behalf of the process.

Improving Parallelism

The client-server example is very simple. Some parallelism is provided: server
accepts transactions, performs case conversion, and prints while client reads
from stdin and initiates a new transaction. The two, nonetheless, must block
on each character. A program optimizing parallelism here must allow the two
processes to work independently and communicate via a process suited to that
purpose.
Another artificiality of the “hello, world!” program is the one-to-one rela-

tionship enjoyed by the client and server processes. In real terms, concurrent
processes would compete with other concurrent processes for a single transac-
tion. That is, the process accepting such transaction calls would select among
the pending transactions.
The following program, therefore, introduces a third process buffer to in-

termediate between client and server and to demonstrate how transactions
can be accepted from multiple processes. Consequently, it uses the Concur-
rent C select statement for choosing among multiple, pending transactions.
The program is written in C++ to demonstrate the orthogonality of the two
C extensions.

Process Specifications

The following file, called proc specs.h, contains specifications for the three
processes:
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#include "String.h"

process spec client(process buffer Buffer);
process spec server(process buffer Buffer);
process spec buffer(int full)
{

trans String& serv();
trans void request(String s);

};

There is not much to add here. The point of rendezvous is named Buffer.
It will be made at process buffer. It follows that the only process accepting
transactions is process buffer. Process buffer will accept the transactions
request and serv, both participating in the transfer of integer-valued objects.
Transaction serv will carry back data from the completed service, so it is
declared to return a String& value (defined as a C++ class below). Transaction
request accepts objects of type String, but it returns nothing. Processes
client and server will initiate transactions with buffer.

Process Bodies

The four programs below define the processes. The file buffer.cc, which fol-
lows, implements a process that will stand as a circular buffer between client
and server. Another notable change is that we reduced the total number of
I/O operations by handling strings instead of characters. (These strings are
abstract data types defined in C++.)

C++ Classes and Member Functions

First, here is class String, defined in the file String.h:

class String
{

char str[80];
public:

String();
String(const String&);
String& operator = (const String&);
int write(), read();
void allcaps();
friend int operator != (const String&, const String&);

};

Next, Stringmember functions and friends are defined in the file String.cc.
(Note that while Concurrent C accepts both C and C++ constructions, it re-
quires its input files to use the suffix .cc.)
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#include <string.h> // strcpy
#include <ctype.h> // islower and toupper
#include <stdio.h> // puts and gets
#include "String.h"

String::String() { str[0] = ’\0’; }
String::String(const String& rhs) {strcpy(str, rhs.str);}
String& String::operator = (const String& rhs)
{

if (this != &rhs)
strcpy(str, rhs.str);

return *this;
}

int String::write() { return puts(str); }
int String::read() { return

(gets(str) != (char *) NULL) ? 1 : 0; }
void String::allcaps()
{

for (char *ptr = str; *ptr != ’\0’; ptr++)
if (islower((int) *ptr))
*ptr = (char) toupper((int) *ptr);

}

int operator != (const String& s, const String& t)
{

return strcmp(s.str, t.str);
}

Processes Accepting Objects as Arguments

The processes client and server have changed in two ways, primarily. First,
transactions now involve objects of type String. Second, they both call trans-
actions, each rendezvousing at a point Buffer. In the following program,
client.cc, the transaction request reaches process buffer via this point:

#include "proc_specs.h"

process body client(Buffer)
{

String s, eof;
while (s.read())

Buffer.request(s);
Buffer.request(eof);

}
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In the following program, server.cc, the transaction serv also synchronizes
via Buffer:

#include "proc_specs.h"

process body server(Buffer)
{

String s, eof;
while ((s = Buffer.serv()) != eof) {

s.allcaps();
s.write();

}
}

The main program main.cc tells us, among other things, that Buffer is of
type process buffer:

#include "proc_specs.h"
#define MAX 32

main()
{

process buffer Buffer;
Buffer = create buffer(MAX);
create client(Buffer);
create server(Buffer);

}

As the process specifications suggest, processes client and server do not
interact directly: no PIDs are exchanged between them. They interact via
another process, buffer. What we have called a “rendezvous point” is actually
the PID of the created process buffer. Because client and server accept no
transactions, they establish no rendezvous points.

Selecting Among Transactions

The new process, buffer, allows for greater parallelism between client and
server. The following program, buffer.cc, selects among competing transac-
tions from either process client or process server:
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#include "proc_specs.h"

process body buffer(full)
{

String *buf; // circular buffer
String eof; // null String
int n = 0; // number of strings in buffer
int in = 0; // index of next slot
int out = 0; // index of next string
buf = new String[full];
for (;;)

select {
(n < full):

accept request(s)
buf[in] = s;

(in++) % full;
n++;

or
(n > 0):

accept serv()
treturn buf[out];

if ( buf[out] != eof ) {
(out++) % full;
n--;

} else
break;

}
}

Process buffer accepts transactions from both client and server. It re-
ceives String objects from client, via the transaction request, which it stores
in a circular buffer of String objects (buf). And it receives the transaction serv
from server, through which it returns objects from the same array, so server
can complete the task of case conversion and printing.
Process buffer accepts transactions from multiple processes. To distinguish

among them, a select statement is used. This statement has two alternatives,
separated by the keyword or. Each alternative begins with a Boolean test
called a guard identifying conditions under which an accept statement can be
executed. A select statement can have an arbitrary number of alternatives.

Returning Transaction Values

To return a value we need a new keyword: treturn. This statement causes the
transaction serv to return objects of type String.
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Deadlock

The term deadlock describes a state in which the program has not completed,
yet it is unable to continue execution. Given the preceding program, we might
wonder if the process buffer ever completes. The client process is able to
detect end-of-input through the member function read; the server process
terminates when it receives the object eof. Deadlock has been avoided in this
program by enabling the process buffer to detect eof coming out of the buffer
buf (lines 22–26).

New Directions: Shared Memory Facilities

Synchronous and asynchronous transactions also apply in a shared memory en-
vironment. The implementation of Concurrent C in that environment will very
likely exploit shared memory resources. In addition, Gehani [6] has proposed
an explicit facility for shared memory access: the capsule. The capsule blends
syntactically and semantically with the C++ data abstraction facility called
the class.
In that capsules encapsulate shared variables, they are similar to monitors.

By contrast to monitors, they satisfy Bloom’s [1] criteria for expressiveness of
synchronization conditions, support inheritance in the sense that a class does,
allow operations to execute in parallel, and allow operations to time out.

Summary

This paper has reviewed some fundamentals of a language that provides an
intuitive notation for abstracting and implementing concurrent events. As an
intuitive notation, Concurrent C makes a significant contribution in the area of
problem-solving. Few real-world problems are characterized by purely sequen-
tial phenomena. A well-abstracted notation for describing concurrent events
allows the programmer to think more closely in terms of the problem studied,
rather than in terms of a general implementation language.
As a language for instantiating concurrent processes, Concurrent C can de-

liver significant performance gains. In a multi-processor environment, concur-
rently processable components can be isolated and distributed for parallel pro-
cessing. In a uni-processor environment, concurrently processable components
can experience some parallel processing, as individual, cooperating tasks must
wait for resources, etc.
Because Concurrent C is orthogonal to C++ (it derives from the same

grammar underlying cfront), the modeling facilities supplied by the superset
language, Concurrent C/C++, are impressive. Using this language, we can
decompose problems both in terms of user-defined events and in terms of user-
defined types.
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16. Extended Multibyte Support

Jim Brodie

Abstract

This article reviews the Japanese Multibyte Support Extension (MSE)
proposal. That proposal defines extensions to Standard C for languages
requiring more than a single byte to represent a character (e.g., Japanese,
Chinese, and Korean). Some background into the current status of the
multibyte character support is presented. This is followed by a discussion
of the major components of the MSE proposal and some of the rationale
for their inclusion.

Normative Addenda and ISO C

It is very likely the approval cycle for the International Standards Organization
(ISO) C programming language standard will be complete sometime late in
1990 or early in 1991. At this point, it is expected the ISO standard will be
identical (except for various required formatting differences) with the ANSI C
standard. However, as the C standard has moved through the international
approval process, several issues have arisen. I have discussed in an earlier
column (Volume 1, Number 4)) the British desire for a Normative Addendum
to explicitly call out undefined behavior. The Normative Addendum, which will
be developed over the coming months or years, will be balloted and will extend
the ISO Standard currently being established. It is not just commentary. It
will have the full force of a standard.
Now the Japanese have submitted a proposal that will extend the content of

the Normative Addendum to include more complete support for languages re-
quiring more than a single byte to represent characters (e.g., Japanese, Chinese,
and Korean). Unlike the British proposal, which was aimed at editorial clarifi-
cation, the Japanese proposal is a request for a large and substantive change to
the language. The Japanese’s stated goal, however, has been to present the new
language support features as a strict extension to the C language and libraries.
It is not intended to change the meaning of any of the existing features of the
language.
In the remainder of this article I will present some background and then

look at the specifics of the the Multibyte Support Extension proposal.
[Ed: The Danish alternate trigraph proposal is also part of the normative

addendum. At the June 1990 ISO C meeting in London, it was suggested that
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the UK, Danish, and Japanese proposals each be in a separate normative ad-
dendum. Since they are unrelated, this makes sense and, I suspect, is likely.]

Background

Before we discuss the MSE proposal, it is useful to briefly review the current
state of the C Standard relative to multibyte character set support.
Standard C provides a basic level of support for language character sets

that require multibyte characters. The support is centered around the locale
facilities, the wchar t defined type, support for multibyte characters in C source
code (in string literals, character constants, comments, and header file names),
and a small collection of functions that support conversions between potential
encodings (representations) of multibyte characters.
Standard C recognizes two fundamental approaches to encoding characters

that require multiple bytes. The simplest is to have a character set that uses
the same number of bytes for each character. For example, you could support
a character set that has over 65,000 distinct characters in an encoding that
uses two 8-bit bytes per character. Characters that are encoded using these
constant, fixed length byte sequences, are called wide characters. (A wide
character is an atomic entity.) Each wide character representation is unique
and can be identified independent of any characters that may have preceded
it in a sequence of wide characters. Wide character strings are convenient to
work with because you always know where a character starts and stops. You
can conveniently perform operations such as splitting or concatenating strings.
They, however, have some drawbacks. Perhaps the most notable is that they
do not represent a very space-efficient encoding.
An alternative approach is to allow potentially variable-length sequences of

bytes to be used to represent characters in the extended character set. This
form of encoding may use shift codes so that the same byte value (or sequence
of bytes) may represent different characters, depending upon which shift state
has been entered using preceding shift codes. Characters encoded using one of
these encodings are known in Standard C asmultibyte characters. (This naming
is somewhat confusing, since the constant fixed length wide character encoding
is also a multiple byte encoding.) The standard describes multibyte characters
and their encodings in the following way:

“A multibyte character may have a state-dependent encoding,
wherein each sequence of multibyte characters begins in an initial
shift state and enters other implementation-defined shift states when
specific multibyte characters are encountered in the sequence. While
in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation
for subsequent bytes in the sequence is a function of the current
shift state.”
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For example, characters from the English alphabet may be represented by
their ASCII single byte representation. The language encoding may then use
multibyte sequences to represent the additional required characters (e.g., the
Kanji characters).
Multibyte encodings that use either variable length byte sequences and/or

shift states are frequently more compact than the corresponding wide character
representation. They, however, bring their own collection of problems. For
example, you cannot begin reading in the middle of a string. Without the
context from the beginning of the string you do not know what shift state may
have been entered.
Standard C supplies a small collection of basic functions for working with

and translating between wide character and multibyte encodings for characters.
It also supplies a defined type, wchar t, that is the integer type used to hold
a single wide character. The primary facility supplied by each of the multibyte
character functions is as follows:

mblen – returns the number of bytes, from a string, that constitutes the next
multibyte character

mbstowcs – converts a string from multibyte to wide character encoding.

mbtowc – converts a character from multibyte to wide character encoding.

wcstombs – converts a string from wide character to multibyte encoding.

wctomb – converts a character from wide character to multibyte encoding.

All of the wide character and multibyte functions are under control of the
LC CTYPE category of the current locale (which is established by the setlocale
function).
When this basic support for large character set languages was proposed,

the Japanese responded favorably. However, they continued to ask for a more
complete package of functions and capabilities. At the time (several years ago),
X3J11 argued that a more complete set was inappropriate because no existing
practice had established what this set of functions should be.

The MSE Proposal

In the meantime the Japanese have, as you might expect, continued to do a
lot of work in this area. They have continued to look for a single common
set of facilities and functions so that portability is ensured. They have worked
with a number of organizations, including the Japanese UNIX System Advisory
Committee to AT&T, Hewlett-Packard, IBM, X/OPEN, the Open Software
Foundation, UNIX International, and several User groups (such as Japan UNIX
Society and UniForum) to prepare a coordinated proposal based upon current
practice and experience. They now believe sufficient existing practice has been
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accumulated. The time is now ripe for complete language support for character
sets that require multiple bytes. The MSE proposal is this unified proposal.
It is a set of generic extensions that can be applied to support any language
requiring a large character set.
The MSE proposal builds upon the existing functions and capabilities al-

ready supplied by Standard C. The proposal adds several major components.
It includes a recommendation that the defined type, wchar t be promoted to
a basic type (like char, int, double, etc.). It attempts to clarify several parts
of Standard C that the Japanese feel are ambiguous or incomplete with regard
to multibyte character sets. Finally, it recommends a set of wide-character-
oriented functions that parallel many of the current character oriented functions
in the standard library.
Let’s look at some of the details of the MSE proposal.
The rationale accompanying the MSE proposal argues for making wchar t

a full-fledged type, rather than a defined type (which is simply a pseudonym
for one of the basic types). They argue several technical points, but the most
compelling argument is that C should have fundamental support for a “char-
acter” data type that is not tied to single byte units. Making a character type
that supports multibyte characters as conveniently as single byte characters is
part of the full integration and recognition of the multibyte character sets.
The adoption of another basic type has many problems and ramifications

throughout the language. For example, promotion rules and rules for what
operations can be performed using this new type must be established. This
may be somewhat difficult given the fact that there is no obvious “natural”
position in the type hierarchy for a wchar t type. X3J11 spent several years
working out the subtle ramifications of introducing the signed char type into
the language. There will undoubtedly be serious concerns as to whether the
ISO or ANSI committees can get all of the corresponding language changes
completed correctly, within a short period of time.
In the area of clarifications, the MSE proposal adds the clarification that a

shift-sequence (used in multibyte character encodings) does not have a corre-
sponding wide character encoding. Shift-sequences are used to establish a state
so that other characters can be determined.
The bulk of the proposal addresses the need for a set of library functions

that support the input, processing, and output of characters from the multibyte
character set. It also addresses a wide range of the support issues that arise
with the inclusion of the new library functions.
With Standard C, text handling programs that work with multiple character

encodings on input and output have little support from the standard library,
particularly if the character encoding uses shift states. The program must
explicitly interpret and handle shift-sequences to determine the shift state for
any text streams. These dependencies make the programs character-encoding-
specific and therefore non-portable. Even when dealing with strings, the shift
sequences can cause problems. Consider the following example, where .X and
.Y represent multibyte characters and SI and SO stand for the Shift In and
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Shift Out sequences.

char *s1 = ".X.Y"; /* SI .X .Y SO \0 */
char *s2 = ".X"".Y"; /* SI .X SO SI .Y SO \0 */
int result

result = strcmp(s1, s2);

The Shift In and Shift Out sequences can be treated as elements of the
multibyte character set. Therefore, shift-sequences in the string literal may
remain after the string concatenation. This means that, despite the intuitive
expectation, the result of the strcmp function may be that the strings do not
compare equal.
Because of the many problems related to handling the multibyte character

encodings (with their variable length characters and shift states) the committee
developing the MSE proposal decided to recommend a complete set of functions
that support the wide character encodings. The multibyte character encodings
are still allowed, they are simply not supported by library functions. This,
in essence, will make the wide character encodings the “favored” encoding for
most C language operations.
The following lists enumerate the MSE proposal’s recommended functions.

These functions fall into a number of categories ranging from wide character
testing functions to wide string time conversion functions. As a general rule,
the functions map very closely to the Standard library’s character oriented
functions with similar names. For example, iswalnum is the wide character
version of the isalnum function.

• Wide character testing: iswalnum, iswalpha, iswcntrl, iswdigit, etc.
• Wide character case mapping: towlower and towupper.

• Wide character classification: set wctype and is wctype.

• Wide character input/output: fgetwc, fgetws, fputwc, fputws, getwc,
getwchar, getws, putwc, putwchar, putws, and ungetwc.

• Formatted wide character I/O: vwsprintf, wsprintf, and wsscanf.

• String Conversion (all of the string-oriented function names are formed
by replacing the str with wcs): wcstod, wcstol, and wcstoul.

• Wide string handling: wcscpy, wcsncpy, wcscat, wcsncat, wcscoll,
wcscmp, wcsncmp, and wcsxfrm.

• Wide string search: wcscrt, wcscspn, wcspbrk, wcsrchr, wcsspn, wcswcw,
wcstok, and wcslen.

• Wide string time conversion: wcsftime.
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These functions reflect the libraries that are being developed in implementa-
tions that support multibyte character sets. These functions provide a standard
programming environment where a programmer can work consistently in a wide
character environment, rather than needing to constantly drop back into the
byte level operations supplied by functions such as getc or putc. This is im-
portant if programmers who work in multibyte character set environments are
going to develop correct code in a highly productive manner.
As noted above, almost all of the wide character functions correspond to

existing character oriented functions. The exceptions to this are the wide char-
acter classification functions set wctype and is wctype. These functions are
used to handle the implementation-defined character classification classes. The
proposal describes these functions in the following way:

The functions set wctype and is wctype classify characters in
the same style as the traditional ctype.h functions (e.g., isspace
and isalpha), according to the rules of the coded character set
defined by character type information in the program’s locale.

The set wctype Function

Synopsis

wctype_t set_wstype(char *property);

Description

The set wctype function is defined for valid property names as
defined in the current locale. property is a string identifying a
generic character class for which codeset specific type information
is required. The function returns a value of type wctype t, which
can be used as the second argument to a call of is wctype ...

The is wctype Function

Synopsis

int is_wctype(wchar_t wc, wctype_t wc_prop)

Description

The is wctype function determines whether the wide character
wc has the property wc prop, returning true or false ...

This pair of functions provides an open ended character classification mech-
anism that can be customized to the classification needs of each language envi-
ronment. While the complete list of property names is implementation-defined
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for each locale, a standard set ("alnum", "alpha", "cntrl", "digit", "graph",
"lower", "print", "punct", "space", "upper", and "xdigit") is reserved for
the standard character classes. For example, the following call would be used
to determine if the wide character in the data object associated with the name
c is a numeric digit.

is_wctype(c, set_wctype("digit"));

When using the standard property names, these functions duplicate the wide
character testing functions (e.g., iswdigit and iswalpha).
In addition to the collection of new functions, the following functions are

modified to support additional format specifiers (%ws and %wc) that support
wide character encoded strings and characters: printf, sprintf, fprintf,
vprintf, vsprintf, vfprintf, scanf, sscanf, and fscanf.
There are a variety of issues surrounding the introduction of these wide

character format specifiers. An interesting issue that the proposal deals with is
the difficulty of controlling how many print positions will be taken up by a char-
acter (in the real world some characters may span several printing positions).
This becomes very important, for example, when trying to output columns of
information in a database or spreadsheet. The question is “When you specify
a field width or precision, are you specifying it in terms of wchar t characters,
(independent of how many print positions are required for the representation)
or single byte character (char) print positions?” The answer is “It depends!”
The following table shows that the MSE proposal uses different meanings

for the field width and precision numbers, depending on the function and the
presence or absence of the # flag.

Functions Field width Precision
printf byte char byte char (as default)
sprintf character wchar t (with
fprintf the # flag)
vprintf
vsprintf
vfprintf
scanf byte char N/A
sscanf
fscanf
wsprintf character wchar t character wchar t (even

if # flag is specified)
wsscanf character wchar t N/A

Consider the case where you want to print out a string of wide characters
that contains several characters that require double width printing (they are
designated as .A, .B, .X, and .Y). The other characters, a, b, and c, are single
width characters. The following five calls to printf and wsprintf:
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printf("1234567890123\n") /* gives a reference line */
printf("%13ws\n", L".A.Babc.X.Y");
printf("%13.6ws\n", L".A.Babc.X.Y");
printf("%#13.6ws\n", L".A.Babc.X.Y");
wsprintf("%13.6ws\n", L".A.Babc.X.Y");

produce the following output:

1234567890123
.A.Babc.X.Y
.A.Bab
.A.Babc.X
.A.Babc.X

Despite the large number of functions, the MSE proposal does not recom-
mend the introduction of any new headers. Instead, it recommends these new
function prototypes be added to the existing headers.

Conclusion

The MSE proposal provides a comprehensive approach to extending the C lan-
guage’s support for languages that have multibyte character sets. It makes a
concerted effort to address the wide variety of issues that arise when making
this large change to the C language and library.
The proposal will be reviewed by X3J11 as well as by other C users through-

out the world1. Problems will be addressed and changes will likely be made.
However, since there is considerable world-wide support for the “complete” in-
ternationalization of the C language, it now appears likely that some variant
of this proposal will become a part of the International standard for the C lan-
guage.

Jim Brodie is the convener and Chairman of the ANSI C standards commit-
tee, X3J11. He is a Senior Staff Engineer at Honeywell in Phoenix, Arizona. He
has coauthored books with P.J. Plauger and Tom Plum and is the Standards
Editor for The Journal of C Language Translation. Jim can be reached at (602)
863-5462 or uunet!aussie!jimb.

∞

1This proposal will be discussed in detail at the ISO C meeting in Copenhagen this
November.
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Abstract

To translate a source language into a target language, the syntax of the
target language must be able to express the semantics of the source lan-
guage. This paper discusses the major mismatch between FORTRAN
semantics and C syntax which makes a clean translation of FORTRAN
to C difficult—that of character manipulation. From the standpoint of
FORTRAN, the problem is that there is no real unified approach to char-
acter manipulation. With C, the problem is that the C null-terminated
string construct is useless insofar as the semantics of FORTRAN are con-
cerned.

Introduction

In Goodman [1], the design of PROMULA.FORTRAN (a FORTRAN-to-C
translator) is discussed. In summary, the translator is a compiler whose output
code is C rather than some machine language. Using this design, two problems
must be solved. First, the resultant C program, once it is compiled and linked,
must behave correctly. Second, the program must be readable and maintainable
in its C form. A translation from FORTRAN to C is referred to as ‘correct’
if the final C program when compiled and executed on its platform produces
the identical results as the FORTRAN original would produce on its platform.
Such a translation is referred to as ‘clean’ if the final C program can be read
and maintained as easily by a C programmer as the FORTRAN original would
be by a FORTRAN programmer.
In Goodman [2], various numerical issues associated with ensuring the cor-

rectness of the C translations are discussed. In this paper, FORTRAN character
manipulation is studied. The conclusion drawn is that cleanliness must some-
times be sacrificed to achieve correctness. Though all FORTRAN codes can
be correctly translated into C, not all FORTRAN features can be translated
cleanly. The alternative of producing an incomplete or, even worse, incorrect
translation is completely unacceptable. Fortunately, given prior knowledge of
the techniques used in the program, the user may select a cleaner alternative;
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however, that selection may cause a syntax error either from the translator or
from the C compiler.

FORTRAN Character Manipulation

By far the most difficult task to be faced by the translator is that of FOR-
TRAN character manipulation. Despite the efforts of the various standards
committees, the problem is that FORTRAN as a living computer language has
no unified approach to character manipulation.
FORTRAN was originally designed to do ‘formula translation.’ It had little

use for characters other than to label the results of calculations. FORTRAN 66
has no CHARACTER data type and has no character manipulation statements
other than formatted I/O operations. Character data is simply hidden in what-
ever variable is convenient. Once a programmer stores character data in a nu-
meric variable, it is up to him to ensure that he does not use that variable for
anything else.
As the language matured, a CHARACTER type was added to the language

and some minimal machinery (such as initialization, assignment, concatenation,
and I/O) was added to manipulate these types of variables. However, since
there were many FORTRAN 66 programs still in existence, the use of the
new CHARACTER type did not preclude using the old character management
techniques as well. As the final blow, programs were then written which mixed
the old and new machinery. Things such as equivalencing numeric variables
and character variables were completely valid and are still in common practice.
When the FORTRAN 77 standard was established, the committee rightly

concluded that the way in which these FORTRAN dialects had implemented
characters was clearly not machine transportable and was unacceptable. There-
fore, they made all FORTRAN 66 techniques of hiding character data in numeric
variables illegal. In addition, they placed several restrictions on the placement
and handling of character variables, all intended to improve the portability
of the language. The standards committee, however, had totally ignored the
problem of what to do with existing programs. An aside here is that we first
attempted to write a translator which would take older dialects of FORTRAN
to the 77 standard. This effort proved impossible. The languages are simply
incompatible. FORTRAN 77 does not have the openness of C.
After the FORTRAN 77 standard came out, however, no compiler vendor

felt that he could afford to lose his customers by telling them that they had
to convert all of their FORTRAN programs into the new standard. Therefore,
all compiler vendors put features into their compilers that allowed existing
programs to still operate. Since there was no standard mixed FORTRAN, all
the vendors created their own extensions. Still today, as new compilers are
created, even for the PC market, they differ in how they deal with this problem
of FORTRAN 66 versus FORTRAN 77.
The problem is now compounded in that particular programs are being writ-
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ten not for either standard but rather for the incompatible hybrid combinations.
Every request for information about PROMULA.FORTRAN asks if we support
VAX FORTRAN, or Prime FORTRAN, etc.

Dealing With FORTRAN Conventions

In designing PROMULA.FORTRAN we decided that mixed FORTRAN di-
alects were the major barrier to using existing FORTRAN programs in a new
machine environment. Our treatment of CHARACTER data attempts to deal with
all of the dialects with which we are familiar. The basic FORTRAN program-
ming conventions, all of which violate the 77 FORTRAN standard, that had to
be dealt with were as follows:

1. Via DATA statements, noncharacter variables of any type may be initialized
with character data.

2. Via READ and WRITE statements, character data may be stored and trans-
mitted into or out of noncharacter variables of any type.

3. Character and noncharacter variables may be mixed in COMMON blocks or
across subroutine parameters.

4. The length of a character variable may be mixed arbitrarily with its struc-
ture. That is, a CHARACTER*20 has the same structure as 20 CHARACTER*1
or 5 CHARACTER*4 or 2 by 2 CHARACTER*5.

5. Character and noncharacter variables and arrays may be freely equiva-
lenced and must have the same structure. That is, an array of REAL*8
variables and an array of CHARACTER*8 with the same structure require
the same amount of memory and correspond exactly on an element by
element basis.

6. Equality and inequality tests between noncharacter variables and charac-
ter constants must produce the expected result, with the assumption that
the noncharacter variable contains character information.

7. A FORTRAN subprogram can define any of its arguments as being vari-
able length character strings. It is up to the calling routine to specify the
actual length of the character strings which it is passing.

The Translation Approach

A character variable is treated simply as a sequence of chars. It has no other
structure. CHARACTER*4 is identical to CHARACTER*2(2) or CHARACTER*1(4) or
a sequence of characters hidden in an INTEGER*4. The elements of a CHARACTER
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array are stored one after another with no intervening null characters or charac-
ter counts or intermediate character pointers. The C notion of a string as being
a null-terminated sequence of char is useless. Consequently, the C character
concatenation and string comparison functions, which depend on the null-byte
for their termination condition, cannot be used. This storage of character data
is simple and allows the easy simulation of the various tricks allowed by the
various dialects.
Unfortunately this simple approach produces dirty translations, as the fol-

lowing sections will show.

Initializing CHARACTER Values

The first example shows how character variables are initialized. It presents a
CHARACTER type declaration with associated initializations.

SUBROUTINE DEMO
CHARACTER*10 NAME(4:8)/’Charles’,’Frederick’
+ ,’Andrew’,2*’Mary’/
RETURN
END

The default translation produced looks as follows:

void demo()
{
static char name[50] = {

’C’,’h’,’a’,’r’,’l’,’e’,’s’,’ ’,’ ’,’ ’,
’F’,’r’,’e’,’d’,’e’,’r’,’i’,’c’,’k’,’ ’,
’A’,’n’,’d’,’r’,’e’,’w’,’ ’,’ ’,’ ’,’ ’,
’M’,’a’,’r’,’y’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
’M’,’a’,’r’,’y’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’

};
return;

}

Note first that in the C output name is now a singly dimensioned array whose
size, 50, is 5 times 10. The first value is 5 since the FORTRAN definition
specifies 5 entries; 8 − 4 + 1. The second value is 10 since each character
string contains 10 characters. The user has the option to show name as a two
dimensional array. This produces the following alternative translation:
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void demo()
{
static char name[5][10] = {

’C’,’h’,’a’,’r’,’l’,’e’,’s’,’ ’,’ ’,’ ’,
’F’,’r’,’e’,’d’,’e’,’r’,’i’,’c’,’k’,’ ’,
’A’,’n’,’d’,’r’,’e’,’w’,’ ’,’ ’,’ ’,’ ’,
’M’,’a’,’r’,’y’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
’M’,’a’,’r’,’y’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’

};
return;

}

This translation looks a bit better, but still does not solve the real problem,
which derives from one of the quirks of C. There is no way to specify a sequence
of characters without using cumbersome notation, because the notation

"Charles "

would generate a null-terminated string and the notation

’Charles ’

is not accepted by most compilers, even though it seems completely clear and
unambiguous. [Ed: Note though that in char c[3] = "abc";, the null charac-
ter is not stored in the array.]
Next, note that the definition of ‘Mary’ must be repeated twice, since C

has no equivalent of initializer repeat counts. Note also that FORTRAN char-
acter strings are always padded with blanks and not null characters as is the
convention in C. It is this final fact that makes C and FORTRAN character
manipulation incompatible.
The case involving the initialization of character variables with character

constants is simple by comparison to the problem of initializing noncharacter
variables with character constants. The following FORTRAN fragment shows
a common use of a double precision variable.

SUBROUTINE DEMO
DOUBLE PRECISION NAME(4:8)/’Charles’,’Frederic’
+ ,’Andrew’,2*’Mary’/
DOUBLE PRECISION WAGE(4:8)/48900.0,51300.0
+ ,37890.0,2*61230.0/
RETURN
END

In this example there are two double precision arrays, one of which contains
the first name of each employee and the other their annual wage. The semantics
of the two initializations are identical. The values are stored by the FORTRAN
compiler in the initial data space so that they are available when the program
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begins execution. One can say that the above is bad programming style and
nontransportable. The FORTRAN 77 standards committee did that, but there
are still many many lines of code being written right now that use logic such as
the above. It is a widely accepted FORTRAN convention.
There is no possible direct translation into C which captures the semantics

of the above FORTRAN code. We have tried many tricks, including the use
of hexadecimals, to initialize noncharacter variables with character data. None
have succeeded. The following is the default translation for the above:

void demo()
{
static double name[5];
static double wage[5] = {
48900.0,51300.0,37890.0,61230.0,61230.0

};
static int ftnsiz[] = {1,1,5};
static namelist DATAVAR[] = {
"name",name,2,ftnsiz

};
static char *DATAVAL[] = {
"$DATAVAR",
"name=’Charles ’,’Frederic’,’Andrew ’,2*’Mary ’,",
"$END"

};
static FIRST = 1;

if(FIRST) {
FIRST=0;
fiointu(DATAVAL,0,1);
fiornl(DATAVAR,1);

}
return;

}

The initialization of the wage variable is quite natural and clean. The
2*61230.0 is lost, but at least the semantics of the initialization are the same
since no runtime device is needed to get the values into the variable. The ma-
chinery introduced to initialize the name array is based on two other FORTRAN
features: internal files and namelist. In FORTRAN, groups of variables may be
read and/or written as groups. The syntax used is free-form and looks almost
identical to that used by the DATA statement. Internal files are character arrays
(yes, noncharacter arrays are also used) whose members are treated as records
in a formatted file. The device used to initialize the name array is as follows:

1. Create a namelist definition for the variables requiring runtime initializa-
tion. The ftnsiz and DATAVAR arrays contain this definition.
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2. Create an internal file which contains the actual initialization values in
the namelist format. The DATAVAL array is this internal file. Note that
the actual syntax of the initialization record is almost identical to that
of the original DATA statement. Even the repeat count syntax 2*’Mary’
may be used.

3. Create a static local variable FIRST which ensures that the initialization
occurs only once, when the subprogram is initially called.

4. Add the logic to the C translation to actually use the runtime internal file
facilities, fiointu, and the read namelist facilities, fiornl, to perform
the required initialization.

This device does work. Using the syntax of C, we are not able to capture
the precise semantics of the FORTRAN original. In the above, name and wage
are not initialized at the same time or in the same manner; however, they are
semantically equivalent to the FORTRAN intent.

Variable Length Strings

If FORTRAN had no subprograms, there would be no problems beyond those
discussed above. Unfortunately, FORTRAN subprograms allow for variable
length character strings, and the various system operations—such as string
concatenation, string comparison, string assignment, and string input/output—
allow for the total mixture of character strings of any length.
To deal with a variable length character string, the length of that string must

be known. In C, the storage technique itself makes this information available.
In FORTRAN, since the storage technique for character variables does not
have this information, it must be kept separately. This is an especially difficult
problem, since the length of a given character string is not defined globally, but
by the context of its use (see condition 4 above).
The solution is difficult to accept, but appears to be dictated by the needed

generality of the translation. All references to character variables in the FOR-
TRAN program are translated into an ordered pair of values—a pointer to the
start of the characters being manipulated and an integer value which defines
the length of the character string at that point in the code. Similar solutions
are used by other FORTRAN compilers as well.
Prime FORTRAN [3], makes the following statement about the number of

arguments that may be passed to a subprogram.

“F77 allows up to 254 arguments to be passed to and from subrou-
tines. There are two exceptions to these limits: If all the arguments
are of type CHARACTER, F77 only allows 127 arguments. If the ar-
guments are of mixed data types (CHARACTER and other types), the
maximum number of arguments is between 127 and 254.”
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Obviously the Prime compiler is passing two things for each character pa-
rameter.
VAX FORTRAN [4], in describing the default argument types for the dif-

ferent data types assigns REF to all types except character which are assigned a
DESCR type. The REF attribute implies a call by reference, while the DESCR at-
tribute causes a string descriptor structure to be built which contains a pointer
and information about the size and type of the element being pointed to. This
descriptor is then passed by reference.
To show the effect of this solution on the look of translations, consider the

following simple example.

SUBROUTINE DEMO
CHARACTER*13 ALPHA/’ 32 ’/
I = IVALUE(’123456’)
J = IVALUE(1H6)
K = IVALUE(ALPHA)
END

FUNCTION IVALUE(SVAL)
CHARACTER*(*) SVAL
READ(SVAL,’(BN,I5)’) IVALUE
END

In this example, a function IVALUE is being used to decode an integer value
from a variable length character variable. Note that the FORTRAN function
IVALUE has only one parameter. The default translation for the above looks as
follows:

void demo()
{
extern long ivalue();
static char alpha[13] = {

’ ’,’ ’,’ ’,’ ’,’ ’,’3’,’2’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’
};
static long i,j,k;

i = ivalue("123456",6);
j = ivalue("6",1);
k = ivalue(alpha,13);

}
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long ivalue(sval,P1)
int P1;
char *sval;
{
static long ivalue;

ftnread(INTERNAL,sval,P1,VFMT,"(BN,I5)",
INT4,&ivalue,0);

return ivalue;
}

In the translation, the function ivalue now has two parameters. The first is
the character string and the second is the length of that string. It is this length,
P1, which is then passed to the library function ftnread which performs the
actual decoding operation. The addition of this extra parameter obviously
degrades the cleanliness of the C output.
There are, of course, many FORTRAN codes that do not make explicit use

of the variable length character string. The following is a variant of the example
above.

SUBROUTINE DEMO
CHARACTER*13 ALPHA/’ 32 ’/
I = IVALUE(’123456’)
J = IVALUE(5H 6)
K = IVALUE(ALPHA)
END

FUNCTION IVALUE(SVAL)
CHARACTER*5 SVAL
READ(SVAL,’(BN,I5)’) IVALUE
END

In this example, the parameter sval is declared as a CHARACTER*5. It does
not matter that some of the actual parameters are longer than 5, but none
may be shorter. Thus, the second call was changed to a ‘5H 6’. There is a
command-line switch that tells the translator that variable length strings are
not needed. The use of this switch produces the following translation.

void demo()
{
extern long ivalue();
static char alpha[13] = {

’ ’,’ ’,’ ’,’ ’,’ ’,’3’,’2’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’
};
static long i,j,k;
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i = ivalue("123456");
j = ivalue(" 6");
k = ivalue(alpha);

}
long ivalue(sval)
char *sval;
{
static long ivalue;

ftnread(INTERNAL,sval,5,VFMT,"(BN,I5)",
INT4,&ivalue,0);

return ivalue;
}

Except for the initialization of alpha, which was discussed earlier, this trans-
lation is clean. Unfortunately, if this switch is used with the earlier version, the
following is produced:

SUBROUTINE DEMO
CHARACTER*13 ALPHA/’ 32 ’/
I = IVALUE(’123456’)
J = IVALUE(1H6)
K = IVALUE(ALPHA)
END

FUNCTION IVALUE(SVAL)
CHARACTER*(*) SVAL
READ(SVAL,’(BN,I5)’) IVALUE

FORTRAN Syntax Error Number 284 occurred on input record
number 9 of file demo.for. Explanation: A string’s variable length
is being used in a raw string context. Symbol = ’SVAL’, Column
= 21

The processor waits as long as it can, but ultimately it must pass the length
of the sval parameter to the read function. This length is not available and a
syntax error must be generated.
This is a primary design goal of PROMULA.FORTRAN. If the user makes

a command line selection to improve the cleanliness of the C output and if that
selection makes a correct translation impossible, then a clear syntax error is
issued. The user does not have to debug the translated program.
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Conclusion

We must strive to achieve correctness and cleanliness when doing translation.
When the syntax of the target language blocks this dual goal, then cleanliness
must be sacrificed for the sake of correctness. The early implementations of
FORTRAN had a very limited view of character manipulation. This is some-
thing which all FORTRAN implementations must deal with, even translators.
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18. Miscellanea

compiled by Rex Jaeschke

Extensions

Assertions in UNIX System V

[Ed: This section was contributed by David Prosser of AT&T.]

UNIX System V Release 4 provides a new preprocessing capability called
assertions. The intent of assertions is to have a completely separate name space
from macros for the typical environmental queries made by programs. Histor-
ically, the preprocessor would have names such as unix and vax predefined as
macros that could surprisingly “rewrite” your program. Other vendors seem
to have taken the straightforward approach of adding -prefixed versions of
these macros as their ANSI C conforming approach. This only compounds the
problem since now there are twice as many predefined macros.
In contrast, the assertion mechanism allows for a separate pool of names as

well as the extra dimension of predicates that can be associated with multiple
token sequences.

Syntax

# assert identifier
# unassert identifier
# assert identifier ( pp-tokens )
# unassert identifier ( pp-tokens )

Semantics

The first directive causes the identifier to be known as an assertion predicate
(if it is not one already). The second causes the identifier no longer to be known
as such. (No diagnostic is produced if it wasn’t already one.)
The third directive behaves as the first, and also associates the given to-

ken sequence with the predicate. (The token sequence is handled just like a
replacement list—the existence of white space in the midst of the pp-tokens is
significant.) There can be any number of token sequences associated with a
given predicate. The fourth directive disassociates a given token sequence (if
any such existed) from the identifier.
Predicates can be tested only with #if or #elif directives. The expression

syntax for these directives is extended to include unary expressions of the form
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# identifier ( pp-tokens )

that evaluate to 1 if the identifier is a predicate associated with the given token
sequence; otherwise 0.
The use of the # causes predicate testing to be a pure extension since it

does not interfere with any existing expressions. Of course, a conforming im-
plementation must produce at least one diagnostic message if one or more of
these constructs is found.
The set of preasserted predicates varies according to the target machine and

operating system. Some of the possibilities are:

#assert machine(u3b2)
#assert system(unix)
#assert cpu(M32)
#assert cpu(i386)

Assertions can be specified on the cc(1) command line. The −A option has
the following syntax:

-A- forget all predefined macros and assertions
-A name same as #assert name
-A name(pp-tokens) same as #assert name(pp-tokens)

White space on the command line is handled the same as in a directive, but
the subject of the −A option must be one argument (quoted as needed to get
around special characters recognized by your shell).

Examples

If you have code that is dependent on the target operating system, you
might use assertions as follows:

#if #system(unix)
#define SEPCHAR ’/’

#elif #system(MS-DOS)
#define SEPCHAR ’\\’

#else
#error Cannot guess pathname separation character

#endif

Ameans to specify byte order might be handled in a crude manner as follows:

#if #cpu(vax) || #cpu(i386)
#assert byte_order(little-endian)

#else
#assert byte_order(big-endian)

#endif
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#if #byte_order(big-endian)
/*...*/

#endif

Pointers in a Segmented World

The Intel 80x86 architecture is, perhaps, the single most widely used C devel-
opment platform. And it can also be one of the most hostile, particularly if the
size of your program approaches 640KB.
In order to be somewhat backwards compatible with their 8-bit product

line, Intel designed the 8086 chip memory to be organized into segments each of
64KB and to use segment registers to access multiple segments. Registers were
made 16 bits. This design decision was later seen to have several shortcomings
although, at the time, few people would have projected the enormous popularity
the chip (and its successors) now enjoys.
Basically, an executable program consists of pieces of code and data each of

which belongs to a particular 64KB segment. Essentially, there are four primary
ways to construct a program:

8086 Segment Structure
Total Code Size Total Data Size

64KB 64KB
1MB 64KB
64KB 1MB
1MB 1MB

These groupings are called memory models. When you compile a program
using one of these models the compiler generates 16-bit (near) or 32-bit (far)
addressing as required. The more interesting situation is where a programmer
wishes to mix 16- and 32-bit code (or data) pointers in the same program.
In this case, they need to explicitly declare near and far pointers using the
keywords near and far, respectively. For example:

#include <stdio.h>

char c1 = ’A’;
char near *pnc = &c1;
char c2 = ’Z’;
char far *pfc = &c2;
main()
{

printf("pnc: %Np, %c\n", pnc, *pnc);
printf("sizeof(pnc) = %u\n\n", sizeof(pnc));
printf("pfc: %Fp, %c\n", pfc, *pfc);
printf("sizeof(pfc) = %u\n", sizeof(pfc));

}
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pnc: 0085, A
sizeof(pnc) = 2

pfc: 1544:0088, Z
sizeof(pfc) = 4

Note that the printf edit masks have been extended to handle the differ-
ent pointer sizes. (If near and far are not used, the compiler uses defaults
depending on the command-line options specified.)
Normally, each function and object must be completely contained in a 64KB

segment. Therefore, address arithmetic on an object need not be concerned
with the segment’s base address. The address of each element (or label) has
the same base. To support objects (but not functions) larger than 64KB, the
huge keyword was added. As a result, far pointers were no longer adequate
and huge pointers were provided. A huge pointer is much like a far pointer
except that arithmetic on huge pointers is normalized to handle segment base
differences.
The keywords near, far, and huge are supported by all mainstream C com-

pilers running under DOS on the Intel architecture. In its recent release (V6.0),
Microsoft has also added the alternative keywords near, far, and huge,
whose spelling conforms to ANSI’s requirement for new keywords.
Apparently, all this was not complicated enough, so various vendors invented

yet another addressing scheme. Programs having more than 64KB of code
or data require far pointers. Since these are twice the size as near pointers
and require more instructions to manipulate, they are less efficient than near
pointers. The solution was to have special near pointers whose base address
was not fixed by the compiler but, instead, is specified by the programmer. As
such, if you wished to access many objects, all of which resided in the same
data segment, you only had to load the segment base register once and then
use near pointers (with offsets only).
The TopSpeed compiler from Jensen and Partners provided this mechanism

using what they call relative pointers. Such pointers are specified as follows:

unsigned int segment_base = 0xB800;

char <segment_base> *ptr;

At runtime, segment base can be changed causing all subsequent references
to ptr to be considered offsets from that new base address. When used correctly,
relative pointers can significantly reduce code size and improve performance.
TopSpeed supports the use of relative pointers with function pointers as well,
although this is of less use since arithmetic operations are not permitted with
these pointers.
Microsoft’s V6.0 compiler also supports this notion but calls them based

pointers. They use a different approach, which includes four new keywords and
an operator. Here’s how they do it:
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int _based(_segname("_DATA")) i = 10;
int _based(_segname("_DATA")) *pi = &i;

The keyword based has the general form based(...). In this case its ar-
gument is one of the four standard segment names. Using this approach, you
can control which segment data is placed in. The segname keyword is used to
specify the segment name.

_segment base = 0XB800;
char _based(base) *pc;

In this case, pc is based on the segment variable base. base can be changed
at runtime. segment is another new keyword.

double *pd;
double _based(pd) *pd2;

Here, pd2 is based on another pointer, pd.

_segment base = 0XB800;
int _based(void) *px;

main()
{

int i;

i = *base:>px;
}

In this case, we have a void base address. As such, px is a relative offset
that can be combined with a base address at any time using the new operator
:>. (The precedence of this operator is below the postfix operators but above
the unary operators. It associates left to right.)

char _based((_segment)_self) *ps;

Finally, we have a way to make a pointer contain an offset based on its own
base address. The utility of this might not be obvious, but it can be useful
when used with forward and backward pointers in a linked list.
How much machinery must we invent to compensate for a “deficient” ar-

chitecture? Thus far, it appears the answer is, “Lots.” Fortunately, the 80386
and 80486 machines are not limited to 64KB segments. Compilers that take
full advantage of these processors can treat the address space as being flat.
However, these compilers need special support system software. At this time,
they account for a very small fraction of installations.
Come to think of it, I don’t remember having all this trouble programming

the PDP-11! Now there is a real machine.
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f2c: A FORTRAN to C Converter

[Ed: This article was recently published in SIAM News and is reprinted here
with the kind permission of the authors S. I. Feldman (Bellcore), D. M. Gay
(AT&T Bell Laboratories), M. W. Maimone (Carnegie-Mellon University), and
N. L. Schryer (AT&T Bell Laboratories).]

We have produced a program that automatically converts ANSI standard
FORTRAN 77 [1] to C [8]. It has converted many FORTRAN programs without
manual intervention. It is easily available—free of charge (and of warranty)—by
electronic mail and ftp.
Automatic conversion of FORTRAN 77 is desirable for several reasons.

Sometimes it is useful to run a well-tested FORTRAN program on a machine
that has a C compiler but no FORTRAN compiler. At other times, it is con-
venient to mix C and FORTRAN. Some things are impossible to express in
FORTRAN 77 or are harder to express in FORTRAN than in C (e.g., stor-
age management, some character operations, arrays of functions, heterogeneous
data structures, and calls that depend on the operating system), and some pro-
grammers simply prefer C to FORTRAN. There is a large body of well tested
FORTRAN source code for carrying out a wide variety of useful calculations.
It is sometimes desirable to exploit some of this FORTRAN source in a C en-
vironment. Many vendors of computing platforms and operating systems pro-
vide some way of mixing C and FORTRAN, but the details vary from system
to system. Automatic FORTRAN to C conversion lets one create a portable
C program that exploits FORTRAN source code.
A side benefit of automatic FORTRAN 77 to C conversion is that it al-

lows tools like lint [3] to provide FORTRAN 77 programs with some of the
consistency and portability checks that the Pfort Verifer [10] made available to
FORTRAN 66 programs.
Starting from Feldman’s original f 77 compiler [5] (the original UNIX FOR-

TRAN 77 compiler), we created a program called f2c that converts FOR-
TRAN 77 source code into C. Our report [4] describes f2c’s conversions in
considerable detail. The purpose of this note is to point out the availability
both of our report and of the source for f2c. On request, we are happy to
send out paper copies of the report. You can also obtain a PostScript ver-
sion of it by electronic mail by sending the message send f2c.ps from f2c to
netlib@research.att.com. Source for both f2c and the support libraries assumed
by the C it produces is available by electronic mail and by ftp. For details, send
the electronic-mail message send index from f2c to netlib@research.att.com.
You can also ftp to research.att.com. In subdirectory dist/f2c you will find a
copy of the index file and of source for f2c and its support libraries. (As of this
writing, August 1st 1990, 520 different people have obtained f2c source from
netlib, i.e., by electronic mail, and 1093 have obtained it by ftp.)
We have used f2c to convert various large programs and subroutine li-

braries to C automatically (with no manual intervention). These include the
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PORT3 subroutine library [2] (PORT1 is described in [6, 7]), MINOS [9], and
Schryer’s floating-point test [11]. In addition to our own testing, we have been
helped by feedback from many people and by observing f2c’s behavior on some
21 megabytes of FORTRAN submitted to netlib’s experimental “execute f2c”
service. This feedback and our observations have led us to isolate and repair
numerous bugs and to extend f2c in various ways.
Although we tried to make f2c’s output reasonably readable, our goal of

strict compatibility with f 77 implies some nasty looking conversions. I/O state-
ments, in particular, generally get expanded into a series of calls on routines
in libI77 (f 77’s I/O library), and complex arithmetic often results in messy C.
Thus the output of f2c may be difficult to maintain as C. It may be more
sensible to maintain the original FORTRAN, translating it anew each time it
changes. Some commercial vendors of conversion services, e.g., those listed in
an appendix to our report, seek to perform translations yielding C that one
might reasonably maintain directly. In general, these translations require some
manual intervention.

f2c optionally emits special files called prototype files that summarize the
calling sequences of the translated subprograms. A side benefit of f2c is that it
can read prototype files and check the consistency of calling sequences across
files. We have found this to be a useful debugging aid. Use of prototypes is
slightly more convenient than invoking lint, but lint warns of other possible
errors, such as variables that may be referenced before they are set.
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Reader Feedback

Ed: The following letter is a response to Jim Brodie’s discussion of an X3J11
interpretation, in his Volume 2, number 1 column.

I was disappointed by the one-sided presentation of the issue in my letter
to X3J11.
The Standard’s grammar for a pre-processing number is:

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

A simple correct grammar for this purpose is:

pp-number:
pp-decimal
pp-decimal nondigit
pp-decimal E sign
pp-decimal e sign
pp-number digit
pp-number .
pp-number nondigit
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pp-decimal:
digit
. digit
pp-decimal digit
pp-decimal .

where:

digit is 0--9
nondigit is , A–Z, or a–z
sign is + or -

A correct grammar only allows the [eE][+-] sequence when there has not
been a preceding nondigit in the sequence, thus making a simple distinction
between probable hexadecimal constants and probable floating point constants.
The arguments that were published against using a correct grammar, and

my replies, are summarized as follows:

1. Garbage sequences are not intended to become valid C tokens due to
pre-processing.

My correction to the grammar has nothing to do with turning garbage
sequences like 2.mac into legal C by such preprocessing as #define mac
e+03 and other such nasties that can be constructed.

2. Each pair of adjacent tokens that are both keywords, identifiers, and/or
constants must be separated by white space.

This quote is superfluous to the point at issue. In the examples which
ANSI C does not allow (for example, 0xEE+23 there is always an operator
token (a + or -) between the two numbers or number and identifier.

3. The character sequence space is reserved for future expansion.

The correct grammar also reserves character sequences for future expan-
sion. The two reserved sets of character sequences are identical except
for character sequences which contain e+ or e-, in which case the re-
vised grammar offered above will only accept one instance of the expo-
nent escape and then only if it has not been preceded by a nondigit.
This, for example, corrects the processing of 0xEE+value-macro, excludes
0b011011e+23, and makes no difference to 0b011011.

4. White space was already found to be required to control tokenization, so
what harm is another situation?

This is self-justification.

Sincerely,

Terence Carroll, Independent Consultant, Kirchenstrasse 28, D-8000Munich 80,
West Germany.
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New Compiler Construction Tools Available

Ed: The following material was taken from the comp.compilers conference.

OMA

OMA is an object oriented system for constructing pattern matchers, or lexical
analysers. The system is object oriented in both its design and implementation,
and in the programs it generates. OMA input is similar to the input used by
the lex lexical analyzer system. Unlike lex, OMA produces a class description
for the pattern matcher. This class description can be specialized or altered by
the programmer in a number of ways to achieve unique effects. For example,
multiple lexical analyzers can be included in a single system.
OMA is part of a suite of object-oriented tools for compiler construction.

Other tools in the collection include the OPA parser generator, the AWESOME
symbol table system, and the OCHER code generation routines.
OMA is written in C++ and has been compiled under GNU C++.
Source code and manual can be ftp’ed from cs.orst.edu, file

pub/budd/oma/oma.tar.Z

OPA and the other tools are still under development.

Tim Budd

Purdue Compiler-Construction Tool Set

The Purdue Compiler-Construction Tool Set (PCCTS) is a set of public domain
software tools designed to facilitate the implementation of compilers and other
translation systems. The tool set is continuously being upgraded and extended,
hence the current release—which is merely a Beta release—only includes those
portions which we believe are reasonably stable.
PCCTS is functionally similar to the combination of lex and yacc, although

not interchangeable with them. The primary advantages of PCCTS are:

• Lexer and parser are both generated from a single specification.

• Has extended BNF grammar notation, allowing complex subrules.
• Has powerful attribute handling, both upward and downward inheritance.
• Generates pure C code, implementing fast LL(1) parsers.
• Has documentation/maintenance features (e.g., print grammar w/o ac-
tions).

• Sample grammars (e.g., Pascal) are included with the system.
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The tools (written in relatively portable C) and several examples are avail-
able via anonymous ftp from the carp/PCCTS directory on en.ecn.purdue.edu.
Documentation is not currently available on-line, but is available free of charge
as Purdue University School of Electrical Engineering Technical Report TR-EE
90-14, “Purdue Compiler-Construction Tool Set.” Contact: Prof. Hank Dietz,
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907,
hankd@ecn.purdue.edu, (317) 494 3357.
PCCTS is the creation of Terence Parr, Hank Dietz, and Will Cohen. The

development of some portions of the system was partially supported by NSF.
The authors and Purdue University provide this software on a strictly as is
basis, without warranty or liability. Despite this, bug reports and fixes are
welcome.

Calendar of Events

• September 19–21, International Workshop on Attribute Gram-
mars and their Applications – Location: Paris, France. For infor-
mation, contact: INRIA, Service des Relations Exterieures, Bureau des
Colloques, B.P. 105, F-78153 LE CHESNAY Cedex, France. Telephone:
[33] (1) 39.63.56.00; Telex: 697 033 F; FAX: [33] (1) 39.63.56.38; E-mail:
waga@minos.inria.fr.

• September 24–25, ANSI C X3J11 Meeting – Location: Pleasanton,
California (about an hour east of San Francisco). Lawrence Livermore
National Labs and SSI are hosts. This two day meeting will handle ques-
tions from the public, interpretations, and other general business. Ad-
dress correspondence or enquiries to the vice chair, Tom Plum, at (609)
927-3770 or uunet!plumhall!plum.

• September 26–27, Numerical C Extensions Group (NCEG) Meet-
ing – The fourth meeting will be held to consider proposals by the various
subgroups. It will follow the X3J11 ANSI C meeting being held at the
same location earlier that week (see above entry) and will run for two
full days. For more information about NCEG, contact the convener Rex
Jaeschke at (703) 860-0091 or uunet!aussie!rex, or Tom MacDonald at
(612) 683-5818 or tam@cray.com.

• October 8–10, Frontiers of Massively Parallel Computation – Lo-
cation: University of Maryland, College Park, MD (greater Washing-
ton D.C.). Call Prof. Joseph JaJa on (301) 454-1808 for more infor-
mation.

• November 12–16, ANSI C++ X3J16 Meeting – Location: Cupertino,
CA. For more information, contact the Vice-Chair William M. (Mike)
Mille, P.O. Box 366, Sudbury, MA 01776-0003, (508) 443-7433. Email:
wmmiller@hplabs.HP.com.
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• November 16, Supercomputing ’90 – Location: New York City Hilton.
Tom MacDonald of Cray Research, Inc. (and NCEG) will present a tu-
torial on ‘Numeric and Scientific C Programs’ from 1–5 pm. For more
information contact Tom at (612) 683-5818 or tam@cray.com.

• November 26–27, ISO C SC22/WG14 Meeting – Location: Copen-
hagen, Denmark. Contact the US International Rep. Rex Jaeschke
at (703) 860-0091 or uunet!aussie!rex or the convenor P.J. Plauger at
uunet!plauger!pjp for information.

• December 3–5, International Workshop on Compilers for Parallel
Computers – Location: Paris, France. This workshop is a follow-up to
the Workshop on Compiling Techniques and Compiler Construction for
Parallel Computers, held at Oxford in September 1989. Contact: Com-
pilers for Parallel Computers, CAII, Ecole des Mines de Paris, F77305
FONTAINEBLEAU Cedex, FRANCE. Telephone: +33 1 64.69.47.08;
Telex: MINEFON 694736 F; Email: workshop@ensmp.fr

• March 4–5, 1991ANSI C X3J11 Meeting – Location: Norwood, Mass.

• March 6–7, 1991Numerical C Extensions Group (NCEG) Meeting
– Location: Norwood, Mass.

• March 11–15, 1991 ANSI C++ X3J16 Meeting – Location: not yet
established.

• June 17–21, 1991ANSI C++ X3J16 Meeting – Location: Lund, Swee-
den.

News, Products, and Services

• Compiler Design in C by Allen I. Holub, Prentice Hall 1990, 924 pages.
Contains a complete implementation of lex and two versions of yacc (called
occs). Also, the source to an “almost-ANSI” C compiler is provided.
Complete source code is available from the author for $60. It runs on the
IBM-PC (Microsoft 5.1) and BSD UNIX (4.3). The code is written in
ANSI C. Contact holub@violet.berkeley.edu for more details.

• ANSI C Transition Guide by AT&T from Prentice Hall, 1990, 64
pages, 0-13-933698-2. (201) 767-5937 or your local bookstore.

• The Annotated C++ Reference Manual by Margaret A. Ellis and
Bjarne Stroustrup. Addison-Wesley 1990, 51459, 447 pages, $37.75. Cov-
ers Version 2.1 and is serving as one of the base documents for X3J16,
the group working on an ANSI C++ standard.
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• C Portability Verifier from Mindcraft, Inc. Checks application porta-
bility to POSIX.1, FIPS 151.1, POSIX.2, ANSI C, X/Open standards
using static analysis and other tools. Extensible. Supports both ANSI
and K&R C and is available for a wide variety of UNIX systems. Call
them at 410 Cambridge Ave., Palo Alto, CA 94306, (800) 537-6749 or
(415) 323-9000.

• Measuring Parallel Performance is the subject of Technical Report
#929 by James R. Larus from the University of Wisconsin, Madison.
It explains a new technique for estimating and understanding the speed
improvement resulting from execution on a parallel computer. The results
from testing with six substantial C programs are presented. Contact
larus@cs.wisc.edu.

• King Computer Services, Inc., has announced a C cross-development pack-
age for the Tandy 102 Laptop system. It provides support for dialer ac-
cess, modem, RS-232 port, sound, and graphics. 1016 North New Hamp-
shire, Los Angeles, CA 90029, (213) 661-2063.

• Matthew Dillon has written a Freeware C development system for
the Amiga, called DICE. It includes all source for the front-end, pre-
processor, compiler, code generator, 68000 assembler, linker and library.
Contact him at dillon@Overload.Berkeley.CA.US.

• Jim Roskind has written a pair of yacc-able grammars for C++ and C
and is making them available publicly. One feature is that they handle all
the ambiguities provided in the ANSI C standard that involve typedef
names. The files can be obtained from: ics.uci.edu (128.195.1.1) in the
ftp/pub directory as c++-grammar.1.0.tar.Z or, from c++gram.tar.Z,
holding them all available for anonymous ftp at:

mach1.npac.syr.edu:~ftp/pub/C++ and labrea.stanford.edu:~ftp/pub

• Vern Paxson has announced Release 2.2 of flex, a replacement for lex.
You can get it via anonymous ftp to svax.cs.cornell.edu (128.84.254.2,
East coast) or ftp.ee.lbl.gov (128.3.254.68, West coast). Retrieve flex-
2.2.alpha.tar.Z, using binary mode.

∞


