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19. Generalizing Type Qualifiers

P.J. Plauger

Abstract

The ANSI standard introduced type qualifiers into the C programming
language. Signaled by the keywords const and volatile, the standard
type qualifiers lie midway between types and storage classes. The common
extensions near and far also behave as type qualifiers.

This article discusses why neither types nor storage classes are ade-
quate vehicles for these added semantics. It also discusses ways to further
generalize type qualifiers and use them to express a number of useful ex-
tensions to C. The concepts have been tested in a family of commercial
C compilers over the past several years.

The Need for Constant Data

X3J11 knew from the outset that something like const had to be added to
the C programming language. Programmers need a way to steer lookup tables
and other reference data into ROM. Those of us selling compilers for embedded
applications had been working around its absence for years. A common trick
was to specify where to put data on a file by file basis.
The early Whitesmiths C compilers, for example, distinguished three logical

contributions to the final code image:

• Program text consists of the contents of all the function bodies. It is
execute-only and never alters itself.

• Literal data consists of any data objects generated by the compiler, such
as string literals, switch tables, or floating point constants. It is read-only
(yes, even for string literals).

• Writable data consists of any data objects declared in the program. It is
assumed to be read/write, in the absence of any other information.

The code generator steered these three logical contributions to two physi-
cal segments in the executable image—the code segment and the data segment.
That matched the restrictions of many assemblers, linkers, and operating sys-
tems in the late seventies. Two mappings were most common:
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• A machine with separate I-space and D-space needed program text alone
in the code segment. To access literal data from I-space was often difficult
or impossible. So literal data and writable data shared the data segment.
Write protection of literal data went out the window.

• A machine with ROM and RAM could pack program text and literal
data together in the code segment. That let the literal data be write-
protected. It also minimized the amount of RAM that had to be initialized
on program startup. Writable data was alone in the data segment.

To steer certain data objects into the read-only code segment, you put them
in a separate file. A compile-time switch specified how the contributions got
steered. It was a messy system, but it was useful to many programmers.
X3J11 wanted to do better than this. We felt that compile-time switches

were inelegant. They were also outside the charter of a language standard. We
wanted some way to bring the information into the language proper. An early
suggestion was to introduce a new storage class. Declare a data object with
storage class const and it goes into ROM instead of RAM. That meets the
immediate need, but it has a few holes.
Storage class also conveys linkage information. The rules for doing so are

already complex, because the keywords extern and static are grossly over-
loaded. A programmer probably wants to specify both external constant data
and internal constant data.
That argues that const should at least be a storage class qualifier, not just

another overstressed storage class designator. Make it a qualifier and you can
specify constant register, argument, and automatic storage as well. None of
these creatures can be placed in ROM, but you can at least help the compiler
catch obviously silly stores.
Once you decide you want to diagnose silly stores, however, you come face

to face with another shortcoming. Take the address of a data object and you
lose information about its constancy. C can’t distinguish between a pointer to
static storage and a pointer to automatic storage. There is no sensible way to
require it to distinguish constant from nonconstant storage. No stores through
pointers can be checked.
A new storage class won’t do the trick, nor will a storage class qualifier.

That suggests that const should be part of the type information. You hardly
want to add just a single new type called const. Every data type wants to have
a constant counterpart. So it makes sense to let the keyword const qualify any
of the existing types. Naturally, a const short has the same representation as
a short. It merely carries the added proviso that it is not to be modified by
the executing program.
So far, const has much the flavor of signed or unsigned. Most popular

computers today represent signed integers as twos-complement, so a change of
signedness doesn’t even alter the representation. Only the values associated
with certain bit patterns change. It looks at first blush like const can be
considered just another ‘type part,’ like all the older type keywords.
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There is one important difference, of course. A pointer type has two op-
portunities to acquire constness. You can talk about a pointer to a constant
char or a constant pointer to char. In fact, you can talk about four different
combinations of constness. All make sense. That’s what led X3J11 to accept
the const qualifier following any * in a declaration.
This calls for a decision, by the way. It is completely arbitrary how you

choose to interpret:

const char *p1;

You can say that p1 is a constant pointer to char or a pointer to constant
char. Then the alternate declaration:

char * const p2;

has the other meaning. As a matter of common sense, the committee chose to
stick with the convention in C++, from which we borrowed const. The first
declaration above declares p1 to be a pointer to constant char. The second
declares p2 to be a constant pointer to char. (Read * const as pointer which
is constant.)

Semantics of Type Qualifiers

Even though const has a funny way of decorating pointers, it still doesn’t look
all that special. The committee had to work up a mess of new semantics, such
as:

• How constant data participates in type balancing across arithmetic oper-
ators.

• How const affects assignment compatibility.

• To what degree const short is a different type from short.

We faced much the same set of issues in adding signed and long double.
After a bit of experience, however, const started looking a bit more peculiar.

Unlike any of the other type information, the presence of const makes sense
only when you’re trafficking in lvalues. const is a statement about how you can
access a data object. It says nothing about the representation or the operations
you can perform on values stored in the data object. In fact, we found it best
just to say that constness evaporates whenever you extract an rvalue. That
saved us from generating considerable error-prone verbiage when we summarily
doubled the number of possible types.
Until const came along, type information was used solely to determine

representation and operations. How many bits does a data object of that type
need? On what kind of storage boundary? What values do you attribute to



168 The Journal of C Language Translation – December, 1990

the various bit patterns? What operations does the language permit, on what
values? This is the realm of data types.
Yet const addresses none of these questions. If you stretch a point, you

can argue that it restricts the operations permitted by the assigning operators.
That’s not a strong case for calling const type information, however.
Storage class information traditionally deals with the addressability of data

objects. Static data is directly addressable in memory. Automatic data is on
the stack. Registers are someplace funny. A compiler that speaks assembly
language even distinguishes between static names with external and internal
linkage. The former derive by simple rules from the name itself. The latter
must be private to a given translation unit.
But once the program obtains a stored value, it can forget what it took to

locate the storage. Storage class distinctions evaporate when an lvalue becomes
an rvalue. That sounds more like the arena where const wants to play. You can
see why the committee started out thinking that we wanted a const storage
class.
So this is the peculiarity of const. It wants to qualify type information, so

that it can pop up in all the right places. But it behaves more like a storage
class, since it only affects how you can access a data object with an lvalue.
That’s what I mean when I say that type qualifiers lie midway between types
and storage classes.

The Need for Volatile Data

Adding const to C was a big help, but it wasn’t the whole story. Another
problem was commonplace in embedded programming. It stemmed from the
widespread practice of controlling I/O devices with memory-mapped registers.
Many of us became converts to C because we could write low-level code

in a more readable high-level language. Set a pointer to an absolute address
and you can directly manipulate magic registers. The PDP-11 went crazy with
memory-mapped I/O. Many other more recent architectures have imitated this
winning strategy. In such an environment, you can rule the world from C.
The only problem was one of determinism. You have to know what kind of

code a C compiler generates for various expressions, lest it outsmart you. A
classic example is writing characters to an output buffer register. On a PDP-11,
you might write something like:

#define XBUF (int *)0177566

*XBUF = ’\r’;
*XBUF = ’\n’;

The code stuffs a carriage return followed by a new-line into a UART trans-
mitter buffer. At least it does so if the compiler is sufficiently stupid. Should
it recognize that two successive stores occur to the same data object, it might
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choose to optimize the first one away. Your program mysteriously fails to emit
carriage returns.
A classic solution in the early days of C was to alter such a program to read:

int *xbuf = (int *)0177566;

*xbuf = ’\r’;
*xbuf = ’\n’;

If you find that the compiler is not brave enough to optimize out the first
store, you’re done. You leave that code alone and go on to the next problem.
Perhaps years later you upgrade to a new compiler. Only then do you discover
that you have a smarter optimizer to outsmart.
X3J11 wanted some way to end this arms race. We wanted to encourage

aggressive optimization, yet still keep the world safe for people writing low-
level I/O handlers in C. Our solution was to give programmers a way to mark
those data objects that needed delicate handling. If a translator knew that
other agents could tinker with a given data object, it could be careful not to
optimize away accesses (or move them about rashly). For those data objects,
the translator would generate code that reflects the overt intent of the C source.
Just like in the old days.
That’s where the type qualifier volatile comes in. You can write it in all

the places where you can write const. You can even mix const and volatile
type qualifiers in all possible combinations. Any lvalue that has a volatile type
is handled with kid gloves. The optimizer knows to take a holiday.
Ironically, the great contribution of volatile is when you don’t use it. C can

now assume that any data object not marked volatile is the private property
of the translator. It can be much more aggressive about optimizing accesses to
such data objects. It can even advance or retard accesses to nonvolatile data
objects past sequence points. It has much more latitude in generating the same
code as if the sequence points were honored.

volatile is an even odder creature than const. Semantically, it carries no
traditional type baggage at all. Even as a storage class qualifier, it is an odd
duck. Dennis Ritchie has never had much good to say about volatile, and
I can’t blame him. It is a dirty little piece of pragmatism that doesn’t even
deliver completely on any of its promises. Nevertheless, I feel that it provides
a needed service in the real world of C programming.

near and far

Another dirty piece of pragmatism didn’t make it into the C standard. I refer,
naturally, to the type qualifiers near and far bolted onto C by Intel 8086 com-
piler vendors. These came about because the IBM PC made this architecture
obscenely popular. The pressure was overwhelming to produce great quantities
of efficient C for an architecture that is inhospitable to the language.
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Basically, C evolved on machines with flat address spaces. The language
can tolerate separate spaces for functions and data. (That’s the I-space and
D-space model I described earlier.) But it doesn’t like to have a chopped up
data space. A pointer to data must be prepared to point anywhere. It forgets
storage class, as I keep repeating.
The Intel 8086 runs fastest when it uses only 16-bit pointers. That, unfor-

tunately, limits a program to 65,536 bytes of data. In today’s world, such a
limitation is simply unacceptable. Traffic in 32-bit pointers and you can use all
the memory you can eat. (I won’t go into the relative digestibility of the 640KB
that DOS leaves for programs versus the 16MB or 1GB available in principle
on newer machines.) The only problem is, programs get twice as big and run
half as fast.
Pragmatism often dictates a hybrid solution. You use 16-bit pointers where

you can, 32-bit pointers where you must. Sure, it makes for messier program-
ming. And sure, it’s nonportable code. But when your potential marketplace
measures in the tens of millions of machines, you make compromises.

near and far are as peculiar in their own way as are const and volatile.
Again, they say nothing about the representation of the type they qualify. They
do affect the representation of the address of a near or far qualified data object.
Hence, they affect the representation of any pointer you declare that points to a
near or far qualified data object. But don’t let that distract you. Once again,
these type qualifiers affect only how you go about locating data objects.

Other Address Spaces

The near type qualifier has a chancy interpretation. You promise that a 16-bit
offset will do, but you have no way of specifying the base that accompanies the
offset. The politest thing you can say is that current implementations using
near are linguistically fragile. It would be nice if there were a more precise,
and more general, way of specifying when 16-bit offsets are acceptable.
Back before near and far became commonplace, I solved the more gen-

eral problem. About five years ago, I added some peculiar machinery to the
Whitesmiths family of C compilers. It supported an open-ended set of type
qualifiers that could be tailored to the peculiar needs of different machines. I
called them address space modifiers, because they usually affected where the
program looked to find the qualified data type.
The syntax I used was hardly outstanding. An at sign (@) signaled that

the identifier following was the name of a special address space. In the case of
the Intel 8086 C compiler, four address spaces were obvious additions. If you
declare

@cs char *pcs;

then pcs is a 16-bit pointer into the code segment, or cs. The compiler knew
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to generate the cs: segment override prefix any time it dereferenced such a
pointer. You got corresponding behavior with the address space modifiers @ds,
@ss, and @es (for the data, stack, and extra segments, respectively). These
were near pointers with no ambiguity. By contrast, the address space modifier
@far warned of the need for an arbitrary segment plus offset address. It is
equivalent to the far keyword that has become an institution.
If that were the end of it, the experiment would be just a minor historical

footnote. The near and far keywords popularized by Borland, Microsoft, and
others have clearly prevailed. Programmers have survived without the extra
refinements that this family of compilers imposed on near pointers. Fortunately,
the machinery has proved to have other uses as well.
Computers can have any number of address spaces. Even on the Intel 8086

architecture, at least one other space exists. Input and output occur through
a set of ports that have nothing to do with memory. You write in and out
instructions to access these ports. Memory-mapped I/O seldom gets used in
this universe.
To perform port I/O from a C program can be a nuisance. One way is

to call tiny assembly language functions and incur the call/return overhead.
Another way is to write inline assembly code and risk both nonportabilities and
suboptimal code. Address space modifiers offer a third and better alternative.
Declare a data object in the space @port and the compiler knows to express
accesses as in and out instructions. It also knows how to optimize arbitrary
expressions containing references to ports, pointers to ports, and so forth.
For ports to work well, another extension is required. You often want to

declare that a data object resides at some absolute address. You can sidestep
the issue by assigning absolute values to pointers, as I showed earlier, but that
is not as nice. So I added yet another bit of notation for defining absolute
addresses:

int xcsr @0177566;
@port char rstat @0x40;

The first declaration defines xcsr as living at a particular place in memory.
The second defines rstat as the char-sized port number 0x40. (I make no
apologies for the overloaded use of @ to signal various extensions to C. As the
old saying goes, you can always hide it with a macro.)
Other people have used this machinery for even more peculiar extensions.

They really pay off on bizarre little chips that barely support C to begin with.
Performance is much more of an issue and standards conformance much less.
Some of the extensions are:

• Zero page addressing, for those small architectures that favor accesses to
the first few hundred bytes of memory.

• Bit vector addressing, for a chip that implements fast Boolean logic in a
special array of bits.
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You can even qualify the return type of a function to give it special prop-
erties. You might want the function to handle interrupts or traps directly. Or
you might want it to be callable from some other language. In either case, you
want the compiler to generate an alternate call/return sequence. You might
even want to promise that a function has no side effects, to encourage a reluc-
tant optimizer. All of these extensions have been expressed with address space
modifiers.

Summary

The major point of this article is that type qualifiers are a semantic wart on
the language. None of them has very clean semantics, not even const. It is
even hard to craft a general statement about what they all do.
Nevertheless, they have redeeming social value. Type qualifiers crop up in

a place where C rubs raw against the real world. They let the programmer
make promises about stuff that looks like memory even when it has bizarre
limitations. That’s just the sort of thing you need in the blue collar world of
C programming.
My experience is that generalized type qualifiers form a good hook for ex-

tending C. You can think of them as a standard way to introduce nonstandard
features into C. Get the semantics right for carrying around any of the type
qualifiers and you’ve got them right for all of them. That goes a long way
toward adding extensions without doing utter violence to the C language.

P.J. Plauger serves as secretary of X3J11, convenor of the ISO C working
group, and Technical Editor of The Journal of C Language Translation. He
recently took over the editorial reins of The C Users Journal. He is currently a
Visiting Professor at the University of New South Wales in Sydney, Australia.
His latest book, Standard C, written with Jim Brodie, is published by Microsoft
Press. He can be reached at uunet!plauger!pjp.
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20. European C Conformance Testing

Neil Martin and Dan Chacon
British Standards Institution

Abstract

In Volume 1, number 2 of The Journal, I outlined the process that the
British Standards Institution (BSI) had undertaken to set up a C com-
piler Validation service using the Plum Hall C Validation Suite. The
service is also recognised by the European Commission as a harmonised
service. Since that time many things have changed. There is now an
ANSI standard for C and an identical ISO standard is expected to fol-
low in the near future. This paper identifies the compilers that are now
validated, describes the problems we have encountered, and how vendors
and other interested parties can participate in the validation process and
the benefits of validation.

World’s First Validated C Compilers

In July of this year BSI Quality Assurance (BSI QA) announced the launch of
its C compiler validation service. In order to make the process as fair as possible
for all participants, we set a deadline for initial applications for validation of
the 1 August 1990. All the applications received by this date were processed
successfully, and in early September BSI QA made a press announcement under
the title “World’s First Validated C Compilers.” The companies whose products
passed the validation process were as follows:

• INMOS Ltd, with six compilers, as follows:

– PC/MS-DOS serving both T800 and T425 Transputer compilers

– SUN-3/UNIX host to both T800 and T425 Transputer targets

– SUN-4 host/UNIX host to both T800 and T425 Transputer targets

The INMOS host-target systems are interesting for a number of rea-
sons, not least being that the normal host-target relationship is somewhat
blurred. The compiler ran on the Transputer in the case of the PC, but the
SUN-based products have both native and Transputer binaries supplied,
thus the user may run the compiler on either the host or the target. In all
cases, the results of execution are observed on the host. INMOS achieve
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this unusual but highly effective design by using so-called iservers, which
act as the interface between the compiler library and any machine that
INMOS adopt as a development platform. Compiled applications running
on the Transputer also use the same approach, which takes advantage of
INMOS’s iserver communications protocol.

• Jensen and Partners Ltd; TopSpeed C under MS-DOS
TopSpeed C is a very modern sophisticated PC compiler. It comes with
a fully integrated development environment, and has the usual wealth
of options and features expected of a DOS compiler. This compiler has
already made a big name for itself in Europe partly because of Jensen
and Partners policy that if you are not satisfied with the product you can
return it and get your money back.

• Knowledge Software Ltd, with two compilers:
– MCC hosted on PC/MS-DOS to C standard abstract machine
– MCC hosted on SUN-4 to C standard abstract machine

MCC stands for ‘Model C Checker.’ This is actually one of the tools
with which BSI QA measured the standard coverage of the test suite.
The MCC is actually an interpreter-based system. The fact that it is
interpreted allows run time checking of source code. The MCC, in ad-
dition to the diagnosing of normal constraint errors, flags all undefined
and implementation-defined behaviour listed in the standard. The tar-
get is described as C standard abstract machine because the interpreted
environment is the minimum described in the C standard.

Active Participation

One aspect of formal validation, that many C compiler vendors may not be
aware of, is the technical review board. This is the group of people with a
variety of interests that effectively control what goes in and out of the test suite
used for formal validation. In addition, they participate in any appeal process.
If prior to a formal validation a vendor wishes to challenge the validity of a
test then the first point of call is the technical review board. In addition to
challenges, the technical review board is responsible for reviewing any standard
interpretations and advising on their impact to the test method. BSI QA would
be pleased to hear from any vendors wishing to participate in this process.
Please send email to: cvs-euro@bsiqa.co.uk.uucp.

USA Validation

In the USA, validation is a slightly different affair. The whole process is ad-
ministrated by NIST, the US National Institute of Standards and Technology
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located near Gaithersburg, Maryland. Validation in the USA is, in general, a
mandatory requirement for vendors bidding on Federal contracts. The stated
aim of this process is as follows:

• Encourage more effective utilisation and management of programmers by
insuring portability of programming skills.

• Reduce the cost of program development by the effective use of high level
languages.

• Reduce overall cost of software by making it easier to maintain and trans-
fer programs among different computer systems.

• Protect the existing software assets of the Federal Government.
One other major difference between the U.S. and Europe is that in the U.S.

validation is not against a National (ANSI) or International (ISO) standard,
but against a document known as a FIPS1, which is an acronym for Federal
Information Processing Standard. The FIPS publications do normally refer to
an ANSI or ISO standard. However, NIST reserves the right to make additional
requirements over and above the referenced standard. In the case of the C pro-
gramming language, NIST are planning to make some additional requirements
which just may come as a shock to vendors that have not seen the draft FIPS
for C and are planning to be formally validated. Theses additional requirements
are as follows:

A facility must be available in the processor for the user to op-
tionally specify monitoring of the source program at compile time.
The monitoring will be for all obsolete language elements included
in the processor, or all C language elements that are not in confor-
mance with the standard, or both. Any syntax used in the source
program that does not conform to that in the FIPS will be diag-
nosed and identified to the user through a message on the source
program listing. Any syntax for an obsolete language element in-
cluded in the processor and used in the source program will also be
diagnosed and identified through a message on the source program
listing. In addition the message will identify:

• The statement or declaration that directly contains the non-
conforming or obsolete syntax.
• The source program line and an indication of the beginning
of the location within the line of the statement or declaration
which contains the nonconforming or obsolete code.
• The syntax as ‘nonconforming nonstandard’ if the nonconform-
ing syntax is a nonstandard extension included in the proces-
sor, and monitoring for all C language elements that are not
in conformance with the standard is selected.

1For a status report on the FIPS C Standard, see page 248.
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The introduction of additional requirements by a FIPS can easily be jus-
tified, as these publications cover more than just a standard reference—they
also give guidance on interpretation of a FIPS and on validation. However, the
introduction of additional requirements without (I believe) consultation with
X3J11 seems to be misguided. In addition to specifying the Federal require-
ments for a C processor, the C FIPS also gives contacts within NIST for both
interpretations of the FIPS and validation to the FIPS.
This brings us to the subject of NIST’s solicitation for a C validation suite.

In the past, NIST has always managed to obtain the use of a test suite to
measure conformance to FIPS at very low cost to itself. In attempting to
repeat this exercise for C, they issued a solicitation (No. 52SBNBOC6042) to
obtain a test suite for C. There was no need to read between the lines of the
solicitation to realise that the primary purpose of the solicitation was to obtain
a test suite and training in its use for NIST staff at no cost to themselves. While
it is clear that NIST has little money to spend on validation, it is not obvious
that prioritising cheapness over technical merit, or any other feature for that
matter, is beneficial to either NIST or the US C community in general.

Marketing of Standard Conformance

The difficulty of turning standard conformance into a marketable commodity
has been a problem for most producers of software products. In order to help
rectify this problem, BSI has registered the name CERTware as a world wide
trademark. The idea behind this mark is to give the consumer an easily iden-
tifiable logo that they can associate with a quality product. This mark will
be available for use by all vendors who have successfully passed BSI confor-
mance testing. The mark has already been launched in the UK along with the
C compiler validation service and has received substantial press coverage.

Neil Martin and Dan Chacon both work in the C and POSIX validation
division of BSI Quality Assurance in Milton Keynes, United Kingdom. They
may be reached via electronic mail at neil@bsiqa.uucp and dan@bsiqa.uucp,
respectively.
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Abstract

The parse of a text is a sequence of grammar rules applied to source
input. The text is brought into the parser as shift actions and the rules
are applied as reduce actions. The resulting shift/reduce sequence has
some useful properties as an intermediate language for compilers. It is
independent of the parsing technology used to produce it. It can be
stored in a file. It can be incrementally updated. It can be used to
build other intermediate forms such as syntax trees. This paper discusses
some techniques for building and optimizing the shift/reduce sequence.
One such technique has been applied by the authors to an incremental
ANSI C compiler.

Background

The parser is both the best understood and the most central facility of a com-
piler. The driving loop of the compiler is in the parser—it calls the scanner
and drives the generator. For the purposes of this paper, a top-down parser is
a set of mutually recursive routines. A bottom-up parser is a table-driven stack
automaton. Both examine the input text and report its structure. There are
several relatively standard and low-cost ways of building parsers that are error
free and efficient [1, 4].
In the process of attempting to reuse a particular C front end, the authors

found that the output of the existing parser would not serve the intended new
purpose. One alternative was to modify the parser to make a different form of
output that would work. Another was to build a new parser. Neither alternative
provided reuse—in the end there would be two artifacts to maintain. When we
in fact built a new front end, we built output from the new parser that would
have been sufficient for both previous uses. It seems as if this result is more
generally reusable, and therefore is documented here.
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Technical Basis

The use of a context-free grammar (CFG) to describe the phrase structure of
programming languages is nearly universal [1]. Nonterminal symbols represent
the main structures of the language. Terminal symbols represent the punctua-
tion (operators, reserved words, etc.) and words (identifiers, constants, strings,
etc.) of the language. The implementation representation of a terminal symbol
is called a token. The effect of the scanner is to produce a sequence of tokens.
For C the output of the scanner is preprocessor tokens which are then input

to the preprocessor which produces tokens for the parser. Providing prepro-
cessing is irrelevant for the purposes of this paper. Think of the preprocessor
as part of the scanner.
The parser examines the token stream and discovers and reports the phrase

structure. The two major contending technologies for implementing parsers are
bottom-up and top-down (BU and TD).
A BU parser such as yacc is typically a shift/reduce automaton. There is a

parse stack which is initially empty. Each shift action takes one terminal symbol
from the input and pushes it on the parse stack. Each reduce action applies a
rule from the CFG to the top of the parse stack. The right-hand-side of the
rule consists of a sequence of n terminal and nonterminal symbols; the top n
symbols of the parse stack must match the right-hand-side. The reduce action
pops all n symbols and pushes the left-hand-side of the CFG rule. Parsing
terminates when the input is exhausted and the parse stack contains exactly
one symbol—the so-called goal symbol of the CFG.
A TD parser is a set of recursive routines, each named for a nonterminal

symbol and responsible for choosing and applying the CFG rules defining that
nonterminal. The process begins when the routine for the goal symbol of the
CFG is called. The process ‘descends’ through further routine calls and eventu-
ally returns to the original routine, which by returning, signifies that the parse
is complete. There is no explicit parse stack, but the same sequence of shift
and reduce actions implicitly takes place in the call stack.
The effect of the scanner and parser together is completely described by

an interleaved sequence of shift and reduce actions. Suppose the rest of the
compiler, represented by a module called the generator, receives only the shift
and reduce actions via entries:

Shift(t) – report shifting token t to the generator
Reduce(r) – report applying rule r to the generator

The token is reported as soon as it is accepted and the rule is reported as
soon as it is applied. This interface can be satisfied by either a BU or a TD
parser.
The generator then has enough information to implement any kind of trans-

lation desired without referring to private data in the parser. In particular,
the parse tree itself can be constructed, which contains all of the information
about the original program (a left-to-right sweep of the leaves of the tree) as



Parser-Independent Compilers – McKeeman, Aki, and Aurenz 179

well as complete information on the application of the CFG. This paper pro-
poses the restriction of the post-parser interface to just the two routines, Shift
and Reduce, together with access functions for the abstractions that deal with
the rules and tokens passed by these two routines to the generator. It is our
experience that any differences in compiler performance caused by following the
structure recommended here are slight.

Tradition

The traditional BU and TD parsers each differ from the proposed solution in
the manner in which they provide storage for the generator. The parse stack,
an internal artifact of the BU parser, is a convenient structure to elaborate and
exploit to save intermediate generator information [2]. The call stack of the
recursive routines in a TD parser provides local variables, which are the corre-
sponding place to save intermediate information. If either traditional storage
technique is used, the parsers are incompatible. The alternative is to provide a
general state saving mechanism in the generator, replacing the traditional use
by the generator of the BU parse stack or TD call stack.
The description of the technique of parser-independent compilation requires

some detailed discussion of functions provided across the compiler interfaces.
There are many ways such interfaces can be defined, and many names by which
the functions can be called. The interface presented here is picked to make the
presentation easy to read. There is no implication that either the names or the
specific choice of functions is optimal.
It is sometimes necessary to go beyond strictly grammatical means of con-

structing a parse. The variety of such ad-hoc solutions (backtracking for re-
solving ambiguity, feedback from declarations to the scanner for typedef, etc.)
is beyond the scope of this paper. One can observe that the more regular the
parser, the easier it is to make ad-hoc modifications.

The Scan/Parse Interface

Each compiler has a scanner that delivers up the source text of the program as
a sequence of tokens. As a practical matter, the scanner needs three entries.
Suppose they have names as follows:

Scan() – steps ahead in the input
t = CurrentToken() – provides the current token
t = LookAheadToken() – provides the lookahead token

It happens that each call of Scan is always followed by a call of CurrentToken.
(Otherwise, why bother to step ahead?) There is no reason not to implement
an entry into the scanner combining Scan and CurrentToken, but doing so does
not simplify this presentation.
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Each token carries some required information: a lexical code (a small inte-
ger identifying which terminal symbol it represents), a textual representation (a
character string), and perhaps also some other less often used information, such
as the line and column in the input where the token begins. Access to the infor-
mation is provided by routines acting on the value t of function CurrentToken:

c = LexCodeOf(t) – small integer identifying token t
v = TextOf(t) – string representation of token t
f = FileOf(t) – name of source file containing token t
n = LineOf(t) – source file line for start of token t
n = ColOf(t) – source file column for start of token t

and so on. The value t itself is a unique representation for the token upon which
no operations are allowed except assignment and those supplied by the scanner.
The frequency of use of function LexCodeOf is high, indicating that its imple-
mentation should be particularly efficient. Both LexCodeOf and CurrentToken
may in fact be macros and/or use hidden local variables to improve perfor-
mance.
The parser calls through these entries to the scanner. Excepting nonstan-

dard situations (such as caused by C’s typedef), the parsing decisions require
only LexCodeOf(t) for each token t. A TD parser has numerous calls to Scan
and CurrentToken scattered over a number of recursive procedures. A BU
parser needs just one call to Scan and also just one call to CurrentToken to
implement the read-state processing of the automaton it implements. In both
cases the parser may be unable to make some decisions without looking ahead.
As before, a TD parser may have many scattered calls to LookAheadToken
where a BU parser has exactly one call to LookAheadToken to implement the
reduce-state processing of the automaton. The important point is that the
scan/parse interface is the same for both TD and BU parsers.

The Parse/Generate Interface

The principal action of a parser is the application of a CFG rule to reduce the
input. A sequence of such actions constitutes the canonical parse.
A BU parser naturally calls Reduce(r) when each rule r is applied. The

proposed TD parsers must do exactly the same. It is not difficult to arrange for
the TD parser to cause the same sequence of Reduce calls that the BU parser
causes. The resulting recursive routines are more regular since all non-parsing
detail is removed from them. The details of the rules may be built into the
generator or may be available through a grammar abstraction. For example,
the generator may have access to functions in addition to those accessing tokens,
to simplify the process of interpreting the rules. For example:
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c = RuleCodeOf(r) – small integer identifying rule r
s = LhsOf(r) – left side of rule r
n = LengthOf(r) – number of symbols on right side of rule r
s = RhsOf(r, i) – ith symbol on right side

The generator uses the rule and token information to build the intermediate
representation of the program. The intermediate representation is typically
some form of prefix notation, linear pseudo-code, or abstract syntax tree.
The traditional path for the token is from the scanner through the parser

to the generator. For traditional TD compilers, a call to Shift immediately
precedes each call to Scan because that is the moment of acceptance.

Shift(CurrentToken()); – send token along
Scan(); – discard token

For traditional BU compilers the tokens are already in the (private) parse
stack. Rather than send the token to the generator by calling Shift, the in-
formation may be kept in the parse stack and delivered up to the generator
on demand (a pull by the generator from the parser, instead of push by the
parser into the generator). Some generators contain private knowledge of the
layout of the parse stack data structure. Others use a procedural interface to
get at the information, keyed on the match of the top of the parse stack and
the right-hand-side of the rule. For example:

t = ParseStack(2)

might retrieve the token positioned two below the top of the parse stack, and
so on. This technique is not to be used with the parser structure proposed here.
To match the activity of the TD parser, the proposed BU parser must also call
Shift (so it too does a push into the generator).
To summarize, the traditional BU parser calls Reduce. The traditional

TD parser calls Shift. They both use ad-hoc methods for communicating
additional intermediate information to the generator (parse stack versus local
variables in the call stack). The proposed BU and TD parsers must limit
their interactions with the generator to calling only the two routines Shift and
Reduce.
There are two convenient places for a parser to add the calls to Shift. Each

call to Scan can be preceded by a call to Shift, as noted above. Or the scanner
itself can call Shift immediately upon entry to Scan, just before updating the
value of CurrentToken. It is obvious that the effect is the same. When it
is difficult to modify the parser it may be necessary to have the scanner call
Shift.
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A Parse Tree Generator

The parse tree is too voluminous for practical use as an intermediate language.
However, the following example shows how a very general generator is con-
structed using the two-routine interface described above.
Suppose that the only effect of Shift(t) is to stack the token t on a local

stack in the generator. And suppose the only effect of Reduce(r) is to build
an n-ary node (where n is the length of rule r), pop n things off the generator
stack, place them in the the node, and push the node on the generator stack.
At the end of parsing, the generator stack will have a single entry—the root of
the parse tree itself.
The important point is that the parse tree is built without reference to any

information saved in the parser. This shows the sufficiency of the two-function
interface.

Filtering

Some tokens and some rules have no semantic significance. That is, they result
in no action in the rest of the compiler. While it can be said that tokens carrying
semantic information, such as identifiers and constants, and rules corresponding
to semantic actions, such as arithmetic and branching, are surely significant,
there is no corresponding concept of ‘surely insignificant.’ Only the language
implementor knows for sure.
Without loss of generality one can say that the compiler filters the sequence

of tokens and rules, discarding insignificant items. The filter may be placed on
either the sending or receiving end, much as the call to Shift is placed before
or within the call to Scan. At the receiving end, the generator may provide
filtering by ignoring Shift and Reduce when insignificant information arrives.
This is in fact how things end up if nothing special is done.
Another way to filter is for the implementor of the compiler to tabulate

the significant tokens and rules so that Shift and Reduce omit sending the
insignificant items to the generator. It is slightly more efficient to eliminate
them at the source rather than ignore them later at the destination. The
augmented interface to the generator becomes:

if (SignificantToken(t)) Shift(t)
if (SignificantRule(r)) Reduce(r)

For TD parsers, the test on r above is often computable at the time the
parser itself is compiled. If filtering is on the sending end, the receiving gener-
ator needs to compensate by not looking for the missing information.
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An Abstract Syntax Tree Generator

Using the filtered sequences, one can build an abstract syntax tree generator
analogous to the parse tree generator described above. Because only significant
tokens get stacked, the size of the n-ary node is reduced to the number of sig-
nificant tokens and non-terminals in the rule. Nodes are built when rules are
reported—and therefore fewer nodes are built for the abstract syntax tree be-
cause insignificant rules are not reported. At the end of parsing, the generator’s
parse stack has a single entry—the root of the abstract syntax tree itself. If the
compiler requires a different, or more elaborate, intermediate language, all of
the building activity can be isolated in the generator. This frees the generator
from conforming to structures of the parser, and leaves the parser function and
implementation unchanged.

Syntax Error Behavior

In addition to correctly parsing correct programs, the parser must respond con-
structively to syntax errors. There are two issues: how useful is the diagnostic
message and what happens after the error is detected? The proposed solution
makes detection, diagnosis and continuation private to the parser. The parser is
responsible for terminating the compilation, or alternatively guaranteeing that
the reported Shift and Reduce values are consistent with some correct pro-
gram. The point is that the rest of the compiler is spared the extra engineering
required to deal with invalid input from the scanner/parser.
Recovery from syntax errors is simpler with BU parsers because the entire

state of the parse is available for manipulation by the error routine. In TD
parsers, the state is wrapped up in the call stack. Typically TD parsers written
in C resort to the setjmp/longjmp functions as a relatively clumsy way to
control the contents of the call stack. Recovery can also be better with BU
parsers because there is a well-developed technology for gathering right-context
(the so-called forward move algorithm [3]).
Scanning and parsing diagnostics are inherently limited to the model of “an

X was seen in the context of trying to do Y , and only one of Z1, Z2, or Z3 is
acceptable.” Diagnostics that go beyond this formula are guessing what might
have been intended. Such guesses are often helpful, but also often misleading.
We prefer to stick to the known facts. In addition to stating what happened,
the diagnostic should provide the location of the offending X . During scanning,
the current file, line, and column are apparent to the scanner. During parsing,
the token abstraction carries the necessary information so that the parser can
report the location to the diagnostic mechanisms (recall functions LineOf(t),
etc.).
If a parsing error occurs at a token that resulted from macro expansion, the

reasonable location to report is the outer macro invocation. The compiler can,
in addition, list the stack of active macros, although it takes some preplanning
beyond just the information available in tokens.
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Later in the compilation process, the diagnostics report inconsistencies be-
tween two sources of information (for example, declaration and use). The tokens
in the shift/reduce sequence provide the basic signposts upon which to estab-
lish the locations, although it can happen that an otherwise insignificant, and
therefore filtered, token is significant to the diagnostic process. The filter must
then pass it.

Conclusion

There are many reasons behind choosing a parsing technique. The point of this
note is not to make the choice, but rather to remove one set of reasons often
cited for making the choice. The proposed solution rules out any criterion based
on the rest of the compiler since the rest of the compiler is independent of the
choice. The proposed solution is also of comparable efficiency to traditional
solutions. In any case, the authors believe parsing cost is small compared to
the rest of compilation.
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22. Electronic Survey Number 6

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an e-mail report on the results.)
The following questions were posed to 90 different people, with 21 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

Trigraph Recognition

Given that trigraph processing can slow down compilation do you (plan to) have
a compiler option to disable trigraph recognition? (Perhaps you provide a sep-
arate utility to convert to/from trigraphs.)

• 5 – Can disable recognition
• 11 – Cannot disable recognition
• Comments:

1. Not at the moment. The trigraph processing doesn’t seem to be a
particularly expensive part of our compilation time.

2. Turning off trigraph processing based on an option was considered,
but since we don’t look for trigraphs inside comments, and comments
represent a significant portion of the source we are scanning, why
complicate the testing procedures?

3. A separate utility is inappropriate. A compiler should be as strictly-
conforming as it can be by default, and trigraphs are, like it or not,
part of the standard. Allowing the user optionally to turn off tri-
graphs is fine, but making him manually run a separate pass to enable
them is not. Actually, I’m not convinced that trigraph processing is
expensive.
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4. The incremental speedup masks the extra level of function invocation
in my C compiler so I have no intention of doing anything special for
trigraphs. It is my opinion that a decently written front-end will be
entirely speed-limited by a decently written back-end anyway.

5. In implementing trigraphs I found that I indeed had to take a sec-
ond pass in my preprocessor (which previously required only one
pass). However, writing the trigraph scan in assembly yielding no
discernable difference in speed. This coupled with the massive con-
fusion associated by having too many options for a compiler led me
to decide against allowing the user to disable the trigraph scan.

6. You have to get rid of both trigraphs and arbitrary backslash/new-
line splicing before things can be made faster.

7. We found that trigraphs were dangerous and that they broke existing
code containing printfs with ‘??’ in the string.

8. We have an option to disable trigraphs but it’s not for speed, since
we get only a 1–3% speedup. We do it because trigraphs are an
abomination!

9. The requisite trigraph processing should not slow down compilation
appreciably since ‘?’ source characters are quite rare, most of a
source file should simply have an additional CMPB and BEQ (not
taking the branch) per source character. The average processing per
source character generally far exceeds that small added amount.

10. A special option is needed to enable trigraphs, since I don’t expect
sensible people to use them.

11. We do not have any plans to provide options that turn off trigraph
processing. However, it is certainly interesting what trigraph pro-
cessing can do to non-C language input.

12. We provide a separate filter program to support recognition of tri-
graphs. IBM PC users have the full ANSI C character set available
and so we decided not to burden PC users with the slow-down needed
to support trigraphs and a few of the more strict scanning rules of
ANSI C (like allowing backslash/new-line combinations to appear
within a token other than a string literal).

13. We convert trigraphs on the first pass through the source and read
the converted text on the subsequent pass. The trigraph recognition
is awkward, but since trigraphs are converted immediately, they are
not a major time expense.

Is main Special?

Does your compiler recognize main as a ‘special’ function? (Perhaps you do
extra checking or generate different code.) Have you ever found a need to call
main recursively?
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• 3 – main is special
• 10 – main is not special
• Comments:

1. I’ve never called main recursively but I’ve seen programs that have
done so.

2. When main is recognized, the compiler emits a special global which
will cause the linker to pull in the program startup and rundown
code. In addition, this global is different depending upon whether or
not arguments are given to main, so that if no arguments are present,
the code to handle command-line processing is not linked into the
program.

3. main is special for us in that our debugger needs additional informa-
tion to handle it.

4. In many ROMable applications the main entry routine need not save
or restore any registers. However, having a special feature to remove
the few instructions that could be saved here results in very little
savings since the treatment is usually limited to one function in the
entire program.

5. Our MS-DOS version does because it has to emit certain segment-
ordering information. Our UNIX versions don’t.

6. main itself is not special. However, from the loader’s perspective,
the library startup code is since it is designated as the primary entry
point of the code. We have a #pragma main name which designates
the function name to be the primary entry point. The function crt0
(main startup code function in our libc) uses this pragma. Users can
designate any other function as the main entry point if they so desire.

Extended Integer Types

At the most recent Numerical C Extensions Group meeting a subgroup was
formed to consider extended integer types. Prior art in this area comes from
one 64-bit machine where the type long long int has been added. What is
your opinion on long long as a solution? Do you have an interest (or prior
art) in a more general solution such as int16, int32, int64, etc?

• Comments:

1. The long long int type causes a number of difficulties but can
be implemented easily and usefully. I think a more general exten-
sion such as allowing subranges and specific size specifications would
make more sense though.
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2. long long shows how stubborn the C community is in rejecting
innovation from other languages. Our interest is in a more gen-
eral solution. We have an extension to C syntax for integer range
types, which lets the user say things like typedef |-32768..32767|
int16;. Not only is this a cleaner syntax than short, long, long
long, etc., but it also is more portable and offers greater opportuni-
ties for error checking.

3. I have a huge dislike of the more general int16, etc., solution. This
is just not portable to all architectures and encodes too much infor-
mation in the type. long long seems a bit kludgy to me. Is there
really a need for more than four different integer sizes, even on a
64-bit architecture?

4. We have no prior art in this area; however we are very keen that
some solution to the large file size problem should become ‘standard’
soon. We prefer that the large file size problem should be solved be
changing C to allow a larger type (rather than by providing new
lseek, etc., functions or by making long int 64 bits wide). long
long int is adequate and likely to become accepted more quickly
than the FORTRAN type syntax.

5. Our machine has 64 bits per word. If long long were added it would
more likely be a 128-bit integer for us. We may even have a use for
it! I’m not sure int16, etc., is a good idea, but I have no better
ideas.

6. I think long long int is in the ‘spirit of C.’ I know some people
desperately want bit-count-level control, but I’ve never needed it.
I dislike int32, etc., partly because I’ve never needed them and
partly because I don’t see how many of them there should be or
what a compiler should do if it can’t provide the size requested.
Also, they’re ugly and look more like PL/I than C.

7. We have received several requests from our users for a 64-bit integer
even thought ours is not a 64-bit machine. We plan to implement
such a type in the future.

8. I prefer a header with intNN defined for every reasonable NN in
terms of the base types supplied by the compiler. I think program-
mers should avoid cute optimizations on word length to save storage
because the cost is broken programs when something gets bigger or
longer than they ever imagined. Just use int unless there is over-
riding reason.

9. long long makes the most sense. To have specificational types such
as int32, etc., would mean a major change in the language specifi-
cation and rightly belongs in a new language.

10. long long is a workable concession to nonportable programs. But
it makes the clear statement that there was no good choice. Of
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course adding more keywords is not any better. Using more and
more such combinations will only make things much worse. Some
form of extensible specification would be better. For the meantime,
I would think that having long be your wider-than-32-bit integer
and int be 32 bits is a reasonable alternative.

11. long long seems OK to me. When 128 comes around we’ll rethink,
but that will be 20 years.

12. No real opinions here although I can’t help commenting that people
with 36-bit machines might want int18 and int36 as well.

13. We have no pressing need for extended types.

14. I cannot support the use of reserved identifiers as additional key-
words. long long has the advantage that it is a conforming ex-
tension. However, I see no real need to access all possible integer
sizes.

15. We already support long long.

16. I do not believe that long long int guarantees a 64-bit integral
type. The best that could be guaranteed is at least 64 bits. Cur-
rently, there are four different precisions possible for integral types.
This allows 8-bit char, 16-bit short, 32-bit int, and 64-bit long. I
am against this proposal.

17. My preference is to introduce the concept of integer ranges as found
in Pascal. Extremely large integer types can be implemented as
typedefs using large integer ranges. I think that Pascal style ranges
afford better compile-time analysis than the int32 and int64 vari-
ants found in FORTRAN.

18. In our implementation, short, int, and long in essence all use 64
bits. Therefore, long long int should not be used to designate a
64 bit object.

Inter-Language Issues

Which other languages does/must your C code interface with? What are the
main problems in establishing correct and efficient inter-language communica-
tion? How have you solved them?

• Comments:

1. The worst problem is memory management—interfacing to modern
languages that need garbage collection.

2. Pascal, FORTRAN, and C++. The onus of establishing the com-
munication is mostly on the C compiler/programmer. Our primary
compiler has new keywords to allow the programmer to specify the
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calling convention he wishes. The programmer still has to make sure
that the names will agree.

3. FORTRAN and Ada. We let the user figure it out, of course.
4. BASIC, FORTRAN, Pascal, and assembly. We provide

#pragma linkage language module-list opt

to allow the programmer to indicate a given module should be called
with a particular linkage.

5. FORTRAN and assembly. The main problems are with byte/word
and by-value/by-reference differences. Case sensitivity between C
and FORTRAN is another issue. Our binary format contains case
sensitive names and the FORTRAN compiler generates, by default,
uppercase names Our C compiler passes byte addresses while FOR-
TRAN passes word addresses. To resolve this we have the pragma

#pragma XXX language( language, name )

where XXX is our company’s initials and language is either C or
FORTRAN. This directive can be used on declarations and definitions.

6. I’ve never thought it entirely fair to discuss this as a C issue (though,
of course, everybody does); it’s as much an issue of the other lan-
guages with which communication is desired. It comes up so much
with C simply because C’s low-level power and popularity make it
a natural choice for writing subroutine libraries, device drivers, and
‘glue’ logic, all of which have a much better than average chance of
needing to be called from (or make calls to) heterogeneous languages.
The only reasonable, general solution is an architecture-level proce-
dure call standard. DEC designed an excellent one for the VAX. (It
is frequently, and unfairly, badmouthed though because its generality
was institutionalized in the VAX CALLS and CALLG instructions
which are more powerful but allegedly less efficient than many people
would like them to be.)

7. Pascal and, to a lesser degree, FORTRAN. We have an established
Procedure Calling Convention that all programming languages fol-
low. As long as data types in parameters are compatible, there is
not much of a problem.

8. FORTRAN, Ada, Pascal, C++, and other C compilers too. Its a
mess!

9. Assembly. I use a pragma to specify the registers in which to pass
arguments.

10. C++ and FORTRAN. C++ takes care of its own C interfaces, while
C does the work needed to map to FORTRAN’s data types. Mul-
tidimensional arrays passed between FORTRAN and C do require
some thought though on the part of the programmer.
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11. FORTRAN, Pascal, and C++. We have pragmas to change call-
ing convention and to specify an object-module name of a function
as opposed to the source name. We also have pragmas to exploit
FORTRAN COMMON blocks.

12. FORTRAN and Pascal. With FORTRAN, there is a big problem
on the user education side concerning the way in which FORTRAN
views parameters. The other major problem is concerned with run-
time library initialization: in effect, one language has to be ‘in charge’
in a program, and the I/O statements of the other languages cannot
be used.

13. Ada. The main problem here is in passing an exception handler
context. We have not come up with a satisfactory solution to this.
As for Ada calling C, this is not a particularly hard thing to do.

14. F77 and Occam. The function calling convention is different, so
special keywords (such as fortran and occam) will be needed.
And the linker will need to be smarter.

15. FORTRAN, Pascal, and Ada (however, for Ada the main entry point
must be in Ada). The biggest problems are between C and FOR-
TRAN. Array storage (column/row major), call-by-reference/value,
TRUE/FALSE, character pointers versus character descriptor, vari-
able dimensioned arrays, and complex arithmetic.
When applied to functions, our fortran keyword implicitly takes
the address of any argument that does not have a pointer type.
fortran.h contains several helpful macros that convert a FORTRAN
LOGICAL into a 0 or 1, convert a C integer into a FORTRAN
LOGICAL, convert a C character pointer and integral length into a
FORTRAN character descriptor, convert a FORTRAN character de-
scriptor into a C character pointer an a length (with unsigned type).
We have extended our C implementation to include variable length
arrays and complex types.

Intrinsic Library Functions

Have you or are you planning on implementing the FORTRAN ‘Intrinsic Func-
tion’ idea by making certain C functions behave more like operators than func-
tion calls? If so how does the user select this feature or is it the default?

• 14 – Yes
• 4 – Transparent
• 9 – User selectable
• 3 – No
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• Comments:

1. It is under user control via command-line arguments and pragmas.

2. The implementation is controlled by macros in math.h and is trig-
gered by macro definitions on the command-line.

3. All are available to the C programmer by declaring a full prototype
for the intrinsic and using the following pragma:

#pragma XXX intrinsic ( name )

where XXX is the company initials and name is the name of an
intrinsic function known by the compiler. Inside math.h many of
the math functions (such as sin and cos) have this pragma declared
for them. No intrinsic is selected unless this directive is seen.

4. I assume you mean ‘function inlining.’ pow immediately comes to
mind and (architecture permitting) sqrt, sin, etc. The method sug-
gested in ANSI X3.159-1989, §4.1.6, page 100, footnote 96 suggests
a reasonable approach; in math.h, have something like:

extern double pow(double, double);
#define pow(x, y) _BUILTIN_pow(x, y)

and then have the code generator special-case calls to BUILTIN pow.
This behavior would be the default, but could of course be disabled
by the user by calling (pow)(x, y) or with #undef.

5. We are looking into inlining some popular functions for performance
reasons, e.g., strcpy.

6. Within the standard, I feel free to do as I like here. The worst
problems are for the debugger which has to wend in and around
lots of special code. In any case, I won’t do much of any of this
in my compiler since code speed is not the issue in an incremental
environment.

7. Standard C already allows intrinsic functions in that a hosted imple-
mentation can know the semantics of a standard library function once
its header is included. If you mean the type-conformable macro-like
FORTRAN functions, they would be a bad idea in C. (Function-like
macros are already available.) A much better approach in C is to ex-
tend the language to allow function overloading. This covers a part
of the need. The other difference between operators and functions
has to do with computational exceptions. This should be handled in
some fashion for existing functions first. Once that is done, it should
be available for the new overloaded functions.

8. The compiler recognizes lots of library functions since we [the imple-
mentors] ‘own’ them.
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9. Certain functions are known by our compiler. Most are specific to our
target environment, but some (like memcpy and strcpy) are standard
C functions. These are known even if the programmer forgets to
#include their parent header or puts in his own external declaration
for these functions.

10. We do this with abs, labs, and fabs. Also, most of the is*, str*,
and mem* functions.

11. The transcendental math functions are recognized and converted into
calls to special functions that accept their arguments in registers, and
have a fast entry and exit sequence.

12. We support a collection of intrinsic functions, but they all have re-
served names beginning with two underbars. For example, there is
an abs function intrinsic to the compiler. The stdlib.h header
defines an abs macro that maps to abs . This fits the ANSI rules
for overloading of standard library functions and a simple #undef
will selectively disable intrinsics that are not desired for whatever
reason. Also, the rules for expanding function-like macros allow one
to still take the address of the real library function even when the
intrinsic is available for direct calls.

∞
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Abstract

Designing a production quality ANSI C preprocessor was an unexpectedly
complex task. Since K&R (1st Edition) devoted but two pages to its
initial description, one might anticipate that building one would be a
relatively simple matter. It was not, and the ANSI extensions were just
part of the story.

In this paper, I define our rather lofty goals and discuss our approach
to lexical processing and the processing of macros, #include directives,
and conditional inclusion. I also discuss the extensions we considered and
actually added.

Introduction

We began the project by attempting to define an ideal C preprocessor. After
considerable study of the ANSI documents and the preprocessors in the field,
we concluded that an ideal preprocessor should exhibit the following character-
istics:

• Well defined functionality
• Fast
• Minimal capacity constraints
• Integrated but separable
• Sensible error handling
• Flexible/portable

One of the largest and most hazardous areas of diversity among C compilers
is in the preprocessor. Implementation-specific features abound, and efforts to
document preprocessor functionality have been notoriously insufficient. Quite
frequently, the only reliable way to determine a preprocessor’s treatment of a
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certain issue has been through testing. This is undesirable. An ideal prepro-
cessor should accept a well defined (if primitive) language and produce well
defined output.
An ideal preprocessor should also be as fast as possible and have few ca-

pacity constraints. “Too many formals,” “Actuals too long,” “Expansion size
exceeded,” and other such diagnostics are a common source of irritation for
C programmers developing large software systems, and at times prove to be a
constraint on development. They needn’t be. Preprocessing is not inherently
limited by these things, and a well designed preprocessor should be both fast
and capacious.
An ideal preprocessor should also be able to generate an explicit output file.

This does not imply that the preprocessor should generate an output file as a
means of passing its output to the compiler proper. This common technique has
severe performance consequences for the compiler since it requires additional
I/O and a second lexical parse of the input. Instead, it simply means that the
preprocessor should provide the ability to generate such a file when requested.
The ability to generate explicit output files can be extremely useful in de-

bugging and development, especially when macros and header files are used
extensively. It can also allow the preprocessor to be used as a general purpose
tool. Any text file within the broad lexical requirements of the preprocessor
can be effectively preprocessed.
Another characteristic of an ideal preprocessor is that it handle errors in

a sensible and systematic way. The preprocessor should never crash, no mat-
ter what the input. Error messages should be descriptive and highlight the
offending sections of input. And the preprocessor should be error correcting
wherever possible. After generating the appropriate diagnostics, the preproces-
sor should “assume” a missing parenthesis or comma, complete an incomplete
header name, and so forth. This will yield more complete diagnostic information
and more useful output to the user.
Finally, as with any development tool, an ideal preprocessor should be flex-

ible and portable. It should provide switches for commonly found preprocessor
features and allow selective warning message suppression. In sum, it should be
usable on as many systems as possible.

General Description

The Compass C preprocessor is a token based, ANSI-conforming preprocessor.
Because performance is important, it is integrated into the C compiler and
passes tokens directly to the parser, eliminating the additional I/O and lexical
analysis necessary if an output file were first generated. Macro processing is
optimized, employing sophisticated algorithms and data structures for macro
definition and expansion to avoid copying and rescanning of text. File inclusion
is also optimized, with special treatment given to guarded header files.
High capacity is a requirement, so the preprocessor uses no fixed-size data
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structures. All tables, stacks, and lists are dynamically expandable. Capacity
limits are set by process memory limits, not by program constants. Though
integrated into the compiler, the preprocessor can produce an explicit output
file for debugging or development purposes. It can also be built with a separate
driver to produce a general purpose translation tool with well defined input and
output.
The preprocessor has an extensive and flexible set of error handling facili-

ties, and is fully error correcting. Certain diagnostic messages may be selectively
suppressed. Moreover, the preprocessor continues processing the input no mat-
ter what the error, making reasonable assumptions about the source writer’s
intent when an error is diagnosed.
Finally, because portability and flexibility are design requirements, the pre-

processor contains a full set of switches to allow the user to turn on or off the
more novel and controversial ANSI features, to define the include file search
path algorithms, to describe the structure and form of the explicit output file,
to enable non-ANSI but popular features found in other preprocessors, and so
forth. The preprocessor also allows the user to define certain “implementation
defined” and “undefined” issues from the ANSI Standard.

Lexical Processing

Translation Phases

To clarify the nature of syntactic analysis, the ANSI Standard defines a concep-
tual model for the translation of source text into tokens. This model is specified
as a sequence of eight distinct translation phases, and defines the order of prece-
dence among the processing rules. The first four phases are primarily concerned
with the actions of the preprocessor. They may be summarized as follows:

1. Map the physical source file to the source character set and interpret
trigraphs.

2. Delete each sequence of backslash followed by new-line, splicing physical
source lines into logical lines.

3. Recognize preprocessing tokens, white space, and new-lines; convert each
comment into a single space character.

4. Execute preprocessing directives, expand macros, and process #include
directives by recursively processing the named file through these four
phases.

The final four phases are concerned with translating the stream of prepro-
cessing tokens emitted by the preprocessor into actual tokens and then eventu-
ally into a program image.
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Trigraphs

The ISO-646 Invariant Code Set, an internationally agreed upon character set,
is not rich enough to express the C language in full. Nine essential characters
are absent. The ANSI committee introduced trigraph sequences as alternate
spellings for the nine missing characters to allow the implementation of C in all
ISO-646 conforming character sets.
As it is defined as a separate pass over the source text, trigraph processing

can be costly. There are two obvious implementation choices: create a filter to
screen trigraphs before source text is fed to the lexer, or incorporate trigraph
processing directly into the lexer/preprocessor. The first choice is undoubtedly
expensive. It requires that every character of the source input be read at least
one more time, and complicates the task of pointing to the offending section of
code when errors are found. The second choice has neither of these problems.
We chose the second.

Sophisticated Lexer

We combine the first three translation phases (and the three scans of the stream
input that they imply) into one sophisticated lexical analysis phase. This phase
inputs source text and outputs a stream of preprocessing tokens, each containing
source position information and a bit describing whether or not white space
appeared before it in the source text.
This is accomplished with a standard finite-state machine, generated from

a regular expression grammar like that given in the ANSI Standard, but with
the following modifications:

1. Trigraphs are included as alternate representations for the affected char-
acters. For example:

TOKEN_LBRACKET ←− ’[’ | ’??(’
2. Fixed multi-character tokens allow arbitrary sequences of backslash fol-
lowed by new-line. This includes, of course, the trigraph representation
of backslash. For example:

BACKSLASH ←− ’\’ | ’??/’
BNL ←− BACKSLASH NEWLINE
TOKEN_EQUAL_EQUAL ←− ’=’ BNL* ’=’

3. Variable length, multi-character token classes are described by two dif-
ferent tokens, one for tokens that contain embedded backslash/new-line
sequences and one for tokens that do not. So, for instance, there is a
TOKEN IDENTIFIER and a TOKEN IDENTIFIER BNL, a TOKEN STRING and a
TOKEN STRING BNL, and so forth.
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When an identifier or numerical constant contains a backslash/new-line
sequence (possibly of the trigraph backslash variety), the token’s text is fil-
tered before being entered into the text table. Though this requires additional
work, it should be a relatively rare occurrence. In the normal case, where
backslash/new-lines do not appear, no additional work is necessary. The text
of string literals and character constants is always filtered for trigraphs and
sometimes for backslash/new-lines as well. With trigraph processing enabled,
this is unavoidable.

Disabling Trigraph Processing

Several preprocessors allow the user to completely disable trigraph translation,
presumably to improve performance and avoid the syntactic changes that it en-
tails. We do not. We allow the user to suppress trigraph processing only within
string literals and character constants. We view this as a compatibility feature
allowing the user to preprocess “old C.” Since trigraphs may not legitimately
appear in “old C” anywhere but within these tokens, and since recognizing them
elsewhere costs us almost nothing, there seems to be no point in providing the
ability to disable translation completely.

Comment Processing

Comments do pose something of a problem for the generated lexer. The reg-
ular expression grammar needed to recognize C comments is non-trivial even
without the added complexity of trigraphs and backslash/new-lines because the
closing delimiter must be excluded from the body of the comment. Allowing
arbitrary sequences of backslash/new-lines to appear between the * and / of the
closing delimiter complicates the grammar immensely, rendering it practically
intractable.
We solve this problem by recognizing only the opening comment delimiter

in the lexer. The preprocessor then recognizes the closing delimiter itself. This
is relatively simple since it is looking for a pattern to terminate the comment
rather than trying to find the longest match to a pattern that matches ev-
erything except the terminating sequence. This solution has the advantage of
allowing the preprocessor to write the text of comments to an explicit output
file very easily at the user’s request. The preprocessor simply writes out the
comment text while scanning for the terminating sequence. Were the full com-
ment recognized by the lexer, its text (of unbounded, and often very large size)
would need to be buffered by the lexer and then rescanned to write it to an
output file.

Macro Processing

Macro processing involves macro definition and macro replacement. Macro def-
inition is computationally simple. There are interesting optimization issues to



CASE STUDY: Building an ANSI CPP – Parks 199

resolve involving how macro definitions should be stored and how redefinitions
should be examined, but the work is not complex. Macro replacement is another
matter. It may be quite complex, confusing, and counter intuitive. Macros may
nest within other macros. Macro calls may be built “on the fly” using formal
parameter substitution. Macro replacement, or token pasting, and some limited
forms of recursion are allowed.
Designing a fast macro processor that scans each token as few times as

possible, that does minimal list shuffling, and that is bound by minimal capacity
constraints is a non-trivial task.

ANSI Macro Replacement

Though macro replacement may be quite complex, its description is straight-
forward. It is logically a three step process:

1. Prescan (function like macros only) - The actual parameters are macro
expanded. This may involve expanding the macro containing the actual
parameter, and may involve many levels of macro nesting. When this
phase is complete, each actual parameter will have been transformed into
a replacement list containing no valid calls to other macros.

2. Substitution (function like macros only) - The replacement lists formed
above are substituted into the macro body in place of their associated
formal parameters. If the formal parameter is to be stringized or token
pasted, the unexpanded replacement list is used.

3. Postscan - The macro body is scanned for stringizing operations to per-
form, token pasting operations to perform, and embedded macro calls to
replace. As in the prescan phase, this may involve many levels of macro
nesting, but it may not involve recursively expanding the macro corre-
sponding to this body.

The ANSI Specification elaborates on the avoidance of recursive macro ex-
pansion by stating that once a macro name is considered for expansion and
rejected because of recursion, it is marked to prevent it from expanding if it
later occurs in a context in which it would normally expand. The following
example shows how such a “later context” can occur:

#define f(x) x
f(f)(1)

When fully preprocessed, this should produce f(1). It cannot expand fur-
ther because f is “marked” to prevent expansion.

Expansion Algorithm

A straightforward implementation of the above would first produce and store
the replacement list for every actual parameter that needs expansion (Pres-
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can). It would then scan the macro body and substitute these replacement lists
where appropriate (Substitution). Finally, it would rescan the macro body to
perform stringizing and token pasting operations and to expand macros that it
encounters (Postscan).
This sketch describes an algorithm that requires two complete scans of the

macro body, storage for the expanded forms of actual parameters, and storage
for the fully expanded macro body. Recognizing these costs, we chose another
approach.
Our approach expands macros in a single left-to-right pass over the macro

definition. It builds no intermediate token lists except for unexpanded actual
parameters, and it outputs each token as it is determined. The state of the
expansion is preserved while control is returned to the parser so that expansion
can resume the next time it is called. The costs of this solution are algorithmic
and data structure complexity. It must accomplish in one pass what is specified
in two, and must represent an essentially recursive expansion process in static
data structures.

Expansion Data Structures

Three central data structures are used in macro processing: the token table
(which contains a record for each token used in macro processing), the macro
table (which contains a record for each presently defined macro), and the expan-
sion stack (which contains a frame for each macro or actual parameter presently
expanding).
The expansion algorithm builds a new stack frame for each macro it begins

expanding. The frame contains pointers into the macro table and the list of
unexpanded actual parameters for the macro call. As it expands the macro, it
moves these pointers though the appropriate token lists to maintain its state.
When a valid macro call is encountered within an expansion, the algorithm
constructs another frame, pushes it onto the expansion stack, and continues
processing with that frame. One frame situated above another on the expansion
stack corresponds to an embedded macro expanding within another.
When a formal parameter that is not stringized or token pasted is encoun-

tered within a macro body, a similar thing occurs. A stack frame is built to
macro expand the actual parameter. This frame is not pushed onto the stack,
however, because the context of the expansion is slightly different. Instead, it
is linked to the current frame with a pointer. One frame pointing to another in
this way corresponds to a macro expanding actual parameter being substituted
for a formal parameter.

Macro Definition Issues

When the preprocessor encounters a #define directive, it must first determine
whether or not it is a pernicious macro redefinition and then enter its text into
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the macro table. Macro definitions are stored as token lists, and so interesting
opportunities for definition time token transformations present themselves.
We move token pasting operators in front of their left operands (transform-

ing token ## token into ## token token) to remove the macro expansion burden
of looking past each token to determine if it is token pasted. We also transform
stringizing operations(# followed by a formal parameter) into single stringizing
tokens. This has the nice consequence of distinguishing stringizing operators
from ordinary # tokens. These are simple transformations triggered by specific
tokens; they seem worthwhile to do while building the definition.
We do not mark formal parameters as such at definition time, however.

Quite often in real code a substantial percentage of the macros defined in header
files are never called within a particular compilation. Since finding the occur-
rences of formals within a macro body involves some type of lookup for each
identifier, it makes sense to do this processing only for those macros that are
actually called. We decided, then, to mark formals as such during the first
expansion of each macro. Macros that are never called are then cheaper, and
macros called more than once have no added burden.

Include Processing

The #include preprocessing directive allows the user to include header files in
the preprocessor input. It has three variations: the system file variation, the
user file variation, and the computed header name variation. In the latter, the
argument tokens are macro expanded and combined to form one of the two
other forms.
According to ANSI, including a file should produce the same results as copy-

ing the contents of that file into the original, with the following three exceptions:
comments may not begin in one file and end in another, and backslash and
new-line may not be the final two characters in any file (tokens cannot span file
boundaries), and related conditional inclusion directives must all reside within
one file.

Implementation

Because header files may nest one within another, we chose an obvious, stack
based algorithm for include processing. There were just two sticky issues, header
name determination and include search strategy. The lexical definitions for
header names conflict with the lexical specifications for the C language proper.
It is thus impossible to use a common grammar for both. This adds complexity
to the lexical analysis process.
The other sticky issue was include file search strategy. The ANSI document

does not elaborate on how or where the preprocessor should search for header
files. This is left for the implementation to define. Assumptions about operating
systems and file storage are also carefully avoided.



202 The Journal of C Language Translation – December, 1990

Given that extant preprocessors vary significantly from one another in this
area, we felt that the best solution was to allow the user to define search strate-
gies for both system and user header files from the command line. The user
may define a set of places to search and an order in which to search them. This
also involves defining whether or not the search should begin in the location
of the original source file or the location of the (include) file presently being
processed.

Guarded Header File Optimization

It is common in large software systems for a source file to include the same
header file more than once. Because of this, many header files are guarded to
prevent the full processing of these files more than once. This is traditionally
done as follows:

#ifndef FILE_GUARD
#define FILE_GUARD

contents of header file

#endif /* FILE_GUARD */

Notice that if this file is included a second time, the preprocessor will not
process macro definitions or pass tokens on to the parser or explicit output file.
It will, however, read in and process the file, at a non-trivial cost.
Noticing this cost, we designed the preprocessor to specifically recognize

guarded header files. When it finds one, it saves the guard for future reference.
Then, if the file is included again, the preprocessor can process the guard with-
out having to input the file. If the guard test fails, the file is dismissed without
having to be input. The savings can be quite considerable.

Conditional Inclusion

The preprocessor’s conditional inclusion facility allows the user to include or
exclude source code at compile time, an important ability when developing
portable applications. ANSI has defined six preprocessing directives for this:
#if, #ifdef, #ifndef, #else, #elif, and #endif. They may nest one within
another giving the user substantial flexibility.
Constant expressions in this context are somewhat interesting. All operands

are either long or unsigned long and identifiers that are not macros are in-
terpreted as 0L. The grammar includes the new ANSI defined operator, but
excludes the sizeof operator and casts.
Our implementation utilizes a stack based algorithm to control directive

nesting and a recursive descent parser/evaluator to process constant expres-
sions. Unfortunately, the grammar differs enough from the C constant expres-
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sion grammar to make reuse of that evaluator difficult, and so the preprocessor
has its own.

Extra ANSI Functionality Issues

When designing the Compass C preprocessor, one of our stated goals was that
the preprocessor should be flexible enough to replace most popular C prepro-
cessors compatibly. This design goal involved a study of existing preprocessors
and the creation of a considerable number of user switches to enable non-ANSI
features. Some features were as simple as allowing the $ character to appear
in identifiers, or escaping the " and \ characters within the FILE macro
expansion, or allowing extraneous tokens to appear after #else and #endif
directives. Others were more involved. As described above, the specification of
the #include search path algorithm was particularly interesting. The following
issues were also sticky.

Token Concatenation

Designing a preprocessor to produce an explicit output file introduces a new
measure of correctness. It seems reasonable to assert that a correct preprocessor
should be consistent with itself to the extent that when it produces explicit
output and that output is then fed back into the compiler, the result should
be identical to that produced when no explicit output is generated. This seems
like an appropriate objective, and it would not be unreasonable for a user to
expect this, but the objective can be extremely difficult to obtain. Consider
the following example:

#define f(x) hello
f(1)there

When preprocessed, this produces hellothere. ANSI specifies that this
result is actually two tokens with no intervening white space. But if an output
file were generated and then fed back into the preprocessor, just one token would
result. This effect is not limited to identifiers, but can occur whenever macro
expansion places concatenatable tokens adjacent to one another in preprocessor
output.
One common solution is to insert a space character after every macro expan-

sion written to preprocessor output. This would solve the problem in the above
test case. This solution is incomplete, however, as evidenced by the following
two examples:



204 The Journal of C Language Translation – December, 1990

#define f +
+f

#define g(a) a+
g(+)

Both examples will produce a single ++ token if explicit output is generated
and then fed back into the compiler, even with the solution described above.
A better (yet more costly) solution to this problem would be for the prepro-

cessor to determine whether every two immediately adjacent tokens are con-
catenatable, and then to insert a blank space between them if they are. An
“adjacency matrix” could easily be defined, and the lookups should not be pro-
hibitively expensive. Feeling that this feature will not be frequently enabled
(it is only useful if an explicit output file is generated), we chose the second
solution. Partial solutions seem hardly worth the price.

Macro Parameters in Strings and Character Constants

Replacing formal parameters within string literals is fairly common practice.
It is semantically ugly, however. It is also strictly non-ANSI, and in fact was
the motivation for the explicit stringizing operator (#). One major problem
with existing practice in this area is that replacing formal parameters within
strings is not really stringizing. " and \ characters are not escaped during the
replacement, and so the result may not be a single lexically valid string. Feeling
that this practice was too common to ignore, we provide support for old style
stringizing and charizing at the user’s request. We also provide escaping within
such constants when necessary.
It is worth adding that the old style stringizing switch has the important ben-

efit of allowing the preprocessor to be used effectively with pre-ANSI compilers
that do not provide adjacent string concatenation. Without such concatena-
tion in the compiler proper, the following common macro cannot be effectively
expressed in ANSI preprocessor syntax:

#define old_string(x) "string is: x"

Comment Token Pasting

In some preprocessor implementations, most notably the UNIX CPP, comments
can be used within macro definitions to paste tokens together. Comments
are not replaced by single space characters (as they are in ANSI-conforming
implementations) and preprocessor output is written to an output file before
being read in by the compiler proper. The effect of this can be seen in the
following example:

#define paste(x,y) x/**/y
paste(field_,1)
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When preprocessed by the preprocessor described above, this yields a single
identifier token field 1. This facility is useful, but was deemed semantically
ugly by the ANSI committee, and so it was replaced by the explicit token
pasting (##) operator.
Unlike old style stringizing, old style token pasting is fairly easy to system-

atically detect and edit in C code. We felt, then, that providing support for
this feature was less important than for stringizing. Instead, we provide the
user a command line option to detect and report instances of this usage.

Preprocessor Output File

The ANSI Standard says nothing about generating an explicit preprocessor
output file. Nonetheless, the common view that the preprocessor is a general
purpose development tool demands that one give careful consideration to what
an output file should look like. Should it contain comments? Should white
space be preserved? Should it be compressed? Should #line directives be
generated? ANSI style or UNIX style? Constrained by our goal of maximum
flexibility, we implemented all of the above. When used as a development tool,
all seem useful.

Conclusion

Building a production quality ANSI C preprocessor was a more complex task
than we had anticipated.
Many extant preprocessors restrict functionality to gain performance and

simplicity. An ANSI conforming preprocessor, however, cannot. It must pro-
cess the language as specified. It is common, for instance, for preprocessors to
restrict directives to begin in column 1 to simplify directive recognition. An
ANSI preprocessor, though, must recognize directives in any column (preceded
by new-line and horizontal white space). Simplifying assumptions are not al-
lowed.
Our design was complicated by our requirement that the preprocessor be

backward compatible with others in the field. The preprocessor had to handle
both old style and new style features where differences arose. Two stringiz-
ing strategies were necessary, for example, two token pasting strategies, and a
number of file inclusion algorithms.
We also required that the preprocessor be fast. Since relexing after prepro-

cessing is a serious performance penalty, this requirement seemed most com-
patible with a single pass, token based design. Creating an explicit output file,
however, was somewhat difficult in this setting. The integrity of tokens can
easily be lost, if care is not taken to prevent it. White space information can
also be lost rendering the output difficult to read. Getting this right was a
non-trivial task.
The requirements we set down at the outset of the project pushed us towards

an interesting and complex design. Optimizations abound, and the tool is
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flexible throughout. It operates as both a general purpose development tool
and an integral part of our suite of C compilers.

John Parks is a software engineer at Compass Inc. He developed their
ANSI C preprocessor with Rich Peterson and is currently working on the Com-
pass C compilers. He may be reached electronically at parks@compass.com or
by phone at (617) 245-9540.

∞

[Ed. Inspired by John’s discussion of trigraphs, backslash/new-lines, and phases
of translation, I constructed the following test program:

#include <stdio.h>

#define M(arg) printf(">%s<\n", #arg)

main()
{
M(a/* comment 1 */b);

M(a/??/
\
??/
* comment 2 *??/
\
??/
/b);
}

An ANSI-conforming translator should produce the following output:

>a b<
>a b<

since the arguments in both macro calls are identical after translation phases 1
and 2. Of the 9 compilers claiming ANSI conformance that I tested this on,
five failed miserably.
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Jim Brodie

Abstract

In this article, I will continue the review of C Standard interpretation
requests being addressed by X3J11, the standards committee that devel-
oped the American National Standard for C. In particular, I will explore
the issues surrounding one of the most difficult and interesting requests.

Function Return Optimization

In the March 1990 issue of The Journal (Volume 1, number 4 ), I started writing
about the interpretations activities of X3J11. In that article, I noted that a
small backlog of interpretations had accumulated for consideration by X3J11.
Since that time, there have been several X3J11 meetings. One of these original
interpretation requests still remains unanswered. In this article I will explore
the issues surrounding this unresolved interpretation request.
This difficult interpretation is one that, at first glance, looks like a fairly

simple request. Paul Eggert, in the first formal interpretation request addressed
to X3J11, asked the question, “Do functions return values by copying?” After
reviewing the interpretation request, it turns out that the real question has to
do with the validity of a particular function return optimization that uses a
by reference rather than a by value return approach. In almost every case, the
programmer cannot tell how the value is returned. However, the writer has
found a case where it makes a difference.
To understand this request, consider the following program, which is a sim-

plification of the one presented in the interpretation request:

struct s { int i, j, k, l;};

/* The following function simply returns the structure
to which its argument points. */

struct s ret_struct(struct s *q)
{

return *q;
}

207
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/* Define a union which has two struct s structures that
partially overlap */

union {
struct { struct s s;} s1;
struct { int t; struct s s;} s2;

} u;

main()
{
/* initialize the s1 structure */

u.s1.s.i = 1;
u.s1.s.j = 2;
u.s1.s.k = 3;
u.s1.s.l = 4;

/* The heart of the matter: Does the translator have
to get the following assignment correct? */

u.s2.s = ret_struct(&u.s1.s);
printf("%d, %d, %d, %d", u.s2.s.i, u.s2.s.j,

u.s2.s.k, u.s2.s.l);
}

Briefly, the example performs the following actions: The program initializes
the members of the u.s1.s structure and passes that structure’s address to
the ret struct function. The ret struct function returns the value of the
structure pointed at by its argument. The returned structure value is assigned
to the u.s2.s structure. A call to printf allows us to examine the values
stored in the structure members.
In situations such as the one shown above, some compilers (notably the GNU

compiler) handle the ret struct structure return by returning the address of
the structure. This avoids copying the entire structure onto the stack. Depend-
ing on the size of the structure, this can result in a significant execution-time
savings. The assignment following the function call is then done as a straight-
forward assignment from u.s1.s to u.s2.s.
The structure return optimization used in this case uses a return by reference

approach rather than returning the structure value by copying the value onto
the stack. (This is why the requestor asks, “Do functions return values by
copying?”) This optimization leads to code that can fail in such cases. Let’s
start by looking at why this optimization causes problems.
The first thing to note here is that the structures u.s1.s and u.s2.s par-

tially overlap. There would be no issue if there was either no overlap or exact
overlap. Unions are the only portable way that partial overlaps can arise, al-
though, with the use of casts and pointers we can create almost any situation
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imaginable.
The members of structure u.s1.s overlap with the members of u.s2.s as

shown in the following diagram:

u.s1.s i j k l

u.s2.s i j k l

The u.s2.s members are offset by one due to the addition of the int-sized
element t into the u.s2 structure definition. Because u.s1 and u.s2 are part of
a union, the members u.s1.s.j and u.s2.s.i share the same physical memory.
This also holds for u.s1.s.k and u.s2.s.j as well as u.s1.s.l and u.s2.s.k.
The partial overlap means that the act of writing members of one structure

may interfere with the reading of the members from the other. The function call
optimization has the effect of treating the assignment portion of the statement:

u.s2.s = ret_struct(&u.s1.s);

as if it were the assignment:

u.s2.s = u.s1.s

The problem that can arise in the assignment revolves around the fact that
the u.s1.s structure may be (and most probably is) copied a piece at a time
into the u.s2.s structure. A structure assignment algorithm may do the struc-
ture assignment by copying each element, starting with the first element and
proceeding, element by element to the last element. Let’s see what happens
when this approach is used when the source and target partially overlap.
Assume that the members i, j, k, and l of u.s1.s are initialized with 1, 2,

3, and 4, respectively. The copy starts by moving the value 1 from u.s1.s.i to
u.s2.s.i. Because of the overlap caused by the union, this also has the effect of
setting the value of the u.s1.s.j to 1. So when the second step of the structure
assignment occurs, the copying of u.s1.s.j to u.s2.s.j, the newly set value
of 1, rather than the original value of 2, will be copied. When the structure
assignment is complete, all of the members of u.s2.s will have the value 1. This
is probably not what was intended by the author of the program. (By the way,
if you think that this problem could be solved by copying in the other direction,
consider the case where the operands of the assignment expression are reversed.
In that case the reverse order copying would produce similar results.)
In the partially overlapping case, the resulting behavior of the direct struc-

ture assignment expression is undefined according to the Semantics subsection
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of ANSI C §3.3.16.1, Simple Assignment:
If the value being stored in an object is accessed from another object
that overlaps in any way the storage of the first object, then the
overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior
is undefined.

The translator is not required to handle the partial overlap case correctly
because it would result in significant overhead (e.g., copying the members to a
temporary structure before starting the writes to the target structure) for struc-
ture assignments that have a potential for overlapping members. Unless the po-
tential for overlap is explicitly tracked—and this can become quite complex—
this would mean that every structure assignment would be slowed down. This
general performance penalty on all structure assignments was deemed to be too
costly to justify support for this special case. Therefore the Standard specifies
that it is the programmer’s responsibility to ensure that partial overlaps do not
occur between the source and target.
Despite the benefit and special case clarification that comes from the above

assignment expression restriction, an interesting new problem arises out of its
wording. This problem is the notion that a value is “accessed from another
object” as it is being stored into a data object. This is contrary to the traditional
position held by many, that an rvalue value is something independent of the
object from which it is derived. This position holds that an rvalue is something
you create as the result of the evaluation of an expression (or subexpression)
and “hold up in the air” until you are ready to use it.
The wording in the quoted assignment restriction allows, if not requires,

an alternate view where the data object origin of the rvalue can also be of
importance, at least within the bounds of the assignment expression. In some
not completely clear way, the rvalue and the data object it is derived from are
linked. The Standard’s wording implies that the creation of the rvalue from a
subexpression can be interleaved with the side effect of storing the value into
another object. Another way of saying this is that the creation of an rvalue is
not an atomic action.
The question now becomes one of how complicated an lvalue expression

trail is supported by the restriction. Does there have to be a direct one-to-one
correspondence between the rvalue and the source data object, or is the fact
that the partially overlapping data object was used in some way while produc-
ing the rvalue sufficient to bring the assignment restriction into play? At the
March 1990 meeting of X3J11, Bob Jervis, one of the most experienced X3J11
members, summarized the possible positions. The meeting minutes report:

Jervis eventually summarized two extreme positions. ... The strict
interpretation of the assignment caveat is that only direct assign-
ment between members of the same union is dangerous. The looser
interpretation is that determining the value to assign to any union
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member must not involve evaluating another member of the same
union.
Jervis asserted that the Standard can support either interpreta-

tion. He also argued that no intermediate position is defensible.

At this point, it is not clear whether X3J11 will adopt a strict or loose
interpretation.
In some ways X3J11 is like the U.S. Supreme Court, which, in general, tries

to avoid establishing a fundamental new position of law. In this case, X3J11
wants to answer the interpretation request, but it would prefer to do so, if
possible, by referring to already clear requirements of the Standard rather than
by making “new law.”
It is clear that the direct assignment is not guaranteed to work correctly.

However, does the introduction of the intermediary function call bring other
restrictions and requirements of the Standard to bear that will force the assign-
ment to work correctly, even in the partially overlapping case? In other words,
does the statement:

u.s2.s = ret_struct(&u.s1.s);

in the above example always have to work correctly? What restrictions are
placed on the translator as it generates code for this statement (and the corre-
sponding function that is called)?
It is clear from the Standard that function arguments are copied. The

Standard says, in §3.3.2.2, Function Calls:

An argument may be an expression of any object type. In preparing
for the call to a function the arguments are evaluated, and each
parameter is assigned the value of the corresponding argument.

However, the Standard is less clear about returned values. In §3.6.6.4, The
return Statement, the Standard states only that:

If a return statement with an expression is executed, the value of
the expression is returned to the caller as the value of the function
call expression.

The method that is used to return the value is not specifically stated. This
seems to leave open the door to a return by reference as well as by value.
Do other parts of the Standard set up restrictions that must be satisfied to

guarantee that the partially overlapping case must be handled without failure
in this case? During the X3J11 discussions, the guarantees (and implemen-
tor freedoms) provided by sequence points were raised. Sequence points, for
those unfamiliar with them, are defined in the Standard in §2.1.2.3, Program
Execution, in the following way:
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Accessing a volatile object, modifying an object, modifying a file,
or calling a function that does any of those operations are all side
effects, which are changes in the state of the execution environment.
Evaluation of an expression may produce side effects. At certain
specified point in the execution sequence called sequence points, all
side effects of previous evaluations shall be complete and no side
effects of subsequent evaluations shall have taken place.

Sequence points help establish boundary points and limitations on the op-
timization of expressions and their side effects.
Sequence points in the statement:

u.s2.s = ret_struct(&u.s1.s);

exist prior to the calling of the ret struct function (all of the arguments and
the function designator expression must be fully evaluated) and at the end of
the statement.
Does the sequence point prior to the function call ensure that the reading of

the structure argument will be complete prior to the writing of the target? Sev-
eral members of the committee felt that this was the case. However, after some
discussion, the general opinion of X3J11 seems to be that the sequence point
prior to the function call causes only a partial ordering on the subexpressions in
the assignment statement. It guarantees the evaluation of the argument expres-
sion prior to the function call, but nothing more. This sequence point does not
control the ordering of the other subexpressions in the assignment statement.
Note also that the sequence point prior to the function call only ensures that
the evaluation of the pointer to the structure is completed. It does not really
address the issue of the value of the pointed-to structure.
During the discussion of sequence points, it was noted that the Standard

gives considerable freedom to the translator to rearrange the order of operations
to make them as fast as possible, so long as the sequence point guarantees
are not violated. Expression side effects and data accesses can be advanced
or delayed between two sequence points as the translator sees fit. In §3.3,
Expressions, the Standard states:

Except as indicated by the syntax or otherwise specified later (for
the function-call operator (), &&, ||, ?:, and comma operators),
the order of evaluation of subexpressions and the order in which
side effects take place are both unspecified.

Further, if the code directly or indirectly modifies the same locations mul-
tiple times, then the result falls into the undefined behavior category. This
position is supported by the the statement in §3.3, Expressions, which estab-
lishes the following restriction on the programmer:

Between the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation of an ex-
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pression. Furthermore, the prior value shall be accessed only to
determine the value to be stored.

In this example the sequence points that bound the expression are the one
at the end of the previous statement:

u.s1.s.l = 4;

and the one at the end of the complete expression statement including the
function call and assignment:

u.s2.s = ret_struct(&u.s1.s);

The boundaries are essentially the two semi-colons. If you only consider
this assignment statement directly, this flexibility would seen to weigh in favor
of allowing the function return optimization. The argument is that since this
occurs between two sequence points, the reading of the u.s1.s structure value
can be delayed until, and be interleaved with, the writing of the new value for
the u.s2.s structure.
The required two-thirds majority of the committee does not accept this ar-

gument. Despite many hours of discussions, X3J11 has not yet been able to take
a position on this interpretation request. In fact, the last X3J11 vote showed
essentially a three-way split between those who though the function return opti-
mization was allowed, those who thought the function return optimization was
not allowed, and those who did not know what the answer should be.
One important additional point has been made in the discussions of this

interpretation request. The answer to this question affects more that just func-
tions that return structures. These arguments apply just as well to the return
of any multiple-byte data object. For instance, in a 16-bit environment a 4-byte
long might be copied a piece at a time (just as the structure was in this exam-
ple). If you have partially overlapping long objects, long1 and long2, then an
expression such as:

long1 = ret_long(&long2);

would follow the same rules, and optimizations would be limited in the same
way as for structures.

Some Additional Thoughts

I would like to add a couple of personal thoughts, beyond those discussed within
X3J11.
One difficulty with the view that focuses on the assignment statement and

implementor flexibility promised by sequence points is that it essentially ignores
the semantics defined within the called function, ret struct. By the operator
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precedence rules, the function call must be completed prior to the assignment
operation. In particular, the function’s return statement must have been com-
pleted prior to the assignment operation. As noted above, in the description
of the return statement, the return statement evaluates its argument prior to
returning from the function, to produce a value.
Despite the committee’s focus on the impact of sequence points in this case,

sequence points may be the wrong place to be looking for the answer. Sequence
points address the timing of modifications of the program state. They do not
deal directly with the issue of when the production of a value (as a result of an
expression evaluation) is complete. The guarantees in this area are addressed
in §2.1.2.3, Program Execution, of the Standard, which states:

The semantic descriptions in this Standard describe the behavior of
an abstract machine in which issues of optimization are irrelevant.

Later in that section is the paragraph:

In the abstract machine, all expressions are evaluated as specified
by the semantics. An actual implementation need not evaluate part
of an expression if it can deduce that its value is not used and that
no needed side effects are produced ...

It seems, at least to me, that the function return by reference is a way of
delaying the evaluation of the return value expression. Since this value is used
in the assignment statement once the the function call is complete, it seems
that the freedom given in the statement “An actual implementation need not
evaluate part of an expression if it can deduce that its value is not used” does
not apply.
These points argue that the return by reference approach is invalid. Of

course, one person’s opinion does not make an interpretation response. I will
continue to report on this on-going saga as X3J11 continues its deliberations.

The Impact of X3J11’s Indecision

This unresolved interpretation request leaves programmers with a clear direc-
tion to pursue, if they want to ensure portable, reliable code. They should
avoid writing expressions where the resulting value of an object depends on the
reliable, well-defined behavior of an expression that includes references to other
partially overlapping objects. In that way, they are ensured of portable code
no matter what the committee decides.
For implementors, the game is a little more difficult. If you support the

partially overlapping case, you will probably generate code that is less efficient
than your competitors who follow the GNU lead and perform the function
return by reference optimization. On the other hand, no matter what X3J11
decides, if you support the partially overlapping case, you will not need to
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change anything in this area because of the future decisions of the committee.
(If X3J11 rules that the partially overlapping case results in undefined behavior,
you will simply have a product that does something nice in this undefined case.
If they decide that the partially overlapping case must be supported, you will
already supply the appropriate support.)
At this point, implementors have to evaluate the issues, determine what they

feel the likely final position will be, and then weigh this against the competitive
cost of less than optimal code versus the cost of removing this optimization
from a future release of their product.

An ISO C Update

By the time this article is published, there will possibly be an approved ISO
(International Standards Organization) Standard for the C programming lan-
guage. It will be technically identical with the American National Standard.
However, the formatting rules for International standards prevents the identical
text from being used.
The ISO Standard will guide the development of C programs and translators

throughout the world. The on-going international work on Normative Addenda
will, once it is developed and approved, modify this Standard. It is interesting
to note that the single largest collection of interpretation requests has come
from Derek Jones of England. Derek is heavily involved in the development
of the (ISO) Normative Addenda. As a leader in this effort, he has brought
forward many of the issues the UK has with the ANSI Standard so that he
can ensure a clear understanding of the X3J11 view. This is important, since
the stated intent of the UK’s Normative Addendum has always been editorial
clarification rather than making substantive changes to the Standard.

Ed: If any readers have thoughts on how this issue might be resolved they
are encouraged to contact Jim (or any other X3J11 member) as indicated below.

Jim Brodie is the convenor and Chairman of the ANSI C standards commit-
tee, X3J11. He is a Senior Staff Engineer at Honeywell in Phoenix, Arizona. He
has coauthored books with P.J. Plauger and Tom Plum and is the Standards
Editor for The Journal of C Language Translation. Jim can be reached at (602)
863-5462 or uunet!aussie!jimb.

∞
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Rex Jaeschke

DEC’s PDP-11 C V1.0

The following information applies to version 1.0 of PDP-11 C, a compiler hosted
on VAX or PDP-11 systems running under various DEC propriety operating
systems. The compiler generates code for PDP-11 systems only.
The preprocessing tokens between #pragma and its terminating new-line are

subject to macro replacement provided they are not enclosed in single or double
quotes. Unrecognized pragmas cause an informational message to be produced.

Character Set Specification

The charset pragma can be used to specify the character set for each of the
source, message, list, and execution files. It is used as follows:

#pragma charset [ category ] [ charset name ]

where category may be one of the following:

source message list execution

and charset name may be any one of:

ascii dutch german portuguese
british finnish iso_latin_1 spanish
danish french italian swedish
dec_mcs french_canadian norwegian swiss

By default, all four categories are iso latin 1 and each category may be
specified independent of the others. If the category is omitted, all four categories
are assumed.
A header (including nested headers) assumes the same character set as its

including file. The effect of any character set specified within a header is,
however, implicitly disabled at the end of that header.
String literals and character constants are translated to the execution char-

acter set.
charset pragmas allow you to use older, 7-bit input/display devices that

assign certain character positions to represent certain national-specific glyphs.

216
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For instance, the ASCII decimal code 92 normally represents the backslash (‘\’).
However, the 7-bit French National Replacement Character set (NRC) replaces
this position with the French c-cedilla (‘ç’). Consider the case where program
development is performed using an ISO Latin-1 8-bit input/display device that
does not require character set translation, but where the program is to display
text on a 7-bit French NRC terminal at run time. PDP-11 C supports this as
follows:

#include <stdio.h>
#pragma charset execution french

int main (void)
{

printf ("Ici, on parle Français.\n");
}

If the pragma were omitted and this program run on a 7-bit French NRC
terminal, the message would display as follows:

Ici, on parle Frangais.

The ‘ç’ in ‘Français’ is displayed as ‘g’ because the high order bit of the 8-bit
‘ç’ (ASCII decimal code 231) is stripped, resulting in ‘g’ (ASCII decimal code
103). The result is far from gratifying to a Frenchman. The pragma directs the
compiler to translate the characters in the string literal to correspond to the
French NRC, and the result appears on the French NRC terminal as follows:

Ici, on parle Français.

The Swiss NRC replaces the ‘ ’ character with ‘é’. This is contrary to ISO
standards for NRCs, but they do it anyway. And because the Swiss approach is
not sanctioned by an ISO standard, it is not covered by the trigraphs invented
by ANSI C. Thus, if you specify your source character set as Swiss, there is
no way to represent the underscore character in your program—a new trigraph
would be needed. However, it is presumed that most program development
will be done using 8-bit DEC MCS or ISO Latin-1 input/display devices and
that this pragma will be used primarily for run-time and listing display devices.
(DEC MCS is the character set used by Digital’s VT200 series of terminals and
later. It pre-dates the establishment of ISO Latin-1 and is almost identical.
Most C programs need not consider the minor differences between DEC MCS
and ISO Latin-1. While PDP-11 C can translate between DEC MCS and ISO
Latin-1, it is usually not necessary.)
The ability to specify different character sets for source files or compile-time

messages may be desirable for some customers. Except for the case of ‘ ’ when
using the Swiss character set for source files, trigraphs allow all characters used
in C to be represented. Note that using the Swiss character set for run-time
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display introduces no complications (unless you need to display the ‘ ’ glyph—
but then, a Swiss NRC display device is not capable of generating that glyph!).
The problem occurs only when you try to use the Swiss NRC for source files.

Code and Data Placement

In the PDP-11 (and VAX/VMS) environment, DEC’s language translators par-
tition code and data in object modules into units called program sections (or
more simply, psects). The default psect placement can be overridden using a
family of pragmas having the following form:

#pragma psect psect type [ psect name [, attributes, ... ]]

This pragma allows PDP-11 C code to be linked with object modules written
in other languages and whose compilers have different psect defaults.

Object Module Title Control

The module identification information of an object module can be controlled
with a pragma of the following form:

#pragma module title [[, ] version ]

The title and version must be strings of no more than 6 characters and may,
of course, result from macro expansions.
This pragma allows project revision information to be included in the object

module. (Object module version numbers are include in linker maps.)

Listing Title Control

The title and subtitle on list file pages can be established using the following
set of pragmas:

#pragma list on
#pragma list off
#pragma list title "..."
#pragma list subtitle "..."

The list on/off switch is cumulative. That is, it is a counter that starts at
zero and is incremented for each list on and decremented for each list off.
A listing is produced so long as the counter is positive.

Inter-Language Communication

A problem common to many implementations is that of linking together ob-
ject modules produced from different (and somewhat incompatible) transla-
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tors. Unlike the VAX, the PDP-11 has no standard calling convention. As a
result, different compiler and utility design groups chose different register and
stack layouts for argument passing. To help resolve these conflicts, PDP-11 C
provides the linkage pragma whose syntax is as follows:

#pragma linkage linkage type [ function1 [, function2 ] ... ]

where linkage type specifies a language such as c, pascal, or fortran.
The functions whose names are listed are assigned the corresponding linkage.

If the function list is omitted, the linkage type specified becomes the default for
all the functions that follow. Linkage pragmas remain in force until overridden
by another linkage pragma.

Disabling Standard Mode

Compiling in ‘standard mode’ is useful as far as extra checking is concerned.
However, sometimes it is useful to be able to temporarily switch off this mode.
This can be achieved using the following pragmas:

#pragma nostandard
#pragma standard

If these directives do not occur in pairs, an informational message is pro-
duced.

TopSpeed C V1.04

[Ed: The following information is taken from JPI’s documentation which is
c© 1989–90, by Jensen & Partners International. It is reproduced here with
their kind permission.

TopSpeed C is a member of a series of MS-DOS based languages from Jensen
and Partners International (JPI) that conform to international standards. Of
these, Ada is the only one that has a formal definition for a pragma syntax. As
such, JPI chose the official Ada standard syntax. This has the advantage that
all TopSpeed languages share the following pragma syntax:

#pragma pragma_name( parm1 => val1 [, parm2 => val2, ] ... )

For example:

#pragma call( c_conv => off, near_call => off )

turns standard C calling conventions off and near calls off. The next example:

#pragma call( reg_param => (ax,bx,cx,dx) )
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tells TopSpeed C to use the indicated registers for parameter passing to func-
tions.
The set of pragmas are broken into the following groups:

TopSpeed Pragma Groups
Category Purpose
call Specify function call convention
check Allow run-time checking for various conditions
data Control data storage location
link Specify object file list for linking
name Control public name spelling
option Override default (or explicit) compiler options
save Save and restore current pragma state
warn Control numerous warning and information messages

Some Highlights

While there are many many pragmas defined by TopSpeed C, only a few of
them will be discussed here in detail.

call – Specify whether arguments are passed by register or stack. For register,
the registers used and which ones should be preserved. For stack, the
order pushed and who cleans up the stack.

check – Run-time checking for dereference of NULL, invalid array index access,
and stack overflow.

data – Can establish stack and heap size and define shared globals in a multi-
thread environment.

name – Can add a user-specified global name prefix and specify if external
names are to be case-significant.

save – You can save an entire pragma state for later restoration. Since a stack
mechanism is used, pragma states may be nested.

warn – Numerous very useful lint-like warnings can be produced, for example:

• No expression in return statement.

• No return from non-void function.

• Function called and not declared.
• No prototype in scope of call.
• Code has no effect.
• Assignment in test expression (e.g., if (x = y)).

• Returned address of an automatic variable.
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• Variable declared but never used.
• Variable assigned but never used.
• Possible use of variable before assignment.
• Parameter never used.
• Unknown pragma.

The Complete Grammar

Pragma tokens are case-sensitive like any other token in C.

pragma directive ::= #pragma directive list

directive list ::=
directive
directive list directive

directive ::=
call pragma
check pragma
data pragma
link pragma
name pragma
option pragma
save pragma
warn pragma

call pragma ::= call ( call param list )

call param list ::=
call param
call param list , call param

call param ::=
c_conv => on off
ds_entry => seg name
inline => on off
interrupt => on off
io_priv => on off
near_call => on off
reg_param => reg list
reg_return => reg list
reg_saved => reg list
same_ds => on off
seg_name => seg name
windows => on off
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on off ::=
off
on

seg name ::=
none
null
any other C identifier

reg list ::= ( reg id list )

reg id list ::=
reg id
reg id list , reg id

reg id ::=
ax | bx | cx | dx |
si | di | ds | es |
st0 | st1 | st2 | st3 |
st4 | st5 | st6

check pragma ::= check ( chk param list )

chk param list ::=
index => on off
nil_ptr => on off
stack => on off

data pragma ::= data ( data param list )

data param list ::=
data param
data param list , data param

data param ::=
far_ext => on off
heap_size => number
near_ptr => on off
seg_name => seg name
ss_in_dgroup => on off
stack_size => number

link pragma ::= link ( object file list )

object file list ::=
identifier
object file list , identifier
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name pragma ::= name ( name param list )

name param list ::=
name param
name param list , name param

name param ::=
prefix => string
upper_case => on off

string ::= any string literal

option pragma ::= option ( opt param list )

opt param lst ::=
option param
opt param lst , option param

option param ::=
ansi => on off
lang_ext => on off

save pragma ::=
restore
save

warn pragma ::= warn ( warn param list )

warn param list ::=
warn param
warn param list , warn param

warn param ::=
wait => on off err
watr => on off err
wcld => on off err
wclt => on off err
wcne => on off err
wcor => on off err
wdne => on off err
wdnu => on off err
wetb => on off err
wfnd => on off err
wftn => on off err
wnid => on off err
wnre => on off err
wnrv => on off err
wntf => on off err
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wpcv => on off err
wpic => on off err
wpin => on off err
wpnd => on off err
wpnu => on off err
wprg => on off err
wral => on off err
wrfp => on off err
wsto => on off err
wtxt => on off err
wubd => on off err
wvnu => on off err

on off err ::=
err
off
on

∞



26. Restricted Pointers

Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121

Abstract

The initial meeting of the NCEG committee identified and assigned pri-
orities to several key issues that needed to be addressed. C aliasing was
identified as being the highest priority issue because of its effect on op-
timization. One approach being explored is a new kind of pointer called
a restricted pointer. A restricted pointer gives the compiler the liberty
to assume that the pointer behaves “as if it were an array” for aliasing
purposes.

The array analogy is being explored because optimizations involving
arrays are understood, and programmers can view this new kind of pointer
in terms of an existing concept. Several new areas must be explored
though, because pointers can be used in ways that arrays cannot. The
greatest benefits of restricted pointers are achieved when they are used
for function parameter declarations, or when they are the targets of calls
to dynamic memory allocation functions.

Introduction

In the September 1989 issue of The Journal (Volume 1, number 2 ), I wrote
an article, Aliasing Issues in C, in which I discussed the optimization issues
associated with the unconstrained aliasing present in C. I alluded to a new kind
of pointer that would help optimizers. This article is a follow on to that one.
It proposes a new kind of pointer that ameliorates C aliasing.
The following two terms are used throughout the rest of this article:

• reference – access or modify an object

• lvalue – an expression that references an object

The presence of unconstrained pointers in C introduces aliasing that inhibits
many useful optimizations. Two of these optimizations are automatic vector-
ization and automatic parallelization. On a single processor CRAY Y-MP, a
typical vector loop runs ten to twenty times faster than the equivalent scalar
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loop. Enhancing the optimization potential of C is the motivation behind this
proposal for a new kind of pointer.
Automatic vectorization requires the optimizer to determine that it is safe

to reference many array elements simultaneously. Automatic parallelization re-
quires the optimizer to determine that different statements are independent and
can execute in parallel. Loop-level parallelization applies these optimizations
to entire loops.
In order to perform these optimizations correctly, a translator must know

that, within a loop, an object modified through one lvalue is not the same
object referenced through a different lvalue. When an object is referenced
through a pointer, the optimizer does not always know which underlying object
is referenced. The remainder of this section is an excerpt taken from my Aliasing
Issues in C article. It is a good example of the problems encountered when
trying to apply loop-level parallelism to C programs.
The following example demonstrates that pointers can introduce hidden

aliases that are not detectable at compile time.

01 #include <stdio.h>
02
03 int a[6] = {0, 1, 2, 3, 4, 5};
04 int b[6] = {9, 8, 7, 6, 5, 4};
05 int c[6];
06
07 void blackbox(int *p1, int *p2, int *p3, int n);
08
09 main() {
10 int i;
11
12 blackbox(c, b, a, 6); /* no aliases */
13 for (i = 0; i < 6; i++)
14 printf(" c[%d] = %d ", i, c[i]);
15 putchar(’\n’);
16
17 blackbox(&a[1], &a[1], a, 5); /* aliases */
18 for (i = 0; i < 6; i++)
19 printf(" a[%d] = %d ", i, a[i]);
20 putchar(’\n’);
21 }
22
23 void blackbox(int *p1, int *p2, int *p3, int n) {
24 int i;
25
26 for (i = 0; i < n; ++i)
27 *p1++ = *p2++ + *p3++;
28 }
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The following output is produced when the program is executed in scalar
fashion.

c[0] = 9 c[1] = 9 c[2] = 9 c[3] = 9 c[4] = 9 c[5] = 9
a[0] = 0 a[1] = 1 a[2] = 3 a[3] = 6 a[4] = 10 a[5] = 15

The function blackbox, whose definition starts on line 23, appears to add
the corresponding elements of two arrays together, storing the results in a third
array. This is exactly what happens when blackbox is called without any aliases
at line 12. The resulting array c contains the sum of a and b. This makes the
loop inside blackbox appear to be a candidate for parallelization. However,
when blackbox is called with aliases at line 17, something different happens.
Each element of the resulting array a contains partial sums of the values in the
preceding elements. This time the loop must be executed as a scalar loop to
obtain the correct results. Since, blackbox is not declared static, it can be
called from a separately compiled module. Therefore, the compiler must make
the worst case assumption that this loop might contain aliases.

Just Like an Array

Unlike pointers, array references identify the underlying object being referenced.
The optimizer can assume that an lvalue involving array a, for instance a[i],
can never reference the array b. No aliasing is possible between two different
arrays (assuming, of course, no unions are present). If the blackbox function
referenced arrays directly, then no hidden aliasing exists, and the optimizer can
determine that it is safe to parallelize the for loop.

int a[6] = {0, 1, 2, 3, 4, 5};
int b[6] = {9, 8, 7, 6, 5, 4};
int c[6];

void blackbox(int n) {
int i;

for (i = 0; i < n; ++i)
/* no hidden aliasing */
c[i] = b[i] + a[i];

}

Unlike arrays, it is not possible in ANSI C to indicate that two pointers are
never aliases for each other.
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int *a;
int *b;
int *c;

void blackbox(int n) {
int i;

for (i = 0; i < n; ++i)
c[i] = b[i] + a[i]; /* potential aliasing */

}

If there were some way to indicate that pointers a, b, and c are never aliases
for each other, and behave just like arrays, then optimizations similar to those
permitted in the first case would also be permitted in the second.
The proposed semantics for a restricted pointer is that it behaves just like

an array when being viewed by the optimizer. That is, if an optimization
can be applied to an array reference, the same optimization can be applied
to a restricted pointer reference. The proposed syntax for restricted pointers
involves a new keyword, restrict, and syntax similar to that of the type
qualifiers const and volatile.

double * restrict p;

The semantics of this new type of pointer involves only assertions about
aliases. The primary motivation is to allow the compiler to perform more
optimizations. If the compiler is not optimizing, then the semantics of restrict
can be ignored (just like volatile).
The semantics of restricted pointers needs to capture the concept that alias-

ing assertions, that are correct for arrays are also correct for restricted pointers.
The array characterization is used because it allows the compiler and the pro-
grammer to view the program in the same way. The blackbox function can
now be written in the following way:

void blackbox(int * restrict p1, int * restrict p2,
int * restrict p3, int n) {

int i;

for (i = 0; i < n; ++i)
/* no hidden aliasing */
*p1++ = *p2++ + *p3++;

}

The compiler can now assume that the restricted pointers p1, p2, and p3
behave like distinct arrays for optimization purposes. This means the following
call:

blackbox(&a[1], &a[1], a, 5); /* aliases */
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is no longer well defined behavior because the pointers passed to blackbox do
not point to distinct arrays. Of course, a compiler could warn about potential
aliasing problems if such a call were in the presence of a prototype.

Array Semantics

Many optimizations require the optimizer to know how far lvalues can move
relative to other lvalues. Considerable latitude is given to the optimizer in
reordering the following array references because they are lvalues that reference
disjoint objects.

#include <stdlib.h>

int a[10];

void f1(int i) {
static int b[10];
int c[10];
int *p1;

p1 = malloc(10 * sizeof(int));
a[i] = i;
b[i] = i;
c[i] = i;
p1[i] = i;

}

It is perfectly acceptable for the optimizer to reorder the assignments as
follows:

#include <stdlib.h>

int a[10];

void f1(int i) {
static int b[10];
int c[10];
int *p1;

c[i] = i;
b[i] = i;
p1 = malloc(10 * sizeof(int));
p1[i] = i; /* cannot be moved before ‘malloc’ */
a[i] = i;

}
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These reorderings just affect the order in which assignments are performed
on independent objects. This is acceptable because the semantics of these arrays
is such that the optimizer knows where their storage resides, when the storage is
allocated, and just how far loads and stores to these objects can be moved. For
instance, the assignment through pointer p1 cannot be moved before the malloc
call that allocates the array. They are all arrays and, therefore, independent
objects. Since optimizations like automatic vectorization must reorder array
references, the optimizer must know how far they can be moved. The following
example replaces all array declarations with restricted pointers.

#include <stdlib.h>

int * restrict a;

void f2(int i) {
static int * restrict b;
int * restrict c;
int * restrict p1;

p1 = malloc(10 * sizeof(int));
a[i] = i;
b[i] = i;
c[i] = i;
p1[i] = i;

}

Since a restricted pointer is “just like an array,” these assignments can be
reordered by the optimizer in similar ways.
C is a block scoped language, with blocks delineated by { and } tokens.

Two blocks are considered to be siblings if they have the same parent block.
The next example shows some different behavior for different arrays defined in
sibling blocks.

void f3(int i) { /* parent block */

{ /* sibling block 1 */
static int m[10];
int n[10]; /* overlaps with y */

m[i] = i;
n[i] = i;
}
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{ /* sibling block 2 */
static int x[10];
int y[10]; /* overlaps with n */

x[i] = i;
y[i] = i;
}

}

The auto arrays n and y are allowed to share the same physical memory
location. That is, it is quite common for compilers to allow auto variables
to overlay the same physical memory as auto variables in sibling blocks. This
means the optimizer must not move assignments to array y before any references
to array n. In a way, they are aliases with each other. This is referred to as
the auto array model. However, arrays m and x are static arrays and do not
share the same physical memory locations. The assignment to x can be moved
before the assignment to m. This is referred to as the static array model. The
following is an acceptable reordering of assignments by the optimizer (though
one could not write C code this way).

void f3(int i) { /* parent block */

x[i] = i; /* OK to move here */
{ /* sibling block 1 */
static int m[10];
int n[10]; /* overlaps with y */

m[i] = i;
n[i] = i;
}

{ /* sibling block 2 */
static int x[10];
int y[10]; /* overlaps with n */

y[i] = i; /* cannot move */
}

}

This raises the question about which model to follow. In the following
example, should the two restricted pointers p and q, declared inside the sibling
blocks, follow the auto array model or the static array model?
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void f4(int i) {

{
int * restrict p;

}

{
int * restrict q;

}
}

There is a third model that can be used to describe the behavior of restricted
pointers declared in local blocks. A restricted pointer behaves as if it points
into memory obtained from a call to malloc. §4.10.3 (Memory Management
Functions) of the ANSI standard guarantees that each call to malloc “shall
yield a pointer to an object disjoint from any other object.” This allows the
optimizer to assume that lvalues derived from restricted pointers are never
aliases with lvalues derived from arrays. This is called the malloc array model.

int a[10];

void f5(int i) {

{
int * restrict p /* = malloc(N) */;
/* cannot be moved above implied malloc call */
a[i] = p[i];
}

{
int * restrict q /* = malloc(N) */;
/* cannot be moved above implied malloc call */
a[i+1] = q[i];
}

}

The optimizer can assume that p and q point into disjoint arrays that were
allocated by malloc. Therefore, neither points into array a. The malloc calls
are hidden inside comments, to show the implied behavior the optimizer is
relying upon. The simplicity of the “as if the array came from a malloc call”
makes this model easy to understand and straightforward to define.
Another effect of using this model is that the aliasing assertions of restricted

pointers are confined to the scope that contains the declaration. They are only
in effect when the declaration is visible. There are no aliasing assertions if the
restricted pointer is not visible. This is part of the behavior guaranteed by
the implied malloc call. Therefore, neither of the two assignments present in
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function f5 can be moved outside the block that contains the declaration of the
restricted pointer.
It is important to understand that the implied malloc calls are not part of an

alternate execution model for programs containing restricted pointers. Rather,
they represent aliasing assumptions that only the optimizer can use for purposes
of statically analyzing the program. It is the programmer’s responsibility to
ensure that these assumptions are correct. The following example shows both
well defined behavior and undefined behavior.

void f6(int i) {

i = 1; /* defined behavior */

{
int * restrict p = &i;

*p = 3; /* defined behavior */
}

{
int * restrict q = &i;

i = 3; /* i and *q are not disjoint */
*q = 2; /* undefined behavior */
}

}

The assignments to object i occur both through i and through two restricted
pointers that point to i. The undefined behavior exists when the assignment
through i occurs in a context where either of the two restricted pointers is visi-
ble. The behavior is undefined because the optimizer is at liberty to reorder the
two assignments. If neither of the two restricted pointer is visible, assignments
to i are well defined.

Pointer and Array Differences

The two primary purposes of restricted pointers are to declare that formal
parameters point at disjoint objects and to assert that space acquired from
malloc calls is only accessed through a single restricted pointer. The following
example demonstrates both of these uses.
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int * restrict a;

void f7(int * restrict b, int * restrict c) {

int i;
int * restrict p;

a = malloc(100 * sizeof(int));
p = malloc(100 * sizeof(int));

/* parallelizable loop */
for (i = 0; i<100; i++) {

a[i] = b[i] + c[i]; /* no aliasing */
p[i] = b[i] * 2; /* no aliasing */

}
}

For these two purposes, the aliasing assertions work very well. This alone
makes the restricted pointer proposal appealing because these are the areas in
the language where restricted pointer semantics are needed the most. However,
the “just like an array” paradigm needs to be explored in areas of the language
where pointers can be used in ways that arrays cannot. This is necessary to
achieve closure on the language for restricted pointers.
One of the primary purposes just identified for restricted pointers is to

indicate that formal parameters are not aliases with each other, as in:

void blackbox(int * restrict p1, int * restrict p2,
int * restrict p3, int n);

However, C does not permit a formal parameter to be declared as an array.
What does it mean to say that formal parameters behave just like arrays? Is it
meaningful to say that the implied malloc call occurs inside function prototype
scope? The question becomes, does the implied malloc call occur before the
function is called or after the function is entered? The answer matters when
one parameter is declared to be a restricted pointer and another is declared to
be an unrestricted pointer.

void f8(int *p, int * restrict q) {
/* is the behavior as if q=malloc(N)? */

int i;

for (i=0; i<10; i++)
p[i] = q[i];

}
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int *a, *b;

main() {
/* is the behavior as if b=malloc(N)? */
f8(a, b);

}

If the answer is that the implied malloc call is associated with b, the actual
argument, and occurs sometime before the call to f8, then the optimizer must
assume that p and q are potential aliases. Remember that the unrestricted
pointer p can point anywhere, including into the same space as q. However,
if the implied malloc call is associated with the formal parameter q, then the
optimizer can assume that p and q are not aliases at the time the function begins
executing. Ultimately the choice depends upon how much latitude should be
given to the optimizer.
Since restricted pointers are intended to help optimizers it seems reasonable

to allow more optimizations, and to assume the implied malloc call is associated
with the formal parameter. This is consistent with the view that declarations
of restricted pointers are associated with an implied malloc call. Since the
declaration of a formal parameter occurs within the function definition, it is
consistent to view the implied malloc call as being associated with the formal
parameter. Most likely, all or none of the formal parameters declared to be
pointers will be declared to be restricted pointers. Therefore, the answer is
important for completeness only.
Another difference between a pointer and an array implicitly converted to a

pointer is subscripting with negative indices. An array reference such as a[-1]
is always undefined behavior. However, a pointer reference such as p[-1] can
be well defined behavior. For this reason, a restricted pointer only needs to
behave as if it points into an array allocated by malloc, but does not have to
behave as if it points to the first element. The following:

int * restrict p = (int *)malloc(N * sizeof(int)) + n;

is an equally acceptable implied malloc call for the optimizer to make. This
allows restricted pointers to have negative indices and still behave just like
arrays.
Pointer subtraction between two arrays is not well defined behavior. The

result of a - b where both a and b are arrays is not guaranteed to be meaning-
ful, because pointer subtraction is only defined when both pointers point into
the same array. Should the difference between two restricted pointers also be
undefined? This certainly seems reasonable because both pointers are supposed
to behave as if they point into arrays obtained from separate calls to malloc.
Although functions can return pointers, they cannot return arrays. What

then are the semantics of the type function returning restricted pointer? Since
function call expressions do not return lvalues, no aliasing assertions are made
by restricting the return type of a function.
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/* no aliasing assertions */
int * restrict f9(void) {

static int a[10];

return a;
}

If the keyword restrict were left out of the return type, the function would
have the same semantics. Similarly, no aliasing assertion is made by restricting
a pointer to a function, since such a pointer does not point at an object.

/* no aliasing assertions */
int (* restrict pf)(void);

Comparison with noalias

The X3J11 committee attempted to solve the aliasing problem in C by intro-
ducing a new type qualifier, noalias. That effort failed because of technical
problems with the proposed semantics of noalias. The restricted pointer pro-
posal is different in many ways. Only pointers can be declared to be restricted.
In the noalias proposal, all objects were permitted to be noalias-qualified.
It is the declaration of the restricted pointer that makes the aliasing assertions,
while it was the noalias-qualified lvalue that made the aliasing assertions. A
restricted pointer can be an alias with an unrestricted pointer, whereas a pointer
to a noalias-qualified type was guaranteed to be alias free. The proposed se-
mantics of noalias defined an alternate execution path in which virtual objects
were created and later synchronized with the original object. No alternate ex-
ecution path is defined for restricted pointers. The proposed semantics for
restricted pointers merely permit the optimizer to statically analyze restricted
pointers. Finally, a block scope restricted pointer only makes assertions on the
containing scope. In the noalias proposal, a block scope noalias-qualified
object made assertions that affected the entire containing function.

Conclusions

There is no substitute for an actual implementation. The true worth of the
restricted pointer proposal will be determined when a compiler is available that
can be tested. Several things must happen before restricted pointers are con-
sidered a success. First, there must be improved execution times of applications
modified to use restricted pointers. Second, programmers must be willing to
use restricted pointers. And, finally, the semantics must be understandable
and sensible. It must be easy to understand when it is safe to use a restricted
pointer and when it is appropriate to use the traditional unrestricted pointer.
A restricted pointer is only useful for optimization purposes. At the point a

restricted pointer is declared, the optimizer is allowed to assume that it points
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into an associated array allocated by an implied call to malloc. This means the
optimizer can assume that the associated array is an object disjoint from all
other objects. Furthermore, the aliasing assertions are only meaningful while
the declaration of the restricted pointer is visible.

I would like to thank my colleagues Bill Homer and Steve Collins for their
input into this article.
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27. Miscellanea

compiled by Rex Jaeschke

Extensions

MetaWare’s High C

High C contains a number of interesting extensions, most of which were influ-
enced by Pascal and Ada.
The compiler version used for this article was R2.3c running under MS-DOS

on an Intel 80386. It runs in 32-bit native mode where the types int, long,
and all pointer flavors are represented in 32 bits.

Case Ranges

Non-overlapping case ranges are permitted with switch as follows:

#include <stdio.h>

main()
{

int c;

while ((c = getchar()) != EOF) {
switch (c) {

case ’a’..’m’:
printf("a-m: %c\n", c);
break;

case ’0’..’9’:
printf("0-9: %c\n", c);
break;

default:
printf("default:\n");
break;

}
}

}

238
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It is interesting to note that while 1..3 represents a range of three cases,
under ANSI C rules this is one token; a pp-number. Therefore, to allow this
extension, High C disallows .. in a pp-number except when compiling in ANSI
mode.
This extension has also been provided by other implementors such as White-

smiths.

Structure Member Alignment

Like some other compilers, High C provides a compiler option and/or a pragma
to enable/disable structure member packing. The options they provide are:
byte-aligned or 32-bit word-aligned. High C allows packing to be specified
using the keywords packed and unpacked, as follows:

#include <stdio.h>

_packed struct t1 {
char c;
int i;

} s1;

_unpacked struct t2 {
char c;
int i;

} s2;

main()
{

printf("sizeof(s1) = %u\n", sizeof(s1));
printf("sizeof(s2) = %u\n", sizeof(s2));

}

sizeof(s1) = 5
sizeof(s2) = 8

Named Parameter Association

Arguments in a function call can be arranged in any order provided they contain
the name of the formal parameter to which they correspond. For this to work,
every argument in a prototypemust contain an identifier. As such, the technique
cannot be used with functions containing variable argument lists.
The actual argument list may have one of two possible formats: either every

argument is explicitly associated with a parameter using the syntax

formal-arg => actual-arg
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or the leading arguments have no such association and are interpreted according
to their position and trailing arguments have explicit association. For example:

#include <stdio.h>

main()
{

void f(char c, int i, double D, char *pc);

int j = 10;
double b = 1.2;
char *p = "abcd";

f(’x’, D =>b, pc => p + 1, i => j * 5);
}

void f(char c1, int i1, double D1, char *pc1)
{

printf("c1 = %c, i1 = %d, D1 = %f, pc1 = %s\n",
c1, i1, D1, pc1);

}

c1 = x, i1 = 50, D1 = 1.200000, pc1 = bcd

In this case, function f is called with 4 arguments. The first has no explicit
association and is therefore interpreted as corresponding to the first formal
argument (char c) in the prototype. The trailing arguments are associated
with the remaining formal argument names using the => notation. As you
would expect, the case of the formal argument identifiers is significant. However,
the names used in the function definition do not have to match those in the
prototype.

Nested Functions

High C permits functions to be nested, as follows:

#include <stdio.h>

main()
{

void f(void);

f();
}



Miscellanea – Jaeschke 241

void f(void)
{

void g1(void);
void g2(void);
static int i = 10;

puts("Inside f");

void g1(void)
{

printf("Inside g1: i = %d\n", i);
}

g2();

void g2(void)
{

printf("Inside g2: i = %d\n", i);
i = 20;

}

g1();
}

Inside f
Inside g2: i = 10
Inside g1: i = 20

The definition of function f contains the definitions of two other functions:
g1 and g2. That is, these two functions are nested within f. As such, they
can access any local identifiers declared within their parent(s) except for those
having storage class register. The definition of a nested function need not
precede its use, but if it doesn’t, it should at least be declared prior to use (as
is the case with g2 here).
Note that High C also permits declarations and statements to be inter-

spersed within a block.
Nested functions require extra support if their address is to be taken and

used meaningfully. Since a nested function ‘belongs’ to another function (and
can access its local variables), it has a current context which includes infor-
mation about its parent. This context information is called an environment.
An environment along with the corresponding function’s address is called a full
function value. So a pointer to a function is not able to store the context of a
nested function. Instead, a pointer to a nested function and a context pointer
are needed. High C refers to such a pointer pair collectively by the term full
function value variable, which can be declared as follows:
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void pnf(void)!;

Here, pnf is declared as a variable capable of containing the full function
value of a nested function having no arguments and no return value. In short,
pnf is a pointer to a nested function that has these attributes. pnf can be
assigned the value of a nested function simply by assigning it the function’s
name. The name of a nested function is not converted to a pointer to that
function. In fact, you cannot take the address of a nested function at all. pnf
can also be assigned the value of a non-nested function by assigning it the
dereferenced function’s name. For example:

pnf = f1;

causes pnf to contain the value of the nested function f1, while:

pnf = *h;

causes pnf to contain the value of the non-nested function h. Since non-nested
functions do not have environments, a dummy one is created for them in con-
texts where one is needed (as in the second case above) but it is thereafter
ignored.
[As a side-issue, the most recent proposal from Bjarne Stroustrup to add a
readable alternative to trigraphs to ANSI C++ (and presumably to ISO C)
includes adding ! as a postfix punctuator in declarations involving arrays. This,
of course, would lead to a conflict with High C, as he has been made aware.]
The following example demonstrates the use of nested functions and full

function value variables.

#include <stdio.h>

main()
{

void f1(void)
{

puts("\nIn function f1");
}

void pnf(void)! = f1;

printf("sizeof(pnf) = %u\n", sizeof(pnf));
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void f2(void p(void)!)
{

puts("\nIn function f2");
p(); /* call f1 */

}

f2(f1); /* pass nested function’s full value */
f2(pnf);

void g(void p(void)!);

g(f1); /* pass nested func to non-nested func */

void h(void);

pnf = *h; /* get ‘value’ of global function */
pnf();

}

void g(void p(void)!)
{

puts("\nIn function g");
p(); /* call f1 */

}

void h(void)
{

puts("\nIn function h");
}

sizeof(pnf) = 8

In function f2

In function f1

In function f2

In function f1

In function g

In function f1

In function h
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Note that while all function pointers in High C are 4 bytes long, the sizeof
a full function value is 8 bytes.
Full function values can be passed to functions. Function f2 expects such

an argument and is declared as follows:

void f2(void p(void)!);

This allows that function to be called using an expression of that type, as
follows:

/* use nested function’s name */
f2(f1);

/* use variable having nested function’s full value */
f2(pnf);

In fact, full function values can also be returned from functions using the
expected notation (even though it looks rather unusual). For example:

int g(void)(void)!;

Function g takes no arguments and returns a full function value of a function
taking no arguments and returning an int.
The last part of the example passed a nested function’s full function value

to a global function which then indirectly calls that nested function. So while
a nested function is in some sense private to its parent(s), it can still be called
indirectly from outside its parent(s) but only if they have at least one activation
record active.
The operations permitted on full function values are intuitive and parallel

(for the most part) those permitted with function pointers. (You can even cast
one full function value to another.) However, the two mechanisms are mutually
exclusive. In summary, you can find the full function value of a nested or non-
nested function. You can take the address of a non-nested function but not
that of a nested function.
Another aspect, not demonstrated here, is that any label declared in a func-

tion is visible to all its subordinate nested functions. (Any labels of the same
spelling in nested functions temporarily hide the outer label.) According to the
High C documentation, “Jumping to an ancestor’s label ... is a disciplined from
of C’s setjmp/longjmp and comes from Pascal.”

Extended Number Syntax

Floating-point and integer constants may include underscore (‘ ’) characters
among the digits. For example:
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#include <stdio.h>

main()
{

printf("%d, %f\n", 1_234_567, 9_876.123_456);
}

1234567, 9876.123456

Underscores may be used anywhere in the digit sequence, except at the
beginning so identifiers such as 123 continue to be recognized correctly.

The pragma Keyword

High C supported the notion of pragmas before ANSI C invented the #pragma
directive. The syntax used was to have a pragma keyword instead. While
both the keyword and preprocessor directive are supported, the keyword form
is permitted inside macro definitions, thus solving one of the biggest objections
to pragma directives.

enum Representation

According to ANSI C (§3.5.2.2 page 62, lines 40–41), “Each enumerated type
shall be compatible with an integer type; the choice of type is implementation-
defined.” While most implementations make all enumerated types the same
size (that of an int) the standard permits different types to have different
representations so you can save on storage. ‘Implementation-defined’ simply
means you must document how you do it.
To take advantage of this, it would seem reasonable to have a compiler

option or pragma to chose either ‘smallest possible representation’ or ‘int rep-
resentation.’ Instead, High C gives semantics to short and long when applied
to enumeration types, as follows:

#include <stdio.h>

short enum t1 {red1, blue1, green1 = 5};
short enum t2 {red2, blue2, green2 = 500};
short enum t3 {red3, blue3, green3 = 50000};
short enum t4 {red4 = -1, blue4, green4 = 50000};
short enum t5 {red5, blue5, green5 = 5000000};
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main()
{

printf("sizeof(enum t1) = %u\n",sizeof(enum t1));
printf("sizeof(enum t2) = %u\n",sizeof(enum t2));
printf("sizeof(enum t3) = %u\n",sizeof(enum t3));
printf("sizeof(enum t4) = %u\n",sizeof(enum t4));
printf("sizeof(enum t5) = %u\n",sizeof(enum t5));

}

sizeof(enum t1) = 1
sizeof(enum t2) = 2
sizeof(enum t3) = 2
sizeof(enum t4) = 4
sizeof(enum t5) = 4

The shortmodifier directs the compiler to store the enumerated type object
in as small an integer object as possible. In the case of t1 all values fit into a
char. Similarly, t2 will fit into a short, t3 requires an unsigned short, and
t4 and t5 require an int.

Calendar of Events

• March 4–5, 1991 Numerical C Extensions Group (NCEG) Meet-
ing – Location: Norwood, Mass. Analog Devices is the host. The fifth
meeting will be held to consider proposals by the various subgroups. It
will now precede the X3J11 ANSI C meeting being held at the same
location (see below) and will run for two full days. For more information
about NCEG, contact the convenor Rex Jaeschke at (703) 860-0091 or
rex@aussie.com, or Tom MacDonald at (612) 683-5818 or tam@cray.com.
Thinking Machines is hosting a reception on the Tuesday night at their
Cambridge offices where their (massively parallel) Connection Machine
will be demonstrated.

• March 6–8, 1991ANSI C X3J11 Meeting – Location: Norwood, Mass.
Analog Devices is the host. This three day meeting will handle questions
from the public, interpretations, and other general business. Address
correspondence or enquiries to the vice chair, Tom Plum, at (609) 927-
3770 or uunet!plumhall!plum. Note that this meeting now follows NCEG
and is scheduled for three days instead of two.

• March 11–15, 1991 ANSI C++ X3J16 Meeting – Location: Nashua,
New Hampshire.

• May 13–15, ISO C SC22/WG14 Meeting – Location: Tokyo, Japan.
Contact the US International Rep. Rex Jaeschke at (703) 860-0091 or
rex@aussie.com or the convenor P.J. Plauger at uunet!plauger!pjp for in-
formation.
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• June 13–14, 1991 First ISO C++Meeting – Location: Lund, Sweeden.

• June 17–21, 1991ANSI C++ X3J16 Meeting – Location: Lund, Swee-
den.

• June 24–28, 1991 ACM SIGPLAN ’91 Conference on Program-
ming Language Design and Implementation – Location: Toronto,
Canada. The conference seeks original papers relevant to practical issues
concerning the design, development, implementation, and use of program-
ming languages.

• August 12–16, International Conference on Parallel Processing –
Location: Pheasant Run resort in St. Charles, Illinois (near Chicago).
Submit software-oriented paper abstracts to Herbert D. Schwetman at
hds@mcc.com or by fax at (512) 338-3600 or call him at (512) 338-3428.

• August 26–28, 1991 PLILP 91: Third International Symposium on
Programming Language Implementation and Logic Program-
ming – Location: Passau, Germany. The aim of the symposium is to
explore new declarative concepts, methods and techniques relevant for
implementation of all kinds of programming languages, whether algorith-
mic or declarative. Contact plilp@forwiss.unipassau.de for further infor-
mation.

• September 23–25, 1991 Numerical C Extensions Group (NCEG)
Meeting – Location: probably in the Washington D.C. area.

• November, 1991 ANSI C++ X3J16 Meeting – Location: Toronto,
Canada.

• December 11–13, Joint ISO C SC22/WG14 and X3J11 Meeting –
Location: Tentatively in Milan, Italy.

News, Products, and Services

• NIST (the National Institute of Science and Technology) has selected a
C validation suite for US Government acceptance testing. The
winner was Perennial. (See Volume 1, number 2 of The Journal for
information on this and other validation suites.)

Perennial
4699 Old Ironsides Drive

Suite 210
Santa Clara, CA 95054

USA
(408) 727 2255
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The processing of a FIPS C (Federal Information Processing Standard) is
well under way. The public comment period on the proposed FIPS closed
on August 9. Written comments received are part of the public record
and may be viewed and copied in the Central Reference and Records
Inspection Facility, room 6628, Herbert C. Hoover Building, 14th Street
NW, Washington DC, 20230.

The FIPS C standard is effective six months after the date of publication
of the final document. At that time, a 1 year transition period begins to
allow industry to produce C processors conforming to the FIPS standard.
Interpretation requests of the FIPS standard are to be directed to NIST
for processing. For further information, contact Ms. Kathryn Miles on
(301) 975-3156 or L. Arnold Johnson on (301) 975-3247.

Since BSI (the British Standards Institute) and several other European
National standards bodies chose the Plum-Hall suite, it is expected there
will be some sort of mutual recognition of each others’ suites.

• A new release, version 1.5, of the SRC Modula-3 compiler and runtime
are now available. This is the third public release of SRC Modula-3. The
system was developed at the DEC Systems Research Center. It is being
distributed in source form (mostly Modula-3) and is available for public
ftp. You must have a C compiler to build and install the system. Contact
Eric Muller at muller@src.dec.com for more details.

• The third edition of the very popular book C: A Reference Manual
by Harbison and Steele is now available from Prentice Hall ISBN 0-13-
110933-2. This edition has been revised to include the final ANSI C
standard and exercises.

• Lattice, Inc. has announced it has significantly scaled back its C com-
piler activities and in future will provide maintenance releases only. Sales
and technical support will continue. (708) 916-1600.

• LPI now offers colleges and universities a 50% discount on its compilers
and related development tools and 25% on additional sets of documenta-
tion. Updates to educational users are also discounted at 50%.

• MetaWare, Inc. has announced the availability of two new products:
Globally optimizing High C compiler for Extended DOS 386/486 V2.3 and
a new 32-bit source-level debugger V1.0. Steve Noonan (408) 429-6382.

∞


