
The Journal of

C Language Translation

Volume 2, Number 4

March, 1991

Publisher and Editor . Rex Jaeschke
Technical Editor . P.J. Plauger
Standards Editor . Jim Brodie
Numerical Editor . Tom MacDonald
Subscriptions . Jenny Jaeschke

The Journal of C Language Translation (ISSN 1042-5721) is a quarterly pub-
lication aimed specifically at implementers of C language translators such as
compilers, interpreters, preprocessors, language-to-C and C-to-language trans-
lators, static analysis tools, cross-reference tools, parser generators, lexical an-
alyzers, syntax-directed editors, validation suites, and the like. It should also
be of interest to vendors of third-party libraries since they must interface with,
and support, vendors of such translation tools. Companies committed to C as
a strategic applications language may also be interested in subscribing to The
Journal to monitor and impact the evolution of the language and its support
environment.

The entire contents are copyright c© 1991, Rex Jaeschke. No portion of this
publication may be reproduced, stored or transmitted in any form, including
computer retrieval, without written permission from the publisher. All rights
are reserved. The contents of any article containing a by-line express the opinion
of the author and are not necessarily those of the publisher nor the author’s
employer.

Editorial: Address all correspondence to 2051 Swans Neck Way, Reston, Vir-
ginia 22091 USA. Telephone (703) 860-0091. Electronic mail address via uucp
is jct@aussie.com.

Subscriptions: The cost for one year (four issues) is $235. For three or more
subscriptions billed to the same address and person, the discounted price is
$200. Add $15 per subscription for destinations outside USA and Canada. All
payments must be made in U.S. dollars and checks must be drawn on a U.S.
bank.

Submissions: You are invited to submit abstracts or topic ideas, however, The
Journal will not be responsible for returning unsolicited manuscripts. Please
submit all manuscripts electronically or on suitable magnetic media. Final
copy is typeset using TEX with the LaTEX macro package. Author guidelines
are available on request.

The following are trademarks of their respective companies: MS-DOS and
XENIX, Microsoft; PC-DOS, IBM; POSIX, IEEE; UNIX, UNIX System Lab-
oratories, Inc.; TEX, American Mathmatical Society.

Contents

28. Implementing Locales – P.J. Plauger . 249

Some history, a specification of the minimum requirements, and an
open-ended model implementation.

29. Resolving Typedefs in a Multipass C Compiler – W.M. Mc-
Keeman . 259

Resolving the ambiguity between variable and typedef names during
parsing.

30. A Parallel Extension to ANSI C – Rob E.H. Kurver 267

A description of the extensions to ANSI C needed to integrate the
Communicating Sequential Processes paradigm, based on an imple-
mentation for the Inmos transputer.

31. Electronic Survey Number 7 – Rex Jaeschke 275

Questions on: Compiler Exit Status Codes, Extended Characters in
Identifiers, and Guidelines for Extensions.

32. ANSI C Interpretations Report – Jim Brodie 287

Jim discusses a number of interpretation requests that were ad-
dressed at the September, 1990 meeting of X3J11 in Pleasanton
California.

33. Initializers and Finalizers: A Proposed C Extension – Jerrold
Leichter . 296

A specification for an extension that permits programmers to extend
the program startup and shutdown process.

34. Cray C and Fortran Interlanguage Communication – Tom
MacDonald . 305

Tom outlines the interlanguage calling conventions adopted by Cray
Research and discusses their merits and some outstanding issues.

35. Iterators – Thomas J. Pennello . 318

A description of MetaWare’s iterator language extension.

36. Miscellanea – Rex Jaeschke . 332

Implicit function declarations, type checking, and ISO C and NCEG
reports. Also, the usual calendar of events, news, products, and
services.

i

ii

28. Implementing Locales

P.J. Plauger

Abstract

The Standard C library includes a facility called locales that helps a pro-
gram adapt to a number of local customs. Because it is new, the Standard
leaves the machinery largely unspecified. Little prior art exists to guide
the implementor.

This article describes the basic requirements for locales. It reviews
several implementation considerations and proposes ways to deal with
them. The proposed solutions have been tried as part of a complete
Standard C library that is commercially available.

Background

Committee X3J11 added locales to Standard C as a pure invention. They were
contrived to satisfy the stated needs of a number of European participants.
These folk objected to several Americanisms that had become institutionalized
in C—such as the dot for a decimal point and most aspects of the function
asctime (including its name). The same group of people were also concerned
with writing applications that could be sold in a single version for use in multiple
cultures. Thus, it was not enough to remove the Americanisms. It must also
be possible to inject a variety of other sets of conventions in their stead.
An applications program that uses locales wisely can adapt to local custom

in many important ways. Yet the code can be written without detailed knowl-
edge of all possible locales. And it can be maintained in a single version. Even
Americans, with their large local market for software, can appreciate these ben-
efits. Software is an important export, but producing foreign versions can add
significant development costs.
Machinery has long existed in C to assist programs in adapting to changing

conditions. UNIX added environment variables about fifteen years ago. These
provide a set of names, each with a character-string value. Environment vari-
ables get smuggled among processes with no extra effort on the part of the
programmer. A C program can call getenv to inspect the character string cur-
rently associated with a name. (In some implementations, a program can also
call setenv to add or alter an environment variable. That capability is not a
part of Standard C, however.) Such machinery has proved so useful that it has
popped up in nearly all C environments, from MS-DOS to MVS.

249

250 The Journal of C Language Translation – March, 1991

A variety of conventions has grown up around environment variables. Time
zone information can be found in TZ, for example, in a broad assortment of
C implementations. Sadly, the format of the TZ value string is inadequate to
represent all the time zones on the planet. Some implementations thus provide
time zone information in an alternate form, sometimes by a different name.
That typifies the problems with environments:

• Few standards exist for the names or meanings of environment variables.
• Those standards that do exist are often inadequate for the international
marketplace.

• Many environments are cluttered with environment variable names used
for varied and undocumented purposes.

In a real sense, a locale is simply a structured set of environment variables. It
provides a standard way for naming the components of a related set of values.
Some thought went into selecting and defining the components to meet the
needs of programmers around the world. And a locale imposes a level or two
of structure on the information to help control the proliferation of names.
For example, you can determine the current decimal point by writing:

#include <locale.h>
#include <stdio.h>

...
struct lconv *p = localeconv();

printf("numbers look like 3%c14\n",
p->decimal_point[0]);

A program that never calls the function setlocalewill assuredly display the
sample number as ‘3.14’. The dot is what you get in the "C" locale. And the "C"
locale is what you get at program startup. In this locale, the Standard C library
behaves largely the way a generation of programmers has come to expect—
Americanisms and all. The "C" locale is our island of stability in a torrent of
new cultures.
On the other hand, the program might include one or more calls to the

function setlocale. In this case, the test sequence above shows you what
currently passes for a decimal point. What the printf call displays is exactly
what that function uses to display floating numbers. You could just as well
have written:

printf("numbers look like %.2f\n", 3.14);

The displayed lines should be identical. (Note, by the way, that altering
the locale does not alter the character you use for decimal point when writing
formats or floating constants. That way madness lies.) As you might expect,

Implementing Locales – Plauger 251

the function strtod also alters its notion of decimal point when the locale
changes. That, in turn, alters the behavior of the functions defined in terms of
strtod—the scanf family and atof.
COBOL has its ‘DECIMAL POINT IS COMMA’ clause. A locale in C can specify

comma or any other character for the decimal point. Of course, locales go far
beyond the modest control of COBOL. Among other things, locales let you
alter:

• How the ctype.h functions categorize characters, so that you can specify
additional letters

• How the multibyte functions map between multibyte strings and wide
characters

• What to use for a currency symbol, and how to format various currency
amounts

• What to use as a digit separator (such as the thousands comma in the
U.S.) and how to group digits for non-currency amounts

• How to display dates and times

Some of the information provided with a locale is purely advisory. A pro-
gram can read it and act on it if it chooses. The Standard C library is otherwise
unaffected. Still other bits of information alter the behavior of one or more li-
brary functions, as in the example above. Here is where locales can be most
powerful, and most dangerous. Switching to an appropriate locale can help your
program speak more kindly to the locals. It can also subvert existing program
logic by adding unexpected letters or altering numeric conversions. Be careful.
You should, in fact, write every Standard C program with one of three styles

in mind:

1. Stay in the "C" locale as in simpler days of yore. Never call setlocale.

2. Switch once and for all to the native locale and stay there. Place the call

setlocale(LC_ALL, "")

at the top of main and watch out for library functions that change behav-
ior.

3. Adapt like crazy to different locales, or categories within locales, through-
out the program. Call localeconv and setlocale in all its variations.
Be ever alert to the sands shifting beneath your feet.

I recommend that you not even consider coding in the third style until you
gain some experience in the second.

252 The Journal of C Language Translation – March, 1991

Requirements

As desirable as they may sound, locales remain largely untried. The earliest
translators claiming ANSI conformance provided minimum support for locales.
Only a few major corporations have so far announced more ambitious plans
to support varied locales. The POSIX committee seems to be hammering out
locales in excruciating detail. But there is little in the field today to give you a
feel for how locales are supposed to work.
The C Standard also leaves certain aspects of locales intentionally unspec-

ified. It mandates the existence of only two locale names, "C" and "". (The
latter is for the native locale, whatever that may be.) It specifies six categories,
but permits an implementation to add more. It says nothing about the way an
implementation names a locale, defines its content, or makes it available to a
C program.
I have heard a number of gripes about this lack of direction, but I feel it

is appropriate. Think of locale names, for example, the same way you think
of file names. The C Standard imposes a couple of length constraints on file
names (FILENAME MAX and L tmpnam). It requires a minimum set of names for
header files (such as "abcdef.h"). Beyond that, it says nothing about the form
of a filename. It certainly doesn’t mandate any specific file names. (The fifteen
standard headers are not necessarily files any more.)
Of course, many conventions exist for naming collections of files. Nearly all

systems require, or strongly presume, that C source files have names ending in
.c. And include files have names ending in .h. Any significant project imposes
even more constraints on file names and directory structure. But that is not
the business of the C Standard. For it to say anything, even about C source
file names, would be inappropriate.
The C Standard adopts much the same attitude toward locale names. As

desirable as it may be to have common names for locales, the C Standard can’t
mandate them. It was risky enough to stick in locales with little or no prior
art. To tackle the open-ended problem of coordinating names around the world
would have been disastrous. So part of implementing locales is to establish
rules for naming them.
There’s an even nastier naming problem. A program can create a mixed

locale, as in:

#include <locale.h>

static char *savestr(char *str) { ... }
...
char *s0 = savestr(setlocale(LC_ALL, NULL));
char *s1 = savestr(setlocale(LC_ALL, ""));
char *s2 = savestr(setlocale(LC_NUMERIC, "C"));

(Here, the function savestr allocates space for the string argument and makes

Implementing Locales – Plauger 253

a copy of the string. Otherwise, setlocale might overwrite the string on a
subsequent call.)
The first call returns the name of the locale currently in effect. You can

undo the effect of the next two lines at a later point by writing

setlocale(LC_ALL, s0);

The second call switches to the native locale. The last call to setlocale
reverts the numeric category back to the "C" locale, leaving all others alone.
This is a mixed locale.
For each of these calls, not just the first, setlocale must return a string

that it can later accept as a second argument. A call such as

setlocale(LC_ALL, s2);

must recreate the mixed locale. Whatever information is needed to do so can be
stored only in the string returned by setlocale. That can pose some interesting
challenges. (Several people objected to having the C Standard present such
challenges.)

Implementation

About a year ago, I started writing a portable implementation of the Standard C
library. I wanted to convince myself that a number of untested conjectures
in the C Standard are correct. In particular, I wanted to see if locales and
multibyte support could be implemented reasonably. If so, I wanted to provide
an exemplary implementation for others to use, if only as a starting point. That
library is now complete and will soon be published by Prentice-Hall in a book
called The Standard C Library.1

The implementation of locales that I describe here is from that book. I don’t
represent it as the only way to do the job. It may well not be the best way to
meet the goals of any given implementation of C. It does, however, meet the
requirements of the C Standard. And it looks to be both usable and powerful.
Let’s begin with the data structure. The standard header locale.h de-

fines the type struct lconv. You call localeconv to get a pointer to such a
structure. That gives you access to information in the monetary and numeric
categories.
The C Standard strongly suggests that localeconv deals with a single static

structure. Each call to setlocale rewrites the fields of this structure as needed.
Presumably, you can call localeconv once in your program and trust that the
returned pointer remains valid until program termination. I would discourage
such a presumption as bad programming style, however. It is equivalent to

1The machine-readable source, over 9,000 lines of C code, will also be available at a
reasonable price.

254 The Journal of C Language Translation – March, 1991

assuming that every call to gmtime returns the same pointer value. Maybe it’s
true. Maybe it even has to be true. But it’s still a risky presumption.
From an implementation standpoint, using a single static structure makes

the most sense. You have the usual problems with writable statics in the library.
A system that wants to share library code among processes must work out how
to give each a private copy of writable statics. The problem here is no better
and no worse than elsewhere in the library. In most implementations, library
statics present no problem. They can even be declared and initialized like any
other static data in C.
One benefit of having an initialized static structure is that localeconv

becomes a trivial macro. It expands to the address of the structure, as in:

struct lconv *localeconv(void);
extern struct lconv _Locale;
#define localeconv() (&_Locale)

The call overhead disappears and references to members of the locale struc-
ture become direct accesses to memory. What it costs you is more work on a
call to setlocale. You can’t avoid copying data into the locale structure when
a category changes.
A locale contains information about other categories as well. How you rep-

resent this additional information is not spelled out in the C Standard. You
can certainly add fields to struct lconv. Or you can make struct lconv one
component of a larger structure. A small case can be made for favoring the
latter approach.
Here’s why. It seems desirable in principle to pack all locale-dependent data

into a common data structure. That includes at the very least

• The three character maps for the functions in ctype.h (for tolower,
toupper, and the is* functions)

• The tables that control the behavior of mbtowc, wctomb, and strcoll
(and all the functions that call on them in turn)

• The day and month names, and possibly other data, used by strftime

But think what happens with a typical linker. Say you call only the function
isspace. That drags in the character map for the is* functions, which is now
a part of the locale structure. The locale structure in turn drags in all the other
maps, tables, and strings whether or not they get used. Customers don’t like
to link in 5,000 bytes when they expect at most 300. I don’t either.
My solution was to leave all these bits of data separate, just like in the old

days. The first call to setlocale copies data as needed into the data structure
for the "C" locale. Every call to setlocale copies data out to the separate bits
whenever they must change. That’s extra work for setlocale, but it’s already
an expensive function. You at least avoid the wasted storage space in programs
that don’t muck with locales at all.

Implementing Locales – Plauger 255

Names

Implementing setlocale and naming locales are inseparable issues. The prob-
lems to solve, more or less in order, are:

• What do you choose for a native locale (with name "")?
• How do you represent an open-ended set of locales?
• How can you standardize locale names, and specifications, across multiple
implementations?

For the native locale, you have three basic choices:

1. An implementation with minimum locale support can make the native
locale the same as the "C" locale. No other locale names are defined.

2. An implementation with a strongly favored locale can build a special
native locale directly into the library. You can switch to it quickly. Other
locale names may or may not be permitted.

3. An implementation with more ambitious goals should select the native
locale from an open-ended set. The selection should be made with little
or no additional input from the person using the program.

I am in the business of implementing the third choice. (You can then get
one of the first two by throwing away code.) It seems to me that the best
mechanism for specifying the native locale is one I pooh-poohed earlier in this
article—reading an environment variable. I believe that this is what environ-
ments do best, provide a small hint that leads to a significant amount of tai-
loring. Consequently, I commandeered the environment variable LOCALE to
specify the native locale.
The first time the program calls setlocale with "" as the second argument,

the function calls getenv("LOCALE"). If that returns a value, it is taken as the
name of the default locale. Otherwise, the default locale is "C".
You can add any number of locales directly to the Standard C library. Each

is represented by an initialized read-only static data structure. It is not terribly
difficult to write the initializer, at least for the fields that commonly vary. Part
of the initialization is to link the locale structures into a mono-directional list.
A call to setlocale scans this list to find any locales already in memory.
Beyond a certain point, it is better to read in additional locales as needed

at runtime. For that to happen, the implementation needs to know where to
find the file of locales. It also needs to know how the file is formatted. Since it
is extremely bad form to wire a file name into code, particularly library code,
I commandeered yet another environment variable. (The entire library uses
about half a dozen.2) The environment variable LOCFILE contains the name of
a file to read if setlocale cannot find a locale already in memory.

2The library uses the following environment variables: LOCALE, LOCFILE, TEMP, TIMEZONE,
and TZ.

256 The Journal of C Language Translation – March, 1991

You describe locales in a text file, for ease of editing by people. Each
line begins with a keyword, followed as needed by values and expressions. To
minimize input, each locale begins as a copy of the "C" locale. All you need
specify is any changes from this simple norm. A brief example of a locale is:

LOCALE france
NOTE sampler only, not complete
decimal_point ","
toupper[’ê’] ’Ê’
tolower[’Ê’] ’ê’
ctype[’ê’] $L
ctype[’Ê’] $U
currency_symbol "F"
int_curr_symbol "FFR "

You can also write more powerful expressions. The ASCII behavior of
toupper, for example, can be expressed completely as:

toupper[’\0’ : $^] $@
toupper[’a’ : ’z’] $$+’A’-’a’

The first line sets each element (from '\0' to CHAR MAX) to map to itself.
The second adds to the range of lowercase elements the appropriate offset to
map to the corresponding uppercase letter.
I have written just a few locales so far. That has been enough to convince

me that the basic notation is economical and complete. In time, I hope to tackle
an assortment of more complete specifications from POSIX or X/OPEN. That
may well lead to additional refinements in the locale file format.
To name a mixed locale, setlocale bolts together these simpler locale

names. Say the native locale is "france". Then the example I gave earlier
would have s2 point at the string "france;numeric:C". A semicolon separates
category components within a name. A colon separates the category name from
the locale name to which it is set.
Every string that setlocale returns has an unqualified name. It is deter-

mined on the last call of the form setlocale(LC ALL, name) where name has
an unqualified component. Any categories that differ from this one contribute
a component of the form ;cat-name:locale-name. You can call setlocale
with even messier names, however. For each category that gets set, setlocale
chooses, in order:

• The first qualified name for that category
• Otherwise, the first unqualified name
• Otherwise, the existing locale name for that category

Implementing Locales – Plauger 257

The effect of these rules is that you can prefix any string returned by
setlocale with one or more qualifiers. Those qualifiers will win where ap-
propriate. Any unmodified categories shine through as needed.
The last item on the checklist is developing locale names and specifications

that are portable across multiple implementations. This library is portable
enough to solve that problem in the small. Anybody who chooses to make use
of it can share locales with others who do the same. (A change in the underlying
character set, such as from ASCII to EBCDIC, requires changes in the locale
file, of course.)
Solving the problem in the large requires a degree of cooperation among

implementors. I don’t believe that implementors can make wise decisions until
they get some hands-on experience with locales. That is a major purpose of
this exercise. I am not in a position to dictate conventions among all C users
and I don’t want to be. My goal is to help people gain experience with using
locales so more of us will one day know what we want.

Finite-State Machines

I conclude by mentioning a particularly nasty aspect of having locales that
vary. You want a function such as strxfrm (and its companion strcoll) to
be reasonably fast. That argues that you write a function tailored to a given
collation sequence and include it in the library. To switch to another collation
sequence, you switch to another function in the library. What goes in the locale
structure is a pointer to the current version of strxfrm (and possibly strcoll
as well).
That decision seriously limits your choices when specifying new locales. All

you can choose from are the existing flavors of strxfrm. You want a new flavor,
you write it in C and add it to the library. Many implementations will find such
a limitation acceptable, but not all.
A more flexible solution is to write a single function that is table driven. It

is relatively easy to specify the contents of a table as part of a locale. Certainly,
that is easier than writing C functions and adding them to the library all the
time. The function may run a bit slower, but for a well-designed table encoding
it can be comparable to bespoke code.
Collating rules come in an astonishing variety. (So, too, do multibyte escape

sequences and wide character encodings.) I tried several times to contrive a
table format that encompassed a significant number of popular rules. I think I
came close, but not close enough to be elegant. What I gravitated to in the end
was the same basic machinery for strxfrm, mbtowc, and wctomb. I implement
each as a table-driven finite-state machine. The variety of schemes they can
implement at least borders on the astonishing.
Sadly, I couldn’t contrive a way to use a single finite-state machine driver

for all occasions. It seems that mbtowc converts one or more bytes to an int.
wctomb does the opposite. And strcoll/strxfrm maps bytes to bytes. The

258 The Journal of C Language Translation – March, 1991

methods are similar but different.
Coding tables for a finite-state machine is not for the faint of heart. I don’t

pretend to have eliminated the need for a programmer. What I have done is
provide a way to represent a broad class of mapping functions as part of the
text specification for a locale. I will happily provide implementation details,
and a representative assortment of applications—in a later article.

P.J. Plauger serves as secretary of X3J11, convenor of the ISO C working
group WG14, and Technical Editor of The Journal of C Language Translation.
He recently took over the editorial reins of The C Users Journal. He is currently
a Visiting Fellow at the University of New South Wales in Sydney, Australia.
His latest book, The Standard C Library will soon be available from Prentice-
Hall. He can be reached at uunet!plauger!pjp.

∞

29. Resolving Typedefs in a Multipass C Compiler

W.M. McKeeman
Digital Equipment Corporation

110 Spitbrook Road
Nashua, NH 03062

Abstract

A C compiler must resolve the ambiguity between variables and typedef
names during parsing. This requires the parser take into account extra-
syntactic information. The information is typically held in the compiler
symbol table. This paper outlines a solution where the compiler symbol
table is not available. The solution is to build a minimal symbol table in
the parser itself.

Introduction

C fails to be LR(1) because of a conflict between identifier and typedef-name.
The situation is illustrated by the following fragment:

static X(Y)

This text starts a declaration of Y if X is a typedef-name and Y is not. It
starts a function prototype for X if Y is a typedef-name and X is not. It starts
an old-style function-definition if neither X nor Y is a typedef-name. There are
similar conflicts for casts and parenthesized expressions and function calls.
C programmers have little difficulty resolving these conflicts—the declared

attributes of the names are sufficient. A syntax-driven parser, on the other
hand, makes all decisions based on the immediate syntactic context. A previous
type definition is not part of that context, thus something additional must be
done.
The following description assumes the reader is familiar with compiler struc-

ture and parsing methods.
The typical C compiler scans source text, parses it, and builds a symbol

table in a single pass. The typedef-name resolution takes place in an enhanced
scanner which builds a typedef-name token instead of an identifier token when
the scanner finds that token in the symbol table marked as a typedef-name. The
parser is unaffected by this collusion between the scanner and symbol table [2].
Alternatively, the parser can interrogate the symbol table in those places where
the conflict arises [3]. In this case the scanner is unaffected.

259

260 The Journal of C Language Translation – March, 1991

Where parsing is done on a separate pass from interpreting declarations,
the symbol table is not available to either the scanner or the parser. A solution
for unavailable symbol information is presented here in terms of Standard C as
defined in the American National Standard X3.159-1989 3 [1]. The basis of the
solution is a private symbol table built into the parser, capable only of resolving
the typedef-name/identifier ambiguity.
It turns out that the parser needs to know only in a small number of places

whether an identifier is a typedef-name [§A.2.2, 3.5.6] so as to apply the grammar
rule

typedef-name:
identifier

The issue must be resolved in deciding between rules [§3.3.4]

cast-expression:
unary-expression
(type-name) cast-expression

because a unary-expression might start with a parenthesized identifier and also
between the two cases for each of the rules [§3.5]

declaration-specifiers:
storage-class-specifier declaration-specifiersopt

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

because if the last type-specifier is an identifier it might instead be meant to
be redeclared as belonging to the following declarator. The choice between
declarator and abstract-declarator is formally ambiguous and therefore requires
a special elaboration in the standard [§3.7.1]. There is a similar ambiguity
between new and old-style function-definition.
Finally, the issue must be resolved between rules [§3.6.2]

compound-statement:
declaration-listopt statement-listopt

because of the ambiguity between function calls and declarations mentioned for
X(Y) at the start of this section.
The parser accesses its private symbol table to resolve the local ambiguity

rather than relying on the scanner. With this solution separation of concerns is
cleaner. There is no question of the feasibility of the proposed solution since a
complete symbol table could be built in the parser. The problem to be solved
is keeping the parser’s private symbol table simple, small, and efficient. The

3Throughout this paper, the standard is implicitly referenced using the notation §x.y.z

Resolving Typedefs in a Multipass C Compiler – W.M. McKeeman 261

idea has appeared in a C compiler [3]; it does not appear to be documented in
the open literature.
Extra-syntactic decision-making in a parser requires ad hoc modifications to

the parser. The modifications can be ugly if the parsing method is inflexible,
as is the case if the parser is table-driven and parser sources are not available.
The parsers in which these ideas have been tested have used recursive descent.
There are a number of simplifying assumptions in this presentation. It is

assumed that the only objective of the parser is to report the shift/reduce
sequence implied by the grammar. It is assumed that there is a lexical process
that produces actions of type Token. It is assumed that the parser produces
actions of type Rule. The time-merged sequence of Token and Rule actions
is the shift/reduce sequence. These assumptions are neither theoretically nor
practically limiting: any intermediate form can be efficiently constructed from
the shift/reduce sequence. It is also straightforward to produce this same output
from LALR-based parsers [4].
The requirements on the solution are that all syntactically correct C pro-

grams can be parsed and that all syntactically incorrect C programs can be
diagnosed. The code added to resolve typedef-name need issue a diagnostic
only when it cannot be assured that other diagnostic facilities will come into
play. Specifically, the correct parse must be provided up to the point where a
nonsyntactic error will be diagnosed, and some parse continuation must be pro-
vided so that later phases of the compiler will actually be invoked—the output
of the parser must always reflect the parse for some correct program.

The Parser Symbol Table

Symbol tables for C are required to reflect a number of detailed requirements
and constraints of the language definition. Where there is a common solution
for the special parser symbol table and the general table, no details are given
here based on the presumption that there are other sources of this information.
The actions for the private symbol table are interrogation, entry of a new

typedef-name, obscuring a typedef-name with some other use of its name, enter-
ing and leaving a scope.
Scoping is complicated by the requirement that names in a parameter-type-

list and identifier-list [§3.5.4] are in the scope associated with the compound-
statement of the function-definition even though they are outside the opening
‘{’ [§3.1.2.1]. The solution presented here has a second kind of scope entry
which reopens a just-closed scope frame. This makes six functions altogether
in the typedef-resolving symbol table mechanism.
Typedef names are in ordinary name space [§3.1.2.3]. If typedef is encoun-

tered in a translation-unit, its identifier becomes a typedef-name until either
the current scope is finally left, or another declaration for the same name in an
inner scope temporarily obscures it. There can be at most one typedef-name
entered in any one scope. There can be multiple entries for other ordinary name

262 The Journal of C Language Translation – March, 1991

space uses of identifiers (because of the rules for linkage [§3.1.2.2] and old-style
function definitions).
Only the grammar rules

direct-declarator:
identifier

enumeration-constant:
identifier
identifier = constant-expression

primary-expression:
identifier

can introduce names into ordinary name space [§3.5.4, 3.1.3.3, 3.3.1, 3.3.2].
These three cases can be treated one at a time.
A direct-declarator introduces a typedef-name only when it eventually par-

ticipates in the grammar rule

declaration:
declaration-specifiers init-declarator-listopt ;

and reserved word typedef is among the declaration-specifiers. If, on the other
hand, typedef was not in the declaration-specifiers, direct-declarator obscures
any use for that identifier in enclosing scopes.
The rule above for init-declarator-list leads to

init-declarator:
declarator
declarator = initializer

Via the above nonterminal declarator, nonterminal direct-declarator partic-
ipates in four other rules in C:

function-definition:
declaration-specifiersopt declarator declaration-listopt

compound-statement

parameter-declaration:
declaration-specifiers declarator

struct-declarator:
declarator
declaratoropt : constant-expression

direct-declarator:
(declarator)

Resolving Typedefs in a Multipass C Compiler – W.M. McKeeman 263

In function-definition, typedef is syntactically allowed but never valid in ei-
ther declaration-specifiers or declaration-list [§3.7.1]. This occurrence of declara-
tor therefore cannot enter a typedef-name. And, since function-definition is
always in the outermost scope, neither can it obscure a typedef-name.
In parameter-declaration, typedef is syntactically allowed but never valid

[§3.5.4.3, 3.7.1]. A typedef-name cannot be entered, but one can be locally
obscured by a parameter.
In struct-declarator ordinary name space names cannot be defined. There-

fore, all parse symbol table activity must be suspended for struct-declarator.
Whatever is said about direct-declarator also applies to the parenthesized

declarator. Thus it may behave as any of the four uses of declarator. This
concludes what must be done for direct-declarator.
The situation for enumeration-constant is much simpler—whenever it ap-

pears it obscures any other use of its identifier in outer scopes. There is no
need to check for multiple definition in the current scope—later phases of the
compiler will do that.
The occurrence of a primary-expression can introduce a local ordinary name

space object with external linkage when the primary-expression is immediately
used in the rule

postfix-expression:
primary-expression (argument-expression-listopt)

and the identifier is not previously declared. The effect is to obscure other local
uses of that name from the point of implicit declaration. In fact the parser can
ignore implicit declarations. They cannot obscure a typedef-name because there
can be no previous declaration (of any kind) for that name.

Implementation Details

While it violates a constraint to have two declarations for the same name in
one scope [§3.5], it is not necessary to check this constraint to parse correct pro-
grams. In essence, C is extended during parsing so that, instead of diagnosing
multiple declarations, the last declaration wins. This trick always results in a
decision on typedef-name and makes the diagnostic correct with respect to the
nearest declaration. This decision only affects incorrect programs, thus there is
no substantial impact on efficiency of parsing.
Six parser-specific routines need to be implemented:

void ParseEnterScope(void);
void ParseExitScope(void);
void ParseReenterScope(void); /* undo Exit */
void ParseEnterTypedef(Token t);
void ParseObscureTypedef(Token t);
bool ParseIsTypedef(Token t);

264 The Journal of C Language Translation – March, 1991

Function ParseIsTypedef(t) is what is needed by the parser to distinguish
between ordinary identifier and typedef-name. Everything else is just support
for this function. ParseIsTypedef(t) is called just in the situations where both
a typedef-name and object are syntactically acceptable and the parse depends
on which is actually found.
Functions ParseEnterScope() and ParseExitScope() are usually paired.

The scopes in C are associated with one of file-scope, function body, compound
statement, or prototype. These two functions are called as each scope is entered,
and as it is exited.
The call of function ParseReenterScope() is immediately preceded (in

time) by ParseExitScope() and restores the parse symbol table to the state
it had just before it did the exit [5]. The trick is to merely set a global de-
lay flag in ParseExitScope() and not do the exit action. If the next call is
ParseReenterScope(), it has no effect except for the clearing of the delay flag.
All other actions check the delay flag and if it is set, actually do the exit action
prior to doing their own functions. The re-enter situation occurs for func-
tion definitions. Function definition is detected syntactically when a file-scope
declarator is immediately followed by other than one of ‘,;=’. The effect is to
include the formal parameters of the function in the scope of the function body.

ParseEnterTypedef(t) pushes t on the parse symbol table and marks it as
a typedef-name. ParseObscureTypedef(t) pushes t on the parse symbol table
and marks it as not a typedef-name. The obscuring action is effective until the
end of scope occurs, causing ParseExitScope() to be called.
Invoking the typedef symbol table functions can be done in any of the con-

ventional ways for complete symbol tables.

Scope Management

void p () function prototype
void p (int) function prototype
void p (int a) function prototype
void (*p)() pointer to function
void (*p)(int) pointer to function
void (*p)(int a) pointer to function
void p (int a) { } function definition
void p () { } function definition
void p (a) int a; {} function definition

{ } compound statement

✻ enter scope
✻ exit scope (perhaps temp)

✻ reenter scope
✻ exit scope (final)

Scopes are associated with parameter-type-list, identifier-list and compound-

Resolving Typedefs in a Multipass C Compiler – W.M. McKeeman 265

statement. They interact [§3.1.2.1]. There are also some additional rules that
allow the former status to be ignored [§3.5.6]. After a function header scope is
closed (perhaps temporarily) scope is reopened for the function body since the
parameters are in the same scope as the body. This forces ParseEnterScope()
or ParseReenterScope() to be called before parsing compound statements.

Test Case

The syntax for C declarations permits writing declarations that are hard for
programmers to decipher. Compilers have the same problem. The following
C program compiles and runs. It contains multiple definitions of name p, each
using a different combination of typedef-names, to be analyzed for compatibility.
At the same time the type definitions are being obscured in local scopes because
the same names are used for objects. J appears 8 times, once as the name of
a parameter. I appears 10 times, 4 as the name of a parameter. The reader
might want to predict the number of times ‘in p’ gets printed.

#include <stdio.h>

typedef int I; /* I is a typedef-name */
typedef I J(I());

I(i); /* i is an int variable */

extern J p; /* p takes an int function */
extern I p(J), p(J I), p(J J);
extern int q(register J), q(J register), r(const J J);

I p(J I) { /* I becomes a local name */
puts("in p");
return i++<0 ? I((J*)p(I)) : -17;

}

main() {
i = -2;
printf("%d\n", p(p));

}

Error Behavior

This mechanism must behave correctly in the face of source program errors. The
principal issue is avoiding incorrectly classifying an identifier (typedef-name or
not). The situation arises when the user incorrectly declares an identifier twice
in the same scope. Since the only report from this mechanism is the single bit

266 The Journal of C Language Translation – March, 1991

ParseIsTypedef(), there are exactly two problems: TRUE overriding FALSE
and vice versa.
The consequence of an incorrect value is a parsing error later in the source

text. The compiler cannot know which declaration was intended. It is barely
acceptable to report a parsing error at some point well beyond the declaration
that caused the problem. The mechanism outlined here could be extended to de-
tect and report redeclarations that could affect the value of ParseIsTypedef()
without affecting the interface defined above.

Acknowledgements

The central idea of this paper was brought to the attention of the author by
John Hamby in relation to the DEC C implementation. Since then many of
my co-workers have contributed ideas and suggestions. The implementation
described here is from a prototype incremental compiler for Standard C.

References

[1] American National Standard for Information Systems – Programming
Language C, X3.159-1989, American National Standards Institute, 311
First Street, N.W., Suite 500, Washington, DC 20001-2178.

[2] Harbison and Steele, C: A Reference Manual, 2nd Ed. Prentice-Hall
(1987). See section 5.10.3.

[3] John Hamby, private communication, June 1989.

[4] W.M. McKeeman, Shota Aki, and Scot Aurenz, “Parser-Independent
Compilers,” Journal of C Language Translation, Vol 2, No. 3 (Decem-
ber 1990).

[5] Randy Meyers, private communication, July 1990.

William McKeeman is a Senior Consulting Engineer for Digital. He has
co-authored several books and has published papers in the areas of compilers,
programming language design, and programming methodology. His current
technical interests are studying and improving compile speed and responsiveness
and the application of Software Engineering techniques to small programming
projects. He can be reached at mckeeman@tle.dec.com.

∞

30. A Parallel Extension to ANSI C

Rob E.H. Kurver
PACT

Foulkeslaan 87
2625 RB Delft
The Netherlands

Abstract

The ANSI X3J11 committee decided not to address the issue of parallel
processing. Instead, it chose to wait until developers had come up with
more prior art. This paper describes an effort to integrate the Communi-
cating Sequential Processes (CSP) paradigm with ANSI C. The resulting
ANSI C superset provides a familiar and powerful language for parallel
processing. The concept has been tested in a compiler for the Inmos
transputer.

Introduction

In the Communicating Sequential Processes (CSP) parallel programming model
a parallel program is, in a nutshell, a collection of sequential processes. The
processes can be distributed over any number of processors, with distributed or
shared memory. Communication between pairs of processes is synchronized.
A process is sequential when there is a single flow of control. A process can

spawn child processes, at which time the parent process is descheduled. That
is, the parent process will be idle until all of its child processes are finished.
This ensures the single flow of control in the sequential process.
Interprocess communication and synchronization are provided for via chan-

nels. For communication to take place over a channel, one process must be
ready to send data over the channel and another one must be ready to receive
that data. Both processes explicitly refer to the channel to be used for com-
munication. Since no more than two processes can use a given channel at the
same time, channels are typically allocated for every pair of processes wishing
to communicate. If one process indicates its willingness to communicate over a
given channel, it is descheduled until another process indicates its readiness to
be the matching party.
It is possible for a process to guard a number of channels and select one

available process to communicate with, or give up after a certain period of
time.

267

268 The Journal of C Language Translation – March, 1991

Adding CSP support to ANSI C

The PACT Parallel C dialect is an attempt to enrich ANSI C with the CSP
paradigm. For this purpose, two new constructs and one new type modifier
were added to ANSI C. An implementation for the Inmos transputer proved
that it is feasible to actually implement these extensions and put them to good
use.
Perhaps the biggest problem with adding CSP to ANSI C was that of re-

taining the ‘spirit of C.’ Somehow, everybody just knows what feels like C and
what doesn’t. But how? Although it’s possible to come up with some guide-
lines, some more intuitive than others, the final process of determining syntax
and semantics for the extensions often depended more on aesthetics and gut
feelings than anything else.

Processes

The basic building block of CSP is the sequential process. A sequential process
is simply a piece of C code with its associated data. Each process has its
own stack. In addition, child processes have access to the parent process’ local
data, in accordance with normal C scope rules. (Although conceptually very
reasonable and simple, this does introduce the need for a static chain to be
followed to the stacks of parent processes.)
A task is a collection of processes that have access to the same data seg-

ment, and thus can share data via more conventional means (shared memory,
semaphores, etc.) in addition to channels. A task always starts as one process,
very much like a conventional C program, with code and data sections. As
this process spawns child processes, it is in the ‘spirit of C’ (re scope rules) to
expect the child processes to have access to the parent’s environment just as a
normal C block would have. Hence the necessity for the static chain and the
sharing of the data section. Although it is more in the spirit of CSP to use
channels for all interprocess communication, it is convenient to be able to use
other programming techniques if desired.
A program is a collection of tasks distributed over a number of processors.

The allocation of tasks to processors may be static or dynamic. An implemen-
tation could even choose to move tasks about processors at runtime, depending
on the workload.
Implementations may enforce particular restrictions regarding the distribu-

tion of processes and tasks. For instance, on a distributed-memory system, the
sharing of the data segment pretty much forces all processes in a task to be
run on the same processor. On a shared-memory system, however, it would be
perfectly reasonable to allow a task to be distributed over multiple processors.
The par construct allows a process to start child processes and wait for their

completion:

A Parallel Extension to ANSI C – Kurver 269

par-statement:
par replicatoropt statement

replicator:
(expression-1 ; expression-2 ; expression-3)

This construct can be regarded as the parallel counterpart of the ANSI C
for construct. Whereas for executes the loop body a number of times in
sequence, par executes all loop bodies concurrently.
The replicator, if present, looks and feels just like the set of controlling

expressions in a for construct. The replicator forms a loop in which the child
processes are started, as follows:

par (. . . ; . . . ; . . .)
start statement as child process

wait for child process(es) to finish

An example would be to calculate cube values concurrently as in

par (i = 0; i < 10; i++)
printf ("%d**3 = %d\n", i, i * i * i);

In order to allow a number of different processes to be executed in parallel,
if the body of the par statement is a compound statement (block), it is treated
specially. Instead of starting this compound statement a number of times as a
process, the compound statement is treated as a collection of declarations and
statements, each of which is started as a separate process. Any declarations
are declared global to the set of processes in this loop through the replicator,
as follows:

par (. . . ; . . . ; . . .) {
initialize a copy of the local variables
start every statement as a child process

}

wait for child process(es) to finish

The following code fragment starts three sets of two processes each. Each
process calls a function g() with some shared parameter x, which is calculated
from the replicator variable i before the processes are started. Each of the three
sets of processes has a local copy of x, which is initialized before the processes
using it are started.

270 The Journal of C Language Translation – March, 1991

par (i = 0; i < 3; i++) {
int x = f(i);

g(x);
g(x + 1);

}

Because each process has its own stack, it is not possible to jump into or
out of a process. Thus, gotos into and out of a process are disallowed, as are
continues and returns. Breaking out of a process transfers control to the end
of that process, causing it to end. Of course, break and continue have their
usual meaning in the appropriate constructs (switch, for, etc.) within the
process.
The variables referred to in the replicator expressions are called the replicator

variables. Each child process gets a private copy (a replica) of any replicator
variables upon invocation. The main reason for this is to make absolutely clear
which variables will be replicated, since this implicit copying of a variable is a
new concept in C. Any variable can simply be replicated by merely mentioning
it in the replicator expressions. If you do not want to replicate a variable
because it must be shared, introduce a temporary copy of the variable. Using
this copy instead of the original in the replicator expressions, causes the copy
to be replicated and the original to be shared by all child processes.
Unfortunately, the par construct as outlined above introduces a parser con-

flict. An opening parenthesis after the par keyword could indicate either a
replicator or an expression statement. This conflict is resolved in favor of the
replicator, thus forcing the following piece of code to be rewritten using extra
braces:

par
(expression);

Instead, this must be changed to:

par {
(expression);

}

Note that this is a non-functional use of the par construct (starting one
single child process), and this is the only case in which the parser conflict
forces code to be rewritten to favor the expression. (More than one process can
be started by using either a replicator or a compound statement—the conflict
doesn’t exist in either case.)

A Parallel Extension to ANSI C – Kurver 271

Channels

The channel provides for synchronized interprocess communication. Both pro-
cesses using a particular channel to communicate must explicitly refer to the
channel. This means we need some way to declare a channel as well as a way
to read from and write to a channel.
The channel type modifier was added to the familiar ones (pointer to, array

of, and function returning). Thus, a channel has objects of some principal type
being passed through it. Casts can be used to send objects of a different type.
The channel is said to be a channel of some object.
The ‘|’ (vertical bar) token is overloaded to indicate channels in both dec-

larations and expressions.
The syntax for declarator and abstract declarator was extended to include

channels as follows:

declarator:
pointer-or-channelopt direct-declarator

pointer-or-channel:
* type-qualifier-listopt

* type-qualifier-listopt pointer-or-channel
| type-qualifier-listopt

| type-qualifier-listopt pointer-or-channel

abstract-declarator:
pointer-or-channel
pointer-or-channelopt direct-abstract-declarator

An example of such declarations is:

int |ch; /* channel of int */
T |*ch[10]; /* array of 10 pointers to */

/* channels of some type T */

The qualifiers const and volatile can be combined with the channel type
in the usual way. However, because a channel causes communication, it is
volatile by definition, so the volatile qualifier is redundant. A const channel
is a read-only channel.
An expression with channel type can be subjected to the | unary operator,

in addition to the normal ones defined by ANSI C. So, unary operator now
becomes:

unary-operator: one of
& * + - ~ ! |

The operand of the unary | shall have channel type (i.e., “channel of type”

272 The Journal of C Language Translation – March, 1991

where type is any object type).
The unary | operator denotes channel communication. If the operand is

a channel of an object, the result is an lvalue designating the object. If the
operand has type channel of type, the result has type type. If the operand is not
a valid channel, the behavior is undefined. As a side-effect, this operator causes
synchronized communication to take place. The receiving party is the process
using the designated object, and the sending party is the process assigning to
the object. The current process will be suspended until the other party is ready
to exchange data. For example:

par {
int |ch; /* channel of int */

|ch = 10; /* send 10 */
printf("%d\n", |ch); /* report */

}

This starts two processes, one process sending an integer constant through a
channel, and the other process reading this value from the channel and printing
it.

Selection

In order to be able to choose between multiple processes to communicate with,
or to probe a channel without immediately committing to communication, a
mechanism is needed to select a process to communicate with. This is accom-
plished with the alt construct:

alt-statement:
alt replicatoropt statement

labeled-statement:
. . .
guard expression : statement
timeout expression : statement

The expression of each guard label has pointer to channel type. The ex-
pression of each timeout label has integral type. There may be at most one
default label in an alt statement. (Any enclosed alt or switch statement
may, of course, have a default label.)
An alt statement causes control to jump to or into the statement that is the

alt body, depending on the states of the channels pointed to by the expressions
on any guard labels, the timeouts indicated by the expressions on any timeout
labels, and the presence of a default label. A guard, timeout, or default label
is accessible only within the closest enclosing alt or switch statement.

A Parallel Extension to ANSI C – Kurver 273

If any of the channels pointed to by the guard label expressions is ready
to communicate, control jumps to the statement following the matched guard
label. Otherwise, if there is a default label, control jumps to the labeled state-
ment. If no guard channel is ready to communicate, and there is no default
label, the process is suspended until one of the guard channels is ready to com-
municate or one of the timeouts as specified in the timeout labels has expired.
If the guard expression evaluates to NULL, the guard label is effectively dis-

abled and control is never transferred there. If the timeout expression evaluates
to zero, the timeout label is effectively disabled and control is never transferred
there. This makes it possible to dynamically disable guards or timeouts.
The replicator, if present, replicates the guards and timeouts. Unlike the par

replicator, the alt replicator causes no implicit copies of replicator variables.
To illustrate, the following piece of code monitors an array of N channels.

It waits at most one second for something to arrive and prints it:

#include <time.h>

extern int |ch[N];

alt (i = 0; i < N; i++) {

guard &ch[i]: /* guard channel */
printf("from %d: %d\n", i, |ch[i]);
break;

timeout CLOCKS_PER_SEC: /* wait max 1 sec */
printf("timed out\n");
break;

}

If more than one process is ready to communicate, which label control is
transferred to is implementation-defined. An implementation may choose to
test the guards in the order in which they occur in the source. It may ran-
domly choose one. The implementation could also choose to implement several
algorithms, selectable with a pragma, for example.
As with the par construct, the optional replicator causes a parser conflict.

Again, this is solved in favor of the replicator. This behavior is even less of a
problem for the alt than it is for the par. The only way an opening parenthesis
that follows the alt keyword does not constitute the start of the replicator is
in the following construct:

alt
(expression);

This construct causes the process to be terminally suspended, and the expres-
sion is never evaluated, making it a rather useless construct.

274 The Journal of C Language Translation – March, 1991

Conclusion

In order to add the CSP paradigm to ANSI C, the language was extended
with four keywords (par, alt, guard, and timeout). One operator (|) was
overloaded.
The parser conflicts introduced by the optional replicators on par and alt

are not seen as a big problem. Although it hurts a bit to add two conflicts
to the grammar, there’s no problem with real code, and the advantages of the
optional replicator (as opposed to mandatory replicators which would not cause
conflicts) far outweigh the minor disadvantages.
An implementation for the Inmos transputer family is currently in beta

testing. Experience with the CSP extensions so far indicates that they are
indeed intuitive to use and retain the ‘spirit of C’ rather well.

[Ed: The transputer implementation of the PACT Parallel C Compiler will
be the subject of another paper to appear in a future issue.]

Rob Kurver is the founder and president of PACT. He can be reached elec-
tronically at rob@pact.nl. Pact is a developer of transputer software develop-
ment systems.

∞

31. Electronic Survey Number 7

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an e-mail report on the results.)
The following questions were posed to 90 different people, with 23 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

Compiler Exit Status Codes

Some compilers terminate with a useful exit status code (either via exit or
return from main) indicating the number of compilation errors detected. How-
ever, this behavior is not required by Standard C. Does your compiler provide
this information? Given that this approach is probably the only way a validation
suite can reliably tell if a compilation failed, would you support requiring such
a feature in a future standard? What about making it a requirement for US (or
other) Government acceptance now?

• 13 – Compiler indicates none or at least one error
• 5 – Compiler returns error count
• 2 – Compiler returns one of a number of status values
• 1 – Compiler does not return a useful value
• 0 – Environment cannot supply a status code
• Comments:

1. Since (on some systems) the exit status is limited to 8 bits (and
perhaps even to 7), it is not possible to return the actual count of
errors. So, given that this count can be truncated, truncating it
down to 1 seems as sensible as any other maximum.

275

276 The Journal of C Language Translation – March, 1991

2. Some operating systems (e.g., VAX/VMS) assign certain bits in sta-
tus values special meanings so it is hard to use the status to indi-
cating the number of errors without changing those meanings. Stan-
dard C should be completely independent from any operating sys-
tems (host environment). If you try to add new meanings other than
the Boolean value to the status, it will be impossible to provide a
conforming implementation for some operating systems.

3. Our compiler exits with a status that depends on the severity of the
errors encountered, if any:

0 – no errors
1 – 1 or more warnings
2 – 1 or more errors
3 – fatal error

I’m not sure it’s possible to standardize this behavior on all plat-
forms, but it sure sounds like a good idea to me.

4. I take issue with the wording of your question. There are several ways
that a validation-suite-driver could tell if there was a compilation
failure. For instance, it could check to see if an output (object) file
had been generated. If not, there was probably an error. If a core
file was generated, there was probably an internal compiler error. If
diagnostics were issued, then there were probably errors.
The X3J11 committee went out of their way to avoid such operating
system biases in their formulation of the standard. I see no good
reason to undo their well-considered work for the sake of this one
small point, especially when the desired outcome (i.e., a way to tell
if the compiler found errors) is so easily obtainable in other ways.
[Ed: You use the word ‘probably’ three times which is exactly my
point. There is no way to be certain whether or not an error has
occurred. Whether something was written to stdout, stderr, or an
object file is no guaranteed measure of compilation success or failure.]

5. Our compilers return a count but I don’t think it can be mandated in
a language standard, because how errors are reported is an operating
system-dependent feature.

6. We return some, but not much, information through the exit status.
Zero means no errors, but there may have been any number of warn-
ings. Otherwise, at least one error occurred. In particular, the only
distinction—one not guaranteed to remain, either—is that a value of
10 means an ‘early exit’ (generally due to a signal) occurred while 2
means ‘with errors’ exit status.
Test suites, strictly speaking, need not know the number of errors,
just whether any diagnostics were issued. However, a warning is
just as valid a diagnostic for conformance purposes as an error. We

Electronic Survey Number 7 – Jaeschke 277

cannot modify the exit status to be anything other than zero when
only warnings are issued, since Makes would then fail ‘for no reason.’
The standard requires that the implementation define how diagnos-
tics are recognized. I see no particular value in mandating that the
exit status of the implementation be part of this recognition and
there are good reasons not to do so. First of all, the means to ac-
quire the exit status of a command is completely system dependent.
Second, the bandwidth of the value can be very narrow (only 1 bit
is necessary). Finally, since an implementation can issue diagnostics
on a whim (as long as they do not cause a valid program to be re-
jected) and since the severity of a required diagnostic is unspecified,
the requirement that “there must be at least one diagnostic issued”
is at best an ‘if’, not an ‘iff’ testable.
To determine whether our implementation issued a diagnostic, read
its standard error. If any characters were produced, there was at
least one diagnostic. If at all possible, they are issued one per line
and warnings are labeled as such.

7. This is clearly a quality of implementation issue. An exit code is not
functionality different from any other form of diagnostic so there is
little gain by insisting on an exit code in addition to a diagnostic.
Also, on some systems (VAX/VMS comes to mind) a non-zero exit
code is interpreted by the operating system and generates a system
level message. I think that there are probably too many operating
system problems that might make this an unrealistic imposition.
For DOS and UNIX implementations I have always preferred to use
some sort of error/no error exit code in addition to diagnostics. It’s
the main way to get Make to work properly.

8. This kind of thing is already a problem when interpreting the mean-
ing of system’s return value. I can’t see how it can be standardized.

9. The number of errors is seldom useful, especially because incorrect
error recovery often yields spurious additional error messages. Qual-
ity of implementation? Yes. Requirement? No.

10. Our product returns a status code indicating the severity of the most
severe message. This is common behavior for all our products that
run on our platforms.

11. Having the compiler return the number of errors essentially usurps
all non-negative possible return statuses. This is guaranteed to clash
with just about every status value definition made by any OS that
chooses to define such values.

12. A real problem occurs when a suite wants to cause an error. How do
you tell if the detected error is correct. For example, a compiler that
does not support prototypes will detect an error when the test was
trying to create an error for an illegal prototype. (On some compilers

278 The Journal of C Language Translation – March, 1991

both cases would get the same error message; syntax error.) We
solve this problem internally by comparing the compiler listing file
to a compare file, but making an OS-independent form of this will
be tricky.

Extended Characters in Identifiers

There are moves afoot at the ISO level to permit identifiers to include ‘letters’
from National character sets. For now, it would likely not include multibyte
characters. Any support or objections? (Basically, this would involve a compile-
time locale and any character testing True for isalpha in that locale would be
accepted, including such characters as ‘$’, if you so desired.)

1. No problem provided the standard specifies exactly which characters are
letters in which locales.

2. As long as there is some way to easily translate these foreign identifiers
back to (still unique) identifiers in English-based character sets, I see no
reason for objection.

3. [Ed: from Europe] Why? What would be gained by this? How about
translating the keywords into a different language? How about portabil-
ity? Sounds like I would not be able to take source written in a character
set (locale) that includes the ‘$’ and compile it on a system without this
compile-time locale. I take it a conforming program should not use these
characters, then? And if you do use them, you can be sure no other com-
piler will be able to compile your code? That’s even worse than pragmas!

4. This would reduce the portability of C code.

5. [Ed: From Japan] If we use special ‘letters’ from National character sets in
identifiers, our identifiers will become Japanese-oriented and most foreign
programmers will not understand their meanings. We want to maintain
our programs in world-wide source form. I and all of the technical stuff in
my company cannot find any necessity to use them and do not like to use
them. And very few of our customers requested us to support this feature
in our compilers. So I basically object to the feature but my objection is
not so strong. But, if ISO permits them, multibyte characters must be
included.

6. Am I required to support anything but the standard "C" locale? If not
then it seems they are defining a variety of extensions rather than changing
the standard.

7. I am a little surprised by this development. I recall that when we [X3J11]
deliberated over locales and character sets, the issue of identifiers was
specifically discussed and we felt that there was no interest in allowing

Electronic Survey Number 7 – Jaeschke 279

identifiers to include extensions in a quiet way. Any program using ex-
tended characters in identifiers is not portable. I am afraid that the
current language about conformance would be in danger because if Na-
tional characters in identifiers are considered locale-specific, and not im-
plementation-defined behavior, then a conforming program would not be
portable!
I have no specific objections to this sort of extension. I believe that we
could relax the rules about extensions to syntax (since this would involve
changing how a source is tokenized) so that added identifier characters
could be accepted without forcing a diagnostic as long as the added iden-
tifier characters did not include anything from the defined source charac-
ter set. (Identifiers including an ! character, for example, would require
a diagnostic.)

8. X3J11 has already answered this through an informal request. DEC asked
if ‘ñ’ could be part of an identifier. (They didn’t want to ask whether $
could be.) They presented a situation in which a strictly conforming
program could distinguish between an implementation that accepted ‘ñ’
as a letter and one that did not. (See paper 90-015.) The committee voted
23/1/1 that such an extension is valid as long as a diagnostic (warning) is
issued if the extension is used. This seems to cover this issue completely.

9. We effectively permit this, although without actually having a national
character set compile-time locale as such. However, it should be noted
that the multibyte people (the Japanese, in particular) are insistent that
this simple solution (which, to them, is to permit ‘a few’ national char-
acters) is rather insular, and that quite a lot of really interesting variable
names are still not possible, or rather, have to be written in katakana or
Romanised. I think if people in the West understood quite what we are
asking the Japanese to swallow, there would be more sympathy for their
position.

10. Some compilers have already permitted letters, including multibyte char-
acters, in identifiers, for several years (known to me for more than three
years). I believe that quality standards should permit quality implemen-
tations to do so. I have the impression that quality implementations are
already permitted to do so, though they might have to issue a warning
message. I support the idea that if a user specifies an option to allow
additional letters without a warning message, then STDC should not
have to be turned off.

11. What on earth do they propose to do to allow transportation of such
programs to ANSI C environments? If the answer is that they are willing
to sacrifice portability (and I see no other), then what they are writing
is an incompatible extension to ANSI C, and I for one will be sorry to
see it. Though I certainly understand the motivation I think worldwide
portability is even more important.

280 The Journal of C Language Translation – March, 1991

12. [Ed: from Scandinavia] In general, I believe the use of national characters
would be a welcome addition for many non-English speaking programming
shops.

13. It would not be difficult to add this support to our product. However,
how would the compile-time locale be specified by the user? [Ed: Perhaps
via a compiler option or maybe via conditionally compiled pragma.]

14. I would have no problem with a designation of some fixed group of char-
acters from the ‘upper half’ of ISO Latin 1 as ‘letters.’ I would have
severe problems if the set of letters changed from locale to locale, whether
by choosing different subsets or, even worse, by using National Replace-
ment Characters. Allowing this would make source code impossibly non-
transportable. At least in the case of trigraphs, I could (if I was willing
to put up with ugly code) write a program to ‘en-trigraph’ an arbitrary
source file; it could then be compiled everywhere. However, if I want to
edit a source file written using some strange NRCS, there is no general
way for me to rename variables to avoid problems—even ignoring the
impossible problems of modifying just one of a number of modules.

It is also worth keeping in mind that names known to the system linker
might have to be restricted to the current set of letters, just as today
they may have to be short and case-insensitive. This will add yet another
potential portability problem (since of course some system linkers will
accept names with these ‘letters’).

15. This has also come up in X3J16 in a different context. As a major supplier
to companies and universities in Europe we like this idea and it doesn’t
seem to be too difficult, but maybe that shows my naiveté.

Guidelines for Extensions

Both the ISO C group WG14 and the NCEG are inventing extensions to Stan-
dard C. And so too are numerous implementors. What guidelines should they
use regarding defining new tokens, headers, etc? Comment on the following
and/or add your own categories.

General Comments

1. All new operators, punctuators, and keywords should be compatible with
C++, to encourage the sharing of extensions to C and C++.

No new symbol should be a legal initial prefix of a sequence of ANSI C
tokens. For example, <- should not be a token, because a<-b could no
longer be tokenized properly.

Any new characters (e.g. @) should have trigraphs. New operators should
not run afoul of trigraphs.

Electronic Survey Number 7 – Jaeschke 281

2. Most important is to retain the ‘spirit of C.’ This is more than just having
simple rules for keywords, operators, etc. The extensions should have the
look and feel of C and should be natural to use. Needless to say, a con-
forming program should always be accepted, and the extensions must be
optional (i.e., can be turned off with a pragma or command-line switch).
I have added parallel extensions to our compiler and have thought a lot
about their potential impact.

3. New operators or new syntaxes can be anything that does not make any
existing construct potentially ambiguous.

4. I do not want new punctuators or operators added at this stage. Here
in Japan, NCEG is not yet so popular since the application of C in the
numerical area is not big. However, now that DSPs are getting popular
the requirement to program in C for DSPs is increasing. This may change
my attitude.

5. A language without extensions is a language without users. It is vital to
the evolution of C that extensions be implemented. However, it does not
serve the future users of the language to make extensions appear ugly,
awkward to use, or too different from the base language. In extending a
language your first duty is to the integrity of the language. Only second
should you try to preserve existing code, even though preserving existing
code is still very important. You should spend a lot of time designing an
extension, making sure that you can preserve as much integrity and as
much code as possible.

An example of a terrible way to extend C is the near/far keywords of
PC C compilers. These keywords were added around the time that const
and volatile were being added to ANSI C, but instead of using the same
syntactic position and analogous semantic interpretations, the keywords
have a completely different kind of binding. As a result, all PC C parsers
are more complicated and PC C users are more confused than they need to
be. The spelling of the keywords is not the problem, but the way in which
the syntax was butchered to give the new keywords their significance.

The only kind of extension that is unpleasant to me is one that changes
the behavior of a program silently. It is equivalent to the kind of integer
overflow problems one encounters when moving code between a 16-bit and
a 32-bit computer. It takes a lot of time to find those sorts of incompati-
bilities and fix the offending code.

6. I think the source program should #define STDC 1 or STDC 2 , etc.,
to specify which level it wants. An old programwants unsignedness preser-
vation. A current program wants to use various identifiers without wor-
rying about additional future namespace pollution. A new program will
want to use new features, and will take responsibility for avoiding new
namespace pollution.

282 The Journal of C Language Translation – March, 1991

7. [Ed: from a member of X3J16] Compatibility with C++, in a very broad
meaning of the word. Apart from obvious pitfalls like reusing a word
reserved in C++, I think it would be desirable to standardize a function-
ality that could be expressed well both in C and using the more advanced
structuring mechanisms of C++. Specifically, one should ensure that a
new C library could be nicely encapsulated by one or more C++ classes.

8. The Swiss NRC replaces the underscore (‘ ’) character. Because this
is a non-ANSI replacement, the ANSI C Standard does not include a
trigraph for ‘ ’. Furthermore, the current specification in the standard
does not allow an implementor to define a new trigraph. I believe an
implementor should be able to define a trigraph for ‘ ’ or anything else
that is appropriate to the environment in which their product is to be
used. However, no one, including myself, is very excited about trigraphs.

9. I am against any new feature that conflicts with C++ or could be done
with existing C++ constructs. These things would be very divisive of the
C/C++ community.

10. New operators, punctuators, and keywords should be used as though they
are a scarce resource and only when an acceptable syntax for the extension
cannot be designed without them.

New operators and punctuators

1. I’m not sure where to draw the line between overloading an existing op-
erator and defining a new one. It depends very much on the meaning and
function. No simple rules for this one.

2. WG14 should not produce any.

3. New tokens or syntax should avoid the kinds of problems that the template
syntax has caused in C++. They added < and > as paired angle brackets,
despite the knots it puts in the language. Preferably new operator and
punctuator tokens should avoid overloading existing ones.

4. Only if they: 1) match the ‘spirit of C’ (exponentiation doesn’t, for exam-
ple); 2) are spelled so that all existing conforming programs are unaffected;
and 3) (operators) sit well with the rest of C’s operators.

5. New operators should be invented only for new data types (e.g., complex
numbers).

6. Whenever possible overload existing operator tokens. Do not invent a
new operator token unless absolutely necessary. However, there are times
when a new token makes the most sense.

7. If you really need a lot of operators, there’s little choice but to use variable-
like operators such as sizeof.

Electronic Survey Number 7 – Jaeschke 283

8. [Ed: from a C++ implementor] Avoid new operators like the plague.
That’s what C++ and functions are for!

9. Probably a bad idea, short of full overloading. Extending existing syntax
should be enough for the burning issues (extended range integers, for
example, can be handled by generalizing bit-field syntax).

No new operators! C has enough operators. Isn’t the language large
enough? If there are new operators they should be ‘keyword type’ so that
national character set issues do not come up.

New keywords

1. Keep them short, but not too short. Lowercase only, of course. Possibly
prefix them with one or more underscores for things not used so often
(e.g., asm()), but preferable not for the ‘real’ extensions. [Ed: This is
not an unpopular view. Keywords specific to a particular implementation
might have such a prefix but keywords such as complex would not. One
hopes to extend the language to include these some day, so let’s make
them look like ‘real’ keywords now.]

2. New keywords should start and end with .

3. New keywords should start with .

4. Moving code into a new compiler system that has extended keywords
that conflict with user variables is rarely going to be an insurmountable
problem. The extended compiler will complain about every misuse of an
identifier, and development tools exist that can substitute one identifier
for another throughout a body of source.

5. This is always a sticky problem. The best keywords are those that are
less than 8 characters in length, and consist of only lowercase letters. Its
too bad that just about every sensible identifier like that has been used in
somebody’s code somewhere. I really dislike introducing keywords with
underbars or some such silliness. I would rather, however, use a good
keyword and break a few programs than use a bad keyword and preserve
most code.

Introducing a keyword with bad spelling as an extension for one imple-
mentation only creates trouble if the feature is ever to be incorporated
into the language as a universal feature. A standard keyword in the future
will almost certainly have to have a good spelling.

6. Generally, I am against these unless they can be introduced as ‘hidden.’
For example, you include the header xyz.h and this includes a #define
of the name xyz as a synonym for the hidden xyz keyword.

On the other hand, new keywords will naturally be added to an evolving
language. Since new keywords break programs in a loud, straightforward

284 The Journal of C Language Translation – March, 1991

manner (usually), I will not vote against allowing new keywords in the
next version of the standard, but that does not give NCEG license to
include new, unhidden keywords.

7. This one is difficult. One good approach is to invent a new header that
contains something like:

#define newname __protected_name

This means the name does not affect C code that does not include the
header. This is the approach used by NCEG for the new complex types.
However, there are times when the only sensible solution is a new key-
word, like fortran or asm. NCEG is also exploring the addition of a new
keyword restrict that is not protected by a unique header. I’m not con-
vinced that there can be hard and fast rules because it is too subjective.

8. With careful design, you can often avoid reserving new keywords. Few
people seem to remember that PL/I, with its long list of keywords (many
available in both full and abbreviated form) had no reserved words!

New headers vs. extending existing headers

• 8 – Allow enhancement of existing headers
• 9 – Create new headers
• Comments:

1. If the extension is really essential and it builds upon standard fea-
tures, add it to existing headers. If it’s something completely new
and different, use a new header which can be included only when
this feature is used.

2. You should avoid extending standard headers as much as possible
(just like the proposed Multibyte Support Extension [MSE]). [Ed:
At the last WG14 meeting in Copenhagen it was agreed that the MSE
should come in a separate header. So, rather than augment printf
and the like to handle wide characters, a new version of printf
would be defined, perhaps called wcprintf.]

3. As long as there is a documented way to disable extensions in the
standard headers, I see no problem with adding declarations to the
standard headers.

4. Generally, my principle is that new (not currently reserved) names
should not be added to existing standard headers whenever there is a
reasonable alternative. But, there are circumstances where the only
reasonable choice is to clash with the programmer’s name space. For

Electronic Survey Number 7 – Jaeschke 285

example, it would seem reasonable to me that the next version of
ANSI C could include popen and pclose in stdio.h even though
they are not currently reserved names.

5. OK to extend existing headers if the extensions concern the same
topic (i.e., new I/O related macros should be in stdio.h). New
header should be added only for new functionality.

6. It is definitely preferable to create new headers. However, there may
be cases where extending the existing headers makes more sense. For
instance, if there was enough sentiment for an isodigit function (is
octal digit) then it might make the most sense to extend ctype.h.

7. As long as new macros and typedefs are in the implementor’s name
space I think extensions which obviously ‘belong’ in an existing
header should go there. Where there is doubt, they should be in
new headers.

8. The programmer’s namespace is polluted enough. Don’t change
standard headers!

9. I believe restricting things to new headers only will result in a frag-
mented and confused collection of headers. Adding to headers will
cause some backwards incompatibility but, assuming the additions
are fairly limited, I believe the cost of updating code would be worth
it.

Standard pragmas

• 12 – Pragmas are, by definition, implementation-specific.
• 2 – OK to have standard pragmas.
• Comments:

1. I prefer to prefix every pragma with a vendor-specific prefix. How
about ‘standardizing’ this as an approach?

2. There should be no standard pragmas. A pragma has the disadvan-
tage of not being allowed within a macro. This is an arbitrary and
foolish limitation on whatever feature pragma will be used for. It is
better to define a new keyword or a new syntax that can be used in
macros, instead of a pragma.

3. I think that pragmas have become a safety valve where implementors
pile tons of extensions without much care to what they look like. The
effect has been to create a ‘Tower of Pragma Babel.’ You really do
have to conditionalize the inclusion of pragmas because there is no
reliable method for coding a pragma that is intended for just one or
a few implementations.

286 The Journal of C Language Translation – March, 1991

We cannot completely control how pragmas are implemented now.
There is already an enormous amount of variety in the field. It would
probably be appropriate to survey the field and publish the de facto
specifications of any common pragmas. At least then an implementor
can use compatible syntax for similar pragmas.
I am afraid the pragmas are the wild frontier of C, where the law
has little to say.

4. There are some things that work best with pragmas. However, there
are lots that just cannot be wrestled into the pragma strait jacket. If
there are some capabilities that are found to be necessary and fit the
pragma model well, I see no reason to disallow their standardization.
However, there must be a strong justification, and the syntax used
must not be such that it gets in the way of the most common pragma
forms.

5. A clearing-house is mostly a good idea. It would be a good idea
to hold votes in some reasonable manner, on suggested names and
meanings.

6. #pragma is too tightly tied to the preprocessor to get standard lin-
guistic semantics out it.

7. As long as pragmas are not conformance issues, I see no problem
with publishing a ‘standard’ set—if it can be agreed on.

8. If you want to know whether I think there should be some kind of
list of ‘widely-implemented’ pragmas, I’d say yes. Then again, the
whole pragma business was poorly thought out to begin with.

9. I think that standard should have said anything goes with pragmas
except that pragmas cannot change the planned and expected result
of a program. For example, a pragma that says a certain optimiza-
tion is legal because the programmer planned that the code should
be optimizable in that fashion and someone reading the code doesn’t
have to know what the pragma does because removing it will get the
same answer (a day later perhaps). On the other hand, a pragma
that says all ++ operators really mean increment by 2 instead of 1
(granted, it’s a silly example) might result in the program working
as planned by the programmer but if someone comes along and re-
moves it the answer will be different. By the way, I recently got a
copy of a C benchmark program and it had pragmas all through it.
This strikes me as very unfair.

∞

32. ANSI C Interpretations Report

Jim Brodie

Abstract

This is the third in an ongoing series of articles addressing the interpre-
tation activities of X3J11, the standards committee that developed the
ANSI Standard for C. In it I discuss a variety of interpretation requests
dealing with translation limits, valid expressions for accessing array ele-
ments, the compatibility of pointer and array declarations in prototypes,
the completion of incomplete types, and the relative priorities of con-
straint violations and undefined behavior.

In this article I continue to review C Standard interpretation requests being
addressed by X3J11. In particular, I discuss some of the requests that were
addressed at the September, 1990 meeting of X3J11 in Pleasanton, California.

Translation Limits

One request for interpretation asks about the translation limit related to the
minimum nesting that must be supported in a standard-conforming translator.
The minimum in question (stated in §2.2.4.1, Translation Limits), is:

15 nesting levels of compound statements, iteration control struc-
tures, and selection control structures

The writer points out that the term iteration control structure is not defined
in the Standard. In attempting to determine what was meant, he asks:

Is it:

1. a for loop header excluding its body, i.e., for (;;) or,

2. a for loop header plus its body, i.e., for (;;) {}?
Does it make a difference if the compound statement is a simple

statement without {}?

The response from the committee clarifies the issue:

287

288 The Journal of C Language Translation – March, 1991

The committee’s opinion was that the term iteration control struc-
ture is the same as iteration statement, which is defined by the stan-
dard. As a result, the statement that is the loop body is considered
part of the iteration control structure. Similarly, a selection control
structure is the same as a selection statement.
In discussing nesting levels, the consensus of the committee was

that the fragment

for (...)
for (...)

contained 2 nesting levels while the fragment

for (...) {
for (...)

contained 3 nesting levels (i.e. the introduction of the { implied
another nesting level).

Over the course of the development of the C Standard, there has been
considerable debate centered on the Translation Limits section. It has been
argued that the basic requirement of this section, which is that

The implementation shall be able to translate and execute at least
one program that contains at least one instance of every one of the
following limits:

didn’t give the Standard any “teeth.” At best they were “rubber teeth.” Some
of the specific limits and numbers in this section, such as ‘509 characters in a
logical source line,’ were clearly the result of committee compromises.
The requirements of the Translation Limits section give the translator de-

veloper considerable leeway in actually establishing the test case that must run
to prove compliance. This was, at least in part, a concession to the small en-
vironments where memory space limitations make very large programs difficult
to handle. It also, quite frankly, was a protection from devious developers of
Standards-compliance test suites.
One of the goals of the Translation Limits section was to help establish a

translator-developer mind-set where arbitrary limits on translation complexity
were avoided. In the end, despite the weak wording of the section, it seems
to have accomplished this goal. It is possible to build a translator that meets
the Translation Limit criteria, but that does not meet the intent of this section.
However, the work to do so is probably just as great as building a usable system
that complies with the spirit of the standard. In practice, the Translation
Limits section has helped establish limits so that reasonable-sized programs
can be written with a level of confidence that they will be acceptable to any
conforming translator.

ANSI C Interpretations Report – Brodie 289

Accessing Array Elements

One of the more interesting requests for interpretation handled at the meeting
had to do with the accessing of array elements. The interpretation request can
best be understood with the following example. Given the declarations:

typedef char row[5];
typedef row matrix[4];
matrix A;

is the assignment

A[1][7] = 0;

valid or will it result in undefined behavior? In particular, is the expression
A[1][7] valid. The second subscript in the expression clearly exceeds the size
limit for the row (that you would access with subscript values 0–4). However,
can the programmer portably count on the address, which exceeds the end of
the second row, to safely locate an element in the third row?
Note that the use of the typedefs is simply to emphasize the multi-dimen-

sional nature of A. The same question arises after the more direct declaration

char A[4][5];

The issue of whether A[1][7] is valid is of importance to interpreters that
want to diagnose array-bound violations for their customers. Many interpreter
developers and their customers feel that the above assignment statement prob-
ably indicates a programmer’s misunderstanding of the structure of the array.
Since this is indicative of an error, they want a diagnostic to warn them.
Others take the position that there is a long history in C of writing ex-

pressions that access multi-dimensional arrays as if they were single-dimension
arrays. In particular, they point out the long-standing practice of initializ-
ing multiply-dimensioned arrays by walking them as if they were long single-
dimension arrays.
If the assignment is valid then the interpreters cannot issue a diagnostic.

(They could, however, issue a non-diagnostic message that warns of this.) If
the behavior is undefined, then any translator behavior is acceptable, including
issuing a diagnostic or, in the case of a vectorizing compiler, assume no overlap
when one actually exists.
When we try to answer the question of the validity of A[1][7], we start

with the fact that array subscripting is actually defined in terms of pointer
arithmetic. In §3.3.2.1, Array Subscripting, the subscript operator [] is defined
so that the expression E1[E2] is identical to (*(E1+(E2))).
Perhaps we can determine the validity of the subscript operation by looking

at the corresponding pointer expression and the limitations that are placed

290 The Journal of C Language Translation – March, 1991

on it. The Standard establishes limitations on what range of values can be
safely generated by arithmetic on a pointer. In the semantics portion of §3.3.6,
Additive Operators, a discussion of pointer arithmetic includes the statement:

If both the pointer operand and the results [of the addition of the
pointer and the integer] point to elements of the same array object,
or one past the last element of the array object, the evaluation shall
not produce an overflow; otherwise, the behavior is undefined.

We’ve taken a step towards the answer, but now the key questions become
“What array object are we referring to in A[1][7]?” And, “Is the subscript
operation causing a pointer to be generated that points more than one past the
end of that array object?”
Lets take a look at the conceptual layout of the array A as it was defined

above.

A

A[3]

A[2]

A[1]

A[0]

A[3][0]

A[2][0]

A[1][0]

A[0][0]

A[3][1]

A[2][1]

A[1][1]

A[0][1]

A[3][2]

A[2][2]

A[1][2]

A[0][2]

A[3][3]

A[2][3]

A[1][3]

A[0][3]

A[3][4]

A[2][4]

A[1][4]

A[0][4]

In an array such as A, we are actually dealing with 3 different types of
objects. At the outer level, we have one array object (designated by A). It has
4 elements. At the first inner level, we have one of these 4 elements (designated
by A[i]). It, in turn, has 5 elements. At the innermost level, we have one
of these 5 elements (designated by A[i][j]). It is an object of type char.
Therefore, we have 25 objects in all (1 + 4 + 20). As to which of these objects
is being referenced in A[1][7], the answer comes from looking at the layout of
the arrays and the expressions that access them.
In C, there are no true multi-dimensioned arrays—there are only arrays

whose elements may be other arrays (i.e., arrays of arrays). Therefore, when
we evaluate the expression, A[1][7], we first evaluate A[1]. In the expression
A[1], we are referencing the encompassing array and selecting the second el-
ement of that array (which is a row-array object). The expression A[1] is a
pointer to the second row array object in the encompassing array. It has type
pointer to array of 5 char. The second computation called for in the evalua-
tion of A[1][7] takes this pointer to row type pointer and the subscript 7 and
calculates the address of the underlying char element. It is in this second calcu-
lation that we run into trouble with the above limitations, from §3.3.6, Additive

ANSI C Interpretations Report – Brodie 291

Operators, on the original pointer and the pointer resulting from arithmetic op-
eration. In the second calculation, the object that is being referenced by the
pointer is the row, not the entire encompassing array. The range of the object
is only 5 items long, so an offset of 7 is more than one beyond the end of that
object.
In the reply to the request for Interpretation X3J11 wrote:

For an array of arrays, the permitted pointer arithmetic in §3.3.6,
Semantics, [the relevant section is excerpted above] is to be under-
stood by interpreting the use of the object as denoting the specific
object determined directly by the pointer’s type and value, not other
objects related to that one by contiguity.

Therefore, the result of the computation involving the [7] subscript violates
the limitation from §3.3.6, Additive Operators, that the original and resulting
pointers must point to the same array.
The behavior of the expression is, therefore, undefined and interpreters are

free to issue a diagnostic. Since this falls into the category of undefined behavior,
translators are free to continue to ascribe whatever meaning they wish, including
the obvious meaning of the third element of the next row.

Compatible Prototypes

Another request asked whether the following prototypes are compatible:

int f(int a[4]);
int f(int a[5]);
int f(int *a);

This question deals with the issue of whether the conversion of array typed
parameters to pointers in function prototypes occurs before or after compati-
bility checks are performed.
If the compatibility checks are performed before the conversions, all three of

the above prototypes would be incompatible. This is because the compatibility
rule for arrays, as stated in the Semantics portion of §3.5.4.2, Array Declarators:

For two array types to be compatible, both shall have compatible
element types, and if both size specifiers are present, they shall have
the same value.

In this case, the arrays have different size specifiers.
For pointers the compatibility check is stated in the Semantics portion of

§3.5.4.1, Pointer Declarators:

For two pointer types to be compatible, both shall be identically
qualified and both shall be pointers to compatible types.

292 The Journal of C Language Translation – March, 1991

There is no statement for compatibility between a pointer and an array type.
The automatic conversion, in the function parameter context, of a decla-

ration with an array type into a declaration with a pointer type is defined in
§3.7.1, Function Definitions:

A declaration of a parameter as array of type shall be adjusted to
pointer to type.

The paragraph that addresses the issue of compatibility of parameter lists
in function declarations is in §3.5.4.3, Function Declarators (Including Proto-
types). It starts with:

For two function types to be compatible, both shall specify com-
patible return types. Moreover, the parameter type lists, if both
are present, shall agree in the number of parameters and in use of
ellipsis terminator; corresponding parameters shall have compatible
types.

The paragraph goes on to describe several special cases where old style
function declarations (i.e., those without argument type information) are en-
countered. The paragraph then ends with the parenthetical statement that
describes the timing for the parameter conversion rules.

(For each parameter declared with function or array type, its type
for these comparisons is the one that results from conversion to a
pointer type, as in §3.7.1. For each parameter declared with qualified
type, its type for these comparisons is the unqualified version of its
declared type.)

X3J11 felt it was clear that this parenthetical comment applied to the en-
tire paragraph (including the case where complete prototypes are provided).
Since the statement clearly states that the conversions are applied before the
comparison takes place, the committee took the position that the above three
prototype declarations are compatible.
Remember that the conversion of array-typed declarations to pointer-typed

declarations is a special feature of declarations that occur in function parameter
lists.
If the following three declarations were found in a file, at file scope

int a[4];
int a[5];
int *a;

they would be considered incompatible. In §3.1.2.6, Compatible Type and
Composite Type, it is stated that:

All declarations that refer to the same object or function shall have
compatible type, otherwise, the behavior is undefined.

ANSI C Interpretations Report – Brodie 293

Since the behavior is undefined in this case, no diagnostics need to be gen-
erated by the translator.

Incomplete Structure Types

The next interpretation deals with incomplete structures. The specific question
is whether the following translation unit is valid:

struct foo x;
struct foo {int i;};

In particular, the requestor wanted to know if the first declaration, that
leaves the contents of struct foo undefined and declares an object with that
incomplete type, was valid.
The committee’s response is that the construct is completely valid.
This falls into the same category as incomplete array types, which are prob-

ably more common. For example, in

int arr[];
int arr[17];

the first declaration declares arr as an array of unknown size. The second
declaration then completes the information on the type of arr. The type of
arr goes from being an incomplete type to being an object type.
In a similar way, the second structure declaration in the interpretation re-

quest

struct foo {int i;};

provides the information to complete the incomplete structure type associated
with the tag foo and (indirectly) the object x. This is described in §3.1.2.5,
Types:

... A structure or union type of unknown content (as described in
§3.6.2.3) is an incomplete type. It is completed, for all declarations
of that type, by declaring the same structure or union tag with its
defining content later in the same scope.

Typedefs and Incomplete Types

Another somewhat related question was asked. Given the following:

typedef int table[];
table one = {1};
table two = {1, 2};

294 The Journal of C Language Translation – March, 1991

the writer asked several questions. First, he asks “Is the typedef of an incom-
plete type valid?” He then asks “How is the incomplete type completed given
the two differing declarations that follow? Is the type completed to have a size
of 1 or a size of 2?”
To answer the question of incomplete types in typedefs, we can look at the

definitions for typedefs in §3.5.6, Type Definitions:
In a declaration whose storage-class specifier is typedef, each declara-
tor defines an identifier to be a typedef name that specifies the type
specified for the identifier in the way described in §3.5.4. A typedef
declaration does not introduce a new type, only a synonym for the
type so specified...

Since there is no limitation on the kinds of types that can be specified,
typedefs that specify an incomplete type (which is a perfectly valid kind of
type) must be allowed.
This leads us to the second question about how the incomplete type is

completed. The answer to this question is found in §3.1.2.5, Types:
An array type of unknown size is an incomplete type. It is com-
pleted, for an identifier of that type, by specifying the size in a later
declaration (with internal or external linkage).

The emphasis here is on the clause “for an identifier of that type.” This
means that the incomplete type is completed for the individual names. The
name one has an array type with size 1 (its type is completed based upon the
initializer). The name two has an array type with size 2 (again based on the
initializer). The typedef name table remains an incomplete type (it still has
no size associated with it). Therefore an expression such as sizeof(table) is
invalid, even after the declarations of the arrays one and two, since you cannot
take the size of an incomplete type.

Constraints and Undefined Behavior

The next requests cites the following two references.
In §3.1.2.6, Compatible Type and Composite Type, the following statement

is made:

All declarations that refer to the same object or function shall have
compatible type; otherwise, the behavior is undefined.

In the Constraint section of §3.5, Declarations, it is stated:
All declarations in the same scope that refer to the same object or
function shall specify compatible types.

The writer then asks:

ANSI C Interpretations Report – Brodie 295

The constructs covered by these sentences overlap. The latter is a
constraint while the former is undefined behavior. In the overlap-
ping case who wins?

After some discussion X3J11 decided that the constraint wins. In its re-
sponse, the committee references the following paragraph from §2.1.1.4, Diag-
nostics:

A conforming implementation shall produce at least one diagnostic
message (identified in an implementation-defined manner) for ev-
ery translation unit that contains a violation of any syntax rule or
constraint.

The committee response notes:

When a construct violates a constraint, §2.1.1.3 page 7, lines 15–17,
requires a diagnostic, with no exceptions described. That a partic-
ular construct might also be in the category of undefined behavior
does not release a conforming implementation from issuing a diag-
nostic.

This interpretation can be generalized to handle any case where a general
statement holds that a group of constructs are undefined, but in certain special-
ized cases, within this broader scope, a specific diagnostic must be generated.

Jim Brodie is the convenor and Chairman of the ANSI C standards commit-
tee, X3J11. He is a Senior Staff Engineer at Honeywell in Phoenix, Arizona. He
has coauthored books with P.J. Plauger and Tom Plum and is the Standards
Editor for The Journal of C Language Translation. Jim can be reached at (602)
863-5462 or uunet!aussie!jimb.

∞

33. Initializers and Finalizers: A Proposed
C Extension

Jerrold Leichter
LRW Systems

and
Columbia University

Abstract

A running program goes through a number of predictable operational
phases. Often, it is important to a programmer to gain control of execu-
tion at the transitions between these phases.

The most elementary transitions, common to all programs, are startup
and shutdown. We discuss the fact that C currently does not provide
the programmer with adequate techniques for gaining control at these
transitions, and propose extensions to provide the necessary mechanisms.

Introduction

A C program begins execution at its main function. Before main begins exe-
cuting, standard input, output, and error files are opened. After all user code
terminates, whether by a return from main or a call to exit, any remaining data
buffered for these (or other) files is flushed and the files are properly closed.
A familiar interface. And yet there is a subtlety hidden here which can be

seen immediately if one considers duplicating this interface within the standard
hosted C environment. No explicit calls are coded into main to open the stan-
dard files, yet there they are. Similarly, no explicit calls flush and close the
standard files.
Many mechanisms can be used to provide such an interface. All have limi-

tations and costs that the standard libraries avoid. We propose that the C lan-
guage be extended to provide a better interface.

Why Have Initializers and Finalizers?

Suppose we wish to write a natural-language database package. The following
template outlines such a package:

296

Initializers and Finalizers: A Proposed C Extension – Leichter 297

/*
* Simple database package. Environment variable DB_LANGUAGE
* controls how various character combinations are treated.
*/

DB_setup()
{ static language_def;

language = getenv("DB_LANGUAGE");
. . . initialize language def . . .

}

DB_open(. . .) { . . . }
DB_close(. . .) { . . . }
DB_lookup(. . .) { . . . }
DB_getnext(. . .) { . . . }
DB_update(. . .) { . . . }

Other routines . . .

DB_finish()
{

for each open database file
DB_close(file);

}

The DB getnext function is intended to access the next record in alphabet-
ical order. ‘Alphabetical order’ depends on the particular language—each has
its own rules for dealing with accented letters and even some pairs of letters.
The appropriate rules are set up by the DB setup function. In order to ensure
consistency, it is essential that all opened databases be properly closed. The
DB finish function ensures this by calling DB close for each open database.
We call a function like DB setup, which must be called before any other func-

tion in its package, an initializer. Conversely, we call a function like DB finish,
which must be called after all usage of the database is complete, a finalizer.

Context For the Problem

If our database package were part of a single program written by a small group
of programmers, initialization and finalization would not be a major issue. The
program would call DB setup early on in main, and would make sure to call
DB finish before exiting. Many programs today, however, are written under
very different circumstances. They are written by large numbers of program-
mers and incorporate standardized modules. Suppose that the database pack-
age were part of a pre-written library. It would then no longer be possible to

298 The Journal of C Language Translation – March, 1991

just assume that the appropriate calls to the initializers and finalizers would
be present. Rather, if access to the database is to be reliable, the module’s
initializers and finalizers, and the rules for when they are to be called, would
have to become part of the module’s documented interface. There are several
problems with this obvious approach, however:

• It makes the interface larger, and increases the degree of coupling across
the interface. Use of the module becomes more complex—there is more
to learn about it, and there are additional ways in which the client of the
module can cause it to fail.

• The nature of the additional entries in the interface is inappropriate. The
initializers and finalizers are internal to the module, and have no particular
meaning to the client of the module. They make visible to the client an
unpleasant bit of internal mechanism that it would better for the module
to keep private.

• Client-invoked initializers and finalizers cannot be added gracefully to
an existing interface. Suppose that an earlier version of the database
module supported only English databases. It would thus have no need to
calculate language-specific ordering rules, and presumably no need for an
initializer. Clients coded to the original interface would include no call to
an initializer. Now we add support for additional languages, and with it
the need for such a call. Suddenly, all existing code needs to be changed,
at an unacceptable cost if the module has been popular and is widely
used.

So, we approach the issue of initializers from the point of view of developers
and users of modules. We assume that modules are widely used, so that in-
compatible changes—changes that require changes to existing clients—are very
costly. But compatible changes are a fact of life. Conversely, we assume that
any client of a module is likely a client of any number of other modules, and
that we as developers of one module can know little about either our clients or
any other modules they may use.
Given these assumptions, we can list a number of goals for an initialization

and finalization facility:

1. Each module can declare its own initializers and finalizers;

2. Separate modules need not be aware of each others’ initializers and finaliz-
ers. In particular, the client need not be aware of any module’s initializers
or finalizers.

3. The overhead for use of initializers and finalizers, especially for modules
that don’t need them, should be minimal.

Goals 1 and 2 simply state that the facility should be consistent with the
module structure defined by the language. Goal 3 should be viewed in relative

Initializers and Finalizers: A Proposed C Extension – Leichter 299

terms—the cost of the facility must be consistent with the cost of other things
in the language. Since C is a low-level language, designed for the production
of efficient code, an initializer and finalizer facility for use with it must be very
efficient.

Implementation Techniques for Initializers

There are several ways to implement initializers.

Client-called Entries
This is the approach we discussed and rejected in the previous section.
While it satisfies goals 1 and 3, it does poorly on goal 2.

Special-case Code
This is the approach taken by most language run-time libraries. For exam-
ple, in most UNIX implementations, the cc command will link executables
in such a way that the actual entry point will be not at main, but in the
support code, which will initialize the process and then call main. Other
compilers—VAX C on VMS, for example—generate special code for a
function called main. C++, which provides its own powerful initializer
facility, uses a combination of techniques to allow its own run-time code
to gain control at the beginning of execution, so that it can in turn invoke
the programmer’s initialization code.

This approach can satisfy goals 2 and 3, but in and of itself—that is,
without additional linguistic and support mechanisms such as those in
C++—cannot deal with goal 1.

Per-Entry Initialization
In this approach, each entry point accessible to a client is modified to
call a one-time initialization routine. Logically, the initialization routine
itself checks to see whether it has been called before and simply returns
if so. In practice, it is generally worth it to avoid the extra function call
overhead by testing the ‘already initialized’ flag before making the call,
resulting in functions of the following form:

DB_open(. . .)
{

if (!initialized)
DB_setup();

. . .
}

This approach is probably the most widely used. It satisfies goals 1 and 2
easily. Often, it can also satisfy goal 3. This is not always the case, how-
ever. Many compilers today can in-line expand function calls. This makes

300 The Journal of C Language Translation – March, 1991

it practical to use a function call interface for operations that do very lit-
tle computation—simply providing access to a module-private value, for
example. Adding a test to every such call can have a significant effect
on its cost. It will certainly significantly increase the size of the in-line
expanded code for simple functions.

Beyond the possibly minor cost, this approach can be a rich source of
maintenance bugs. Most modules have internal functions not visible to
clients. Since such code could only be reached after a call to a client-
accessible routine, it is common to leave off the initialization test, since
it is certain to fail. However, as modules evolve, it’s common for once-
internal routines to be made visible to clients. Should this happen without
the initialization check code being added, a subtle bug will have been
introduced into the code. It will only be triggered should the newly-
visible routine be the first one called.

Implementation Techniques for Finalizers

While per-entry initialization is not ideal, it at least does the job reasonably
well, and can be implemented without any special support from the compiler
or run-time code. No analogous technique exists for finalization. The only way
that the transition to ‘program completion’ takes place is by a return from
main or a call to exit, both of which result in execution of code over which
neither client nor module author has any control. So the only viable approach
without special support is through client-called finalization entries. In the case
of initializers, we at least know that there is only one place—at the top of
main—where the appropriate calls must be placed. Termination, however, can
occur in many different places within the code. It is extremely rare to see
code that reliably makes explicit calls to finalizers, even in the face of errors.
This is particularly unfortunate since robust code often needs a reliable way to
do finalization. It must flush buffers, close out files, restore terminals to their
initial settings, and generally clean up after itself.
Since user-written techniques are unavailable and few languages have chosen

to provide appropriate support, some operating systems have taken the task
onto themselves. For example, both DEC’s VMS and Apollo’s Aegis provide
what they call ‘exit handlers,’ routines that the operating system will call upon
termination of the image. Unfortunately, such extra-linguistic mechanisms are
not portable.4

The ANSI C committee also recognized the finalization problem and defined
the atexit library function. atexit supports a simple version of exit handlers.
Unfortunately, it was specified to support only a fixed (and relatively small)
number of registered finalizers. This makes the use of atexit by a module in-

4VMS also provides a little-known initializer facility through the LIB$INITIALIZE psect.
We are unaware of any other operating system initialization facility, although some probably
exist.

Initializers and Finalizers: A Proposed C Extension – Leichter 301

tended for widespread use problematical—modules that use up sparse resources
are not good neighbors. (Note that while it is perfectly possible to register a
single finalizer with atexit and then have it in turn register any number of
additional routines that it will call, this doesn’t solve the problem: We can’t
guarantee that other modules that need finalizers will use our special registra-
tion procedure rather than calling atexit themselves. It’s also worth noting
that this problem could have been avoided by examining existing art. Rather
than requiring atexit to provide the necessary memory, let the caller create,
whether as a static variable or in malloced memory, a defined struct with
sufficient space for a pointer to the finalization function and an additional ob-
ject pointer to be used by atexit to maintain a linked list of finalizers. VMS
does things this way, for example.)
It’s interesting to note in passing that a finalization facility based on an

explicit call, such as atexit, immediately creates its own need for an initializa-
tion facility. After all, the call to atexit must be made exactly once as part of
package startup. Where is that call to be placed? Obviously, in an initializer!

An Alternative Approach

As an experiment, we implemented an initialization and finalization facility as
part of the DECUS C5 system a number of years ago. At the time, DECUS C
already provided a simple finalization facility. The run-time system contained,
within its ‘end of execution’ code, a call to a function named wrapup. The
system library contained a dummy version of wrapup, which simply returned. A
program could provide its own function which the linker would use in preference
to the one in the system library. In the interests of compatibility, we retained
support for wrapup. As far as we are aware, this facility remain in the DECUS C
implementation. The following is extracted from the DECUS C documentation.
It defines this facility as it is seen by a programmer:

Name: initia.h – Specify Initializers and Finalizers

#include <initia.h>

INITIAL
{ initial-code-block };
FINAL
{ final-code-block };

Description: The macros defined in this module provide a facility for module-
specific initialization and finalization code. The code in the initial-code-
block is called as a normal C function before main() is called; the final-
code-block is called on exit, just after wrapup().

5DECUS is the international DEC Users Society and DECUS C is a popular PDP-11-based
C compiler made available to the public through the DECUS library.

302 The Journal of C Language Translation – March, 1991

Neither call passes any arguments.

Any number of modules—separately compiled files—in an image may in-
dependently declare initializers or finalizers; all of them will be called at
startup or exit. However, it is impossible to predict what order the calls
will be made in, and programs should not rely on any particular ordering.

A typical use of initializers and finalizers is the following: Suppose you
have a package that supports access to some on-disk data base. The file
containing the data base must be opened before any operations on it can
take place, and it should be closed when the program is finished.

The solution using these macros is straightforward. The defining module
includes the calls:

INITIAL
{ open-the-data-base };

FINAL
{ flush-buffers-and-close-the-data-base };

The DECUS C Implementation

The implementation of our initializer and finalizer facility is simple. The output
of the DECUS C compiler is linked by one of two programs, the RT-11 linker or
the RSX task builder, both of which support the ability to declare large numbers
of psects, or program sections. A psect can be viewed as a separate link-time
memory allocation domain. Compilers place code and data in psects, beginning
at address 0 relative to the psect. The linker or task builder collects all code or
data placed in each psect and then places all psects within the address space
of the program. Psects come in two forms. The form of interest to us is the
concatenated psect, used for code and global data. Such psects are built by
concatenating the contributions from various inputs to the linking program.
DECUS C contains an extension to the C language that allows the program-

mer to control which psects the compiler will use. The INITIAL and FINAL
macros expand to two things: the names of static functions, whose bodies
are the corresponding INITIAL or FINAL blocks; and declarations for pointer
variables in a pair of special psects, initialized to the addresses of these static
functions. We added code to the C run-time startup code that scans through
the psect containing initializer addresses, calling each routine pointed to. Sim-
ilarly, the C run-time exit code scans the list of finalizer addresses. Note that
no code need be inserted into the code the programmer has provided. The
overhead for this facility is minimal in both time and space.
In fact, almost no code had to be inserted into the C run-time library to

support this facility either. The C run-time code already contained calls to
routines that played essentially the role of built-in initializers and finalizers.
Our implementation simply generalized this code somewhat. As a result, the

Initializers and Finalizers: A Proposed C Extension – Leichter 303

built-in code is called using the same mechanism as programmer’s initializers
and finalizers. Careful control of the order of evaluation guarantees that the
system initializers are called before the programmer’s, while the system finalizers
are called after the programmer’s. wrapup is implicitly declared as the first
programmer finalizer.
This implementation easily meets all three of our goals.

Discussion

To our three goals, it is possible to add two others. The order in which initializ-
ers and finalizers are called should be specifiable. And initializers and finalizers
should only be called if their module is actually used. Our implementation
satisfies neither. (We don’t believe they are particularly important, however.)

Specifiable Order

The main reason that a programmer might want to specify the order in which
initializers and finalizers are invoked is that some modules depend on others
within their own initializers and finalizers. For example, we require that the
standard I/O functions be available to initializers and finalizers, thus implicitly
requiring that their initialization be completed before the programmer’s initial-
izers are invoked, and their finalization after programmer finalizers complete.
This is fine as a special case, but in general it’s a morass. The dependency graph
among modules may be arbitrarily complex. In fact, it may contain loops, in
which case no workable ordering exists. Any attempt at a general solution is
likely to be complex, and we question the utility gained. Perhaps the simplest
approach would be give initializer and finalizer blocks explicit names, so that
they could be called explicitly from other initializers and finalizers should the
need arise.

Execution Only On Use

Per-entry initialization has the interesting property that if the client never calls
any entry in a module during a particular run, the module’s initializer will never
run. If the module sets up its finalizers in its initializers, they will not run in
such circumstances either. For some programs, this can be a benefit. Balanced
against it, however, is a cost. Since initialization may not take place until some
arbitrary point during program execution, any errors during initialization will
also be delayed until later. This may make the program harder to debug, and
can introduce unexpected dependencies. An interesting example can be seen in
many implementations—including both UNIX and VMS—of the standard I/O
package. While much initialization takes place at program startup, some is
delayed until the first operation on a file. This includes, in particular, allocation
of memory for buffers. Programs that require tight control of memory allocation

304 The Journal of C Language Translation – March, 1991

can run into problems if the standard I/O package allocates memory at some
unexpected time.
Execution only on use does have its advantages, and some other languages

provide direct support for it. Mesa, for example, will invoke user initialization
code at the first call to any entry point in a package. The implementation uses
an ‘initialized already’ flag. However, it is the compiler’s responsibility to insert
the appropriate tests and calls.

Jerrold Leichter recently received his doctorate from Yale University. He is
the founder of LRW Systems, a company developing state-of-the-art software
for distributed and parallel processing. He can be reached electronically as
leichter@lrw.com; at 24 Old Orchard Lane, Stamford, CT 06903; or by phoning
(203) 329 0921.

∞

34. Cray C and Fortran Interlanguage Communication

Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121

Abstract

This paper describes the interlanguage programming conventions between
C and Fortran for programs executing on Cray Research, Inc. computer
systems. The emphasis is on recognizing a common environment that
minimizes the need for extensions. The execution environment, inter-
language data mapping, and function calling sequences are examined to
identify those areas that are common enough to avoid explicit interfaces,
and to identify where an explicit interface mechanism is required. This
examination led Cray Research to choose their Fortran conventions as
the interlanguage communication conventions. C and Fortran can easily
communicate with each other using these conventions.

Introduction

There is no industry-wide standard for interlanguage communication. The ab-
sence of such a standard is an impediment to transferring data and flow of
control between separately compiled modules written in different languages.
This paper focuses on interlanguage communication between Cray Research’s

Fortran compiler (CFT77) and Standard C Compiler (SCC), the primary com-
pilers used on Cray Research computer systems. There is also some discussion
about the requirements imposed by the ANSI standards for Fortran-77 and C.
The solutions offered here are intended to provide insight into the general

problems that multilingual implementations face. And even though the process
of standardizing interlanguage communication is very desirable, it is probably
not attainable.
Throughout, I generally use upper-case to represent Fortran names and

keywords and lower-case to represent C names and keywords.

The Environment

A comparison of SCC and CFT77 shows that there is an intersection of the
two languages where interlanguage communication is relatively straightforward.

305

306 The Journal of C Language Translation – March, 1991

Both languages represent external names in a straightforward fashion. There
is no attempt to prepend or append special characters (like $ or) to external
names.
Both languages pass arguments in the order that they are specified, in a

calling list that is on the stack. A header word in the calling list provides the
number of words in the calling list and the source line number of the call site.
The prologue and epilogue sequences are the same between the two languages.
The calling sequence is also the same with the calling routine preserving some
of the current invocation environment, and the called routine allocating stack
space and saving the rest of the calling routine’s environment. Function return
values are:

• Copied to a memory location specified by a special argument if the return
type is struct, union, or CHARACTER

• Returned in two 64-bit registers if the return type is float complex,
double complex, long double, COMPLEX, or DOUBLE PRECISION

• Returned in a single 64-bit register otherwise

This common environment constitutes a large part of the interlanguage
communication conventions. Another part of the intersection is the language-
independent data types where there is a straightforward mapping from one
language to the other.
The languages diverge, however, because of language-specific data types,

different global name spaces, and language-specific calling conventions. A close
examination of these areas resulted in our choosing the CFT77 calling conven-
tions as the interlanguage conventions. This puts the burden of communication
on the C programmer to conform to the Fortran conventions. Furthermore, it
is never necessary to modify any Fortran source code to communicate between
the two languages. The following guidelines should be kept in mind when at-
tempting communication between SCC and CFT77:

• Fortran names are upper-case while C names are mixed case.
• Fortran uses the call-by-reference convention while C uses call-by-value.
• Multidimensional Fortran arrays are stored column-wise, while multidi-
mensional C arrays are stored row-wise.

• Fortran data declared to be type CHARACTER is incompatible with C data
declared to be either char or char *.

• Fortran data declared to be type LOGICAL is not necessarily compatible
with C’s values for true and false.

The primary goal of the Cray Research interlanguage communication con-
ventions is to address the issues outlined here.

Cray C and Fortran Interlanguage Communication – MacDonald 307

Language-Independent Data Types

The following data types are considered to be language-independent:

• 64-bit signed integers
• Single-precision floating-point numbers
• Double-precision floating-point numbers
• Complex numbers
• Single dimensioned arrays of the aforementioned types
• Addresses of word-aligned data
• Addresses of functions and procedures
It is straightforward to pass arguments and return scalar values that have

these language-independent types. The scalar types map exactly, while the
single dimensioned arrays differ only in their bases. C provides only zero-based
arrays. Fortran arrays, on the other hand, are one-based by default but can
be declared to have any base. For example, the following two declarations are
equivalent.

INTEGER A(0:9) int A[10]

Another issue raised by these conventions is compatible data mapping be-
tween the languages. For example, the mapping between Fortran and C types
is as follows:

Fortran C
INTEGER int, long
REAL float, double
DOUBLE PRECISION long double
COMPLEX float complex, double complex
POINTER all word-aligned pointers

Clearly other implementations have chosen different interlanguage data map-
pings. The data mappings specified here were chosen because they mapped very
nicely onto the underlying machine architectures. Other implementations make
different decisions for similar reasons. For instance, on many implementations
it is natural to map type float onto type REAL, and type double onto type
DOUBLE PRECISION. This is one of the issues that makes it very difficult to
standardize interlanguage communication.
SCC supports two complex types that map onto the same underlying rep-

resentation. These are additional arithmetic types that are not part of the

308 The Journal of C Language Translation – March, 1991

ANSI C standard. (As far as I am aware, SCC is the only C compiler that
supports such an extension.)
Fortran-77 allows formal parameters to be declared as variable-length arrays

(dummy arrays). This is part of the ANSI standard. The CFT77 implemen-
tation also allows local arrays to be declared as variable-length arrays. These
are called automatic arrays. Although neither of these features is part of the
ANSI C standard, we have extended SCC to include both of these features.
Our implementation is based largely on the GNU C implementation. There-
fore, single-dimensioned variable-length arrays are considered to be language-
independent data types.
The CFT77 implementation supports a POINTER type that is a Cray Re-

search extension to the Fortran-77 standard. Although this is important for
our needs, it is a questionable candidate for standardization.

Language-Dependent Data Types

Some data types require an implicit or explicit interface to convert their format
to the format required by the interlanguage conventions. The following are the
language-dependent data types: character, logical, and multidimensional arrays.
Fortran CHARACTER addresses contain two pieces of information, a character

address and a length. For this reason they are often referred to as character
descriptors. C character pointers just contain a character address and, by con-
vention, the character string is terminated with a zero byte. Interface functions
are provided that convert one to the other. Due to the underlying implementa-
tion, it is possible to pass arrays of character strings between CFT77 and SCC,
although not in an obvious way. (An example at the end of this paper shows
the actual method.)
CFT77’s LOGICAL values are not necessarily compatible with C’s notion of

true and false. Because Fortran compilers were developed on our architectures
before any C compilers, different values were chosen for true and false. Fortran-
77 does not specify the exact values for .TRUE. and .FALSE. in contrast to C
which dictates that false is zero and true in nonzero. New architectures allow us
to eliminate this difference, but as long as the original architecture is supported
this difference will exist. Again interface functions are needed to convert one
to the other.
The interlanguage communication rule for multidimensional arrays is easier

to state than to work with. Several of our library functions operate on mul-
tidimensional arrays and expect Fortran column-major order. Therefore, it is
necessary to reverse the order of the dimensions in the array declaration and
subscript accordingly. For example, a Fortran array declared with:

INTEGER A(20,0:10)

could be declared in a C routine as:

Cray C and Fortran Interlanguage Communication – MacDonald 309

int A[11][20];

and an element from this array that is referenced in Fortran as:

A(2,7)

is referenced as:

A[7][1];

in the C routine. Unfortunately, reversing the dimensions is not always intuitive.
Multidimensional variable-length arrays are also considered to be language-

dependent data types with the only concern being row-major versus column-
major order.

C-Specific Data Types

There are C-specific data types that do not have any interlanguage mapping
at all. This is primarily due to the rich typing mechanism present in C. The
following C-specific data types do not have a corresponding type in CFT77.

• All unsigned types
• All char types
• All short types
• All structure types
• All union types
• Arrays of the aforementioned types
• Arrays of word-aligned pointers
• Arrays of function pointers

Fortunately, it is easy to convert most values of C-specific scalar data types
into the same values of language-independent data types. Arrays of pointers do
not exist in CFT77 and are best avoided altogether when attempting interlan-
guage communication. Structures have no analogy in CFT77, however, many
global structures can be mapped onto CFT77 COMMON blocks as described in the
next section.

310 The Journal of C Language Translation – March, 1991

Interlanguage Names

Our convention requires interlanguage names to start with an upper-case letter
followed by upper-case letters, digits, or underscores. A maximum of 31 char-
acters is permitted in an interlanguage name. The Fortran-77 standard limits
names to 6 alphanumeric characters. However, the CFT77 implementation has
an extension that allows names up to 31 characters with embedded and trailing
underscores. The ANSI C standard defines portable external names as being
unique within the first 6 characters, single case, and no leading underscore.
SCC supports mixed-case names up to 255 characters. The interlanguage con-
ventions, therefore, require names to be 31 characters or less, and all letters
must be upper-case.
It is possible to share global data by placing it in COMMON blocks. In fact,

SCC stores externally defined data in such blocks. Therefore, the following
simple declarations will map onto the same global memory locations:

COMMON /I/ I int I;

The following is a more intricate example that demonstrates how to map
SCC external definitions onto CFT77 COMMON blocks.

PROGRAM F

COMMON /GLOB/ M1, A(100), N(10,20)

DO 10 I = 1, 100
10 A(I) = I

M1 = 7
DO 30 J=1, 20

DO 20 I = 1, 10
N(I,J) = I+J-2

20 CONTINUE
30 CONTINUE

CALL CFUN

STOP
END

#include <stdio.h>

struct {
int m1; /* member names need */
double a[100]; /* not match the */
int n[20][10]; /* COMMON names */

} GLOB;

Cray C and Fortran Interlanguage Communication – MacDonald 311

void CFUN() {
int i, j;

printf("m1 = %d\n", GLOB.m1);
for (i = 0; i < 100; i += 25)

printf("a[%d]=%4.1f ", i, GLOB.a[i]);
putchar (’\n’); putchar (’\n’);

printf("n:\n ");
for (j = 0; j < 10; j += 2)

printf("%4d", j);
printf("\n --------------------\n");

for (i = 0; i < 20; i += 4) {
printf("%2d: ", i);
for (j = 0; j < 10; j += 2)

printf("%3d ", GLOB.n[i][j]);
putchar(’\n’);

}
}

The output produced by compiling and linking these modules together is:

m1 = 7
a[0]= 1.0 a[25]=26.0 a[50]=51.0 a[75]=76.0

n:
0 2 4 6 8

0: 0 2 4 6 8
4: 4 6 8 10 12
8: 8 10 12 14 16
12: 12 14 16 18 20
16: 16 18 20 22 24

The external linkage of global data that is described in the ANSI C standard
is often called the ‘ref/def’ model. Essentially this describes a model such that,
for each external name, there is one definition (an entry point name that is
exported) and possibly multiple references to the definition (a name that is
imported). The SCC implementation is compatible with this model, but also
extends it by allowing multiple compatible definitions.

312 The Journal of C Language Translation – March, 1991

Interlanguage Function Invocation

The interlanguage conventions for invoking a subroutine or function are again
the CFT77 calling conventions. When C calls a Fortran subprogram:

• The name of the subprogram must be an interlanguage name (<= 31
characters, upper-case)

• All actual arguments must be addresses (arrays are considered to be ad-
dresses)

• Language-dependent data must be converted to the correct format
• Function return values must be language-independent scalar data types

The following examples demonstrate these points:

double a[100];

main() {
double x = 2.3;
extern double F4(); /* interlanguage name F4 */
int i;

x = F4(&x, a); /* must pass address of ‘x’ */
/* interlanguage type returned */

for (i = 0; i < 100; i += 25)
printf("a[%d]=%4.1f ", i, a[i]);

printf("\nx = %4.1f\n", x);
}

FUNCTION F4(X, A)

REAL A(100)

DO 10 J=1,100
10 A(J) = J + X

F4 = 4.5 ! returns interlanguage type

RETURN
END

The output produced by this example is:

a[0]= 3.3 a[25]=28.3 a[50]=53.3 a[75]=78.3
x = 4.5

When Fortran calls a C function:

Cray C and Fortran Interlanguage Communication – MacDonald 313

• the name of the C function must be an interlanguage name (<= 31 char-
acters, upper-case)

• All formal parameters must be declared to be pointers
• Language-dependent data must be converted to the correct format by the
C function

• Function return values must be language-independent scalar data types
The following example demonstrates these points:

PROGRAM JOE

X = 2.3
I = 7
CALL CFUN(X, I)
PRINT *, ’X = ’, X, ’ I = ’, I

STOP
END

void CFUN(double *px, int *pi) {

*px += 7.12;
*pi += 30;
return;

}

The output produced by this example is:

X = 9.42 I = 37

fortran.h

The SCC implementation defines a header, fortran.h that is used for inter-
language communication. This header defines one type and several macros.
The type is fcd which corresponds to the type of a CFT77 character descrip-
tor. This type can be passed to a Fortran function that expects a CHARACTER
argument.
The macros are:

cptofcd – merges a C character pointer and a length into a Fortran character
descriptor

fcdtocp – extracts a C character pointer from a Fortran character descriptor

fcdlen – extracts the byte length from a Fortran character descriptor

314 The Journal of C Language Translation – March, 1991

btol – converts a C integer into a Fortran LOGICAL

ltob – converts a Fortran LOGICAL to a 1 or 0

Prototypes for the contained functions are:

_fcd _cptofcd(char *ccp, unsigned len);
char *_fcdtocp(_fcd fcd);
unsigned _fcdlen(fcd);
long _btol(long boolean);
long _ltob(long *logical);

The following example uses these interface functions:

#include <stdio.h>
#include <fortran.h>

main() {
long x;
long *logical = &x;
long bool;

BOB(_cptofcd("abcdef", 6), logical);
bool = _ltob(logical);
printf(" bool is %d\n", bool);

}

void CFUN(_fcd fcd) {
char *cp = _fcdtocp(fcd);
unsigned len = _fcdlen(fcd);

cp[len-1] = 0; /* truncate last character */
printf(" len = %u cp is %s\n", len, cp);

}

SUBROUTINE BOB(CHR, LOGIC)

CHARACTER * (*) CHR
LOGICAL LOGIC

PRINT *, ’IN BOB: ’, CHR
CHR = ’XYZABC’
LOGIC = .TRUE.
CALL CFUN(CHR)
RETURN

END

Cray C and Fortran Interlanguage Communication – MacDonald 315

The output produced by this example is:

IN BOB: abcdef
len = 6 cp is XYZAB
bool is 1

Thus far, no new syntax has been described for either CFT77 or SCC to sup-
port interlanguage communication. The machinery described here is sufficient
to perform all of the interlanguage communication available on Cray Research
computer systems. However, there is one new keyword, fortran, that makes
interlanguage communication easier. The semantics of this keyword are: the
name of the called subprogram is converted to upper-case (if necessary), and all
parameters that are not addresses are implicitly converted to addresses. Con-
version includes placing expressions that are not lvalues into compiler-generated
temporaries, and then passing that address.
The following example is identical to that in the Section ‘Interlanguage

Function Invocation,’ except that the fortran keyword is used.

double a[100];

main() {
double x 2.3;
fortran double f4(); /* new keyword */
int i;

x = f4(x, a); /* name converted to F4 */
/* &x is implicitly done */

for (i = 0; i < 100; i += 25)
printf("a[%d]=%4.1f, ", i, a[i]);

printf("\nx = %4.1f\n", x);
}

FUNCTION F4(X, A)

REAL A(100)

DO 10 J=1,100
10 A(J) = J + X

F4 = 4.5 ! returns interlanguage type
RETURN

END

Finally, the next example shows how to pass an array of character data to
a Fortran function. Both the C and Fortran-77 standard require the characters
in character arrays to be stored contiguously. This allows single-dimensioned

316 The Journal of C Language Translation – March, 1991

arrays of characters to be viewed as multidimensioned arrays. The following
C function converts the address of a single dimensioned array of 9 characters
into a Fortran character descriptor with a length of 3. Since the Fortran function
JOE declares its first parameter to be an array of N assumed-size characters, the
correct value for N is 3. Next, it converts the address of the first element of a
two-dimensional array of characters into a character descriptor with a length
of 3. This time JOE is called with N having the value 2.

#include <stdio.h>
#include <fortran.h>

extern JOE();

main() {
int i;
char ac[3][3] = {"uvw", "xyz", ""};
char *cp = "abcdefghi"; /* 9 chars */
int j = 3;
_fcd afcd; /* fortran character descriptor */

afcd = _cptofcd(cp, j); /* CHARACTER *3 */

printf(" j = %d cp = %s *ac = %s\n", j, cp, *ac);

i = JOE(afcd, &j); /* CHARACTER *3, 3 */

afcd = _cptofcd(*ac, j); /* CHARACTER *3 */

i = JOE(afcd, &i); /* CHARACTER *3, 2 */

printf(" i = %d\n", i);
}

FUNCTION JOE(ASTR, N)

CHARACTER * (*) ASTR (N) ! array of assumed size

PRINT *, ’N = ’, N ! N is 3
DO 10 I=1,N

10 PRINT *, ’<’, ASTR(I), ’>’
JOE = N-1
RETURN

END

The output produced by this interlanguage program is:

Cray C and Fortran Interlanguage Communication – MacDonald 317

j = 3 cp = abcdefghi *ac = uvwxyz
N = 3
<abc>
<def>
<ghi>
N = 2
<uvw>
<xyz>
i = 1

Conclusions

Extensive support exists for interlanguage communication by using the CFT77
conventions as the interlanguage conventions. The emphasis is on identifying
what is common between the languages and providing an environment that is
similar for both languages. The process of standardizing interlanguage com-
munication has to focus on how much can be accomplished just by recognizing
commonality, and how much requires new syntax and explicit interfaces. A
significant part of the problem can be solved by providing an execution en-
vironment that stores function arguments in the same order, has a common
prologue and epilogue sequence, performs external name linkage based on com-
mon identical names, and has a straightforward data mapping. More can be
done with a header such as fortran.h. Additional typedef names could be
provided that map onto the Fortran-77 INTEGER, LOGICAL, REAL, and DOUBLE
PRECISION types.
The Cray Research method of specifying that the CFT77 conventions are the

interlanguage conventions has worked quite well, but there are a few problems.
There is no C analog to blank common. Sometimes there is a need for a CFT77
subprogram to call a lower-case C function. This forces the programmer to
write an interface function and encounter additional overhead. Finally, there is
the unfortunate difference in the values used for CFT77’s LOGICAL and SCC’s
true and false. More work needs to be done in these areas, but overall the
mechanisms exist to perform interlanguage communication and they are both
easy to use and understand.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is Cray Research Inc’s representative to X3J11 and a major
contributor to the floating-point enhancements made by the ANSI C standard.
He specializes in the areas of floating-point, vector, array, and parallel process-
ing with C language and can be reached at (612) 683-5818, tam@cray.com, or
uunet!cray!tam.

∞

35. Iterators

Thomas J. Pennello
MetaWare Inc.

2161 Delaware Avenue
Santa Cruz, CA 95060-5706

Abstract

The iterator is perhaps the most significant—and overlooked—language
construct invented in the 1970s. It first appeared in the CLU language
authored by Barbara Liskov of MIT.

Here I describe iterators as designed in MetaWare’s High C language.
Initial motivations and examples of use are followed by a precise de-
scription of iterator syntax and semantics. Finally I summarize some
advantages and disadvantages.

I argue that iterators contribute to program maintainability and read-
ability, and add significantly to the C language’s expressive power.

Ed: This article is reprinted with permission from High C Language Extensions
Manual LE-2084-02, 08/16/90: c© 1990 by MetaWare Incorporated. All Rights
Reserved.

Introduction

This paper describes a powerful language construct called an iterator.
An iterator is a new kind of function that supplies values for the variable(s)

of an iterator-driven for loop. The for loop body is executed each time the
iterator produces value(s) for the for variable(s) via a new predefined function
yield, as discussed below.
The major benefit of iterators and iterator-driven for loops is that the

algorithm to determine the values of the for variables for each loop iteration is
defined separately in an iterator rather than being exposed in the Standard C
for loop construct itself. The iterator may be invoked in many such for loops.
Iterators originated in CLU, a programming language from MIT that was

designed to promote the use of abstractions in program construction. Iterators
and iterator-driven for loops are not part of Standard C. They have been
made available in MetaWare’s High C because they help programmers produce
readable, easily modified code. For example, in Standard C you might write:

318

Iterators – Thomas J. Pennello 319

int i;
for (i = 1; i <= 10; i++)

printf("%d squared is %d\n",i,i*i);

This loop could be written using an iterator, as follows:

void Upto(int Lo, int Hi) -> (int) {
int i = Lo;
while (i <= Hi) yield(i++);
}

for i <- Upto(1,10) do
printf("%d squared is %d\n",i,i*i);

The sequencing from one number to another (1 through 10 in this example)
is programmed once in the Upto iterator. The syntax for i <- Upto(1,10)
“starts” the iteration. Each time the iterator Upto calls the predefined function
yield with a value, that value is substituted for i in the body of the for loop,
and the body is executed. When execution of the body is finished, control is
returned to a point immediately after the yield and Upto continues its while
statement.
Each call to yield causes the for loop body to be executed once. When

Upto is finished yielding, it returns just like a regular C function, and the
invocation of Upto (and therefore the for loop itself) is complete. Control then
passes to the statement after the for loop.
The syntax -> (int) in the header of the iterator definition is the only

thing that distinguishes it from a normal function. After the -> appears a
prototype-form parameter list specifying the type(s) of the results yielded by
the iterator (more on multiple yields later). Here Upto yields an int—one for
each execution of the for loop body. Within the definition of an iterator, the
predefined function yield is defined. Outside an iterator you may use the name
yield for any other purpose.

Some Uses for Iterators

Iterators are quite general, but they are probably most useful for iterating over
each element in some set. The set is often the entire contents of some data
structure, but can be restricted to those elements in a data structure that meet
certain conditions. The set might not be stored in a data structure at all; for
example, an iterator could be used to provide the prime numbers up to 100 by
computing and yielding them.
The following sections present some programming situations where you

might want to consider using iterators instead of regular for loops. They also
show a few of the programming problems that can be solved with iterators.

320 The Journal of C Language Translation – March, 1991

List Processing

Let us look at a loop that processes each element in a list:

for e <- each_element(list) do {
... // Process element e.
}

In the loop, e is the single for variable. Each time through the loop, e is
given a value yielded by the iterator each element. (In this case, we would
expect e to have a different value each time through the loop, but this is not
always so.) e is really a parameter to the loop body. It is not visible outside
the loop body and is instantiated anew each time through the loop. Assuming
the following declaration of an element:

typedef struct element {
... // Some data.
struct element *next;
} *element;

The iterator each element might look like this:

void each_element(element e) -> (element) {
while (e != 0) {

yield(e);
e = e->next;
}

}

Each time the predefined function yield is called, control passes to the for
loop that invoked each element. The for variable element takes on the current
value of e for that pass through the loop body. At the bottom of the for loop,
control returns to each element at the statement following the call to yield.

Changing the Implementation of a Data Type

Suppose in some program you make heavy use of a sorted linked list. If you
want to speed up your code, you might replace the list with a binary tree. That
would mean not only replacing the code that implements the list (the insert,
delete, and sort functions, for example) but also finding all the places in the
program where the list gets traversed. You would need to replace all the for
loops that are some variation on:

for (lptr = head; lptr != NULL; lptr = lptr->next) {
... // Use list element.
}

Iterators – Thomas J. Pennello 321

You may traverse the list several places in your program, and you would
have to change them all. On the other hand, if you use an iterator, you would
still have to replace the code that implements the list, but you would not have
to touch the code that traverses the list. Your loops would look something like
this (both before and after you changed over to a binary tree):

for lptr <- traverse_list(head) do {
... // Use list element.
}

Traversing a Tree

A for loop is a natural way to conceptualize getting each item in a data struc-
ture. You might write pseudo-code for some loop that processes every node in
a tree, such as:

for each node in tree {
... // Process node.
}

However, when you actually write such a loop in C, probably you would
not use a for loop. Trees are naturally traversed recursively, and C’s for
loop construct cannot naturally express a recursive computation. However, a
High C iterator-driven for loop can express recursive computations as easily as
any other kind; the resulting code looks almost identical to the pseudo-code:

for n <- each_node(tree) do {
... // Process n.
}

The iterator each node can be recursive. Thus, a recursive algorithm can
easily be used to generate values for variables.

Recursion and Code Clarity

In the list-traversal examples in Some Uses for Iterators above, you may com-
plain that all we have done is make nice, straightforward for loops complicated.
But consider a different problem: iterate through the nodes of a binary tree,
where the tree is implemented using a data structure that for each node N has
a pointer to the left and right subtrees of N .
The obvious way to obtain the nodes of such a tree is by a simple recursive

tree walk. However, this is not possible using Standard C for loops. Imagine
having to translate the following pseudo-code into C:

322 The Journal of C Language Translation – March, 1991

Process the tree:
Do some stuff to the tree
For each node in the tree

Print the node
Do some other stuff to the tree.

Because you cannot use a for loop to get the nodes of the tree, you would
probably package the node-printing process into a routine and pass that routine
to be executed by a tree-walking routine:

typedef struct node {
... // Some data.
struct node *Left, *Right;
// Left and right subtrees.
} *Node;

void Print_node(Node N) {
printf("Node is ");
... // Code to print a Node.
}

void Each_node(Node N, void Doit_toit(Node N)) {
if (N == 0) return;
Each_node(N->Left, Doit_toit);
Doit_toit(N);
Each_node(N->Right, Doit_toit);
}

Process_the_tree(Node Root) {
... // Do some stuff to the tree.
Each_node(Root, Print_node);
... // Do some other stuff to the tree.
}

Rearranging the computation this way allows the recursive tree walk to
occur, but there is a cost. The simple for loop in the pseudo-code clearly
expresses that a computation is being done on each element of the tree data
structure. This is no longer as apparent in the body of Process the tree. To
find out what is being done you now have to look outside Process the tree,
in Print node. In this simple example, the choice of good names assists a
great deal in promoting understanding of the code. But when dealing with real
problems, the code is more complex and the names are usually not perfectly
explanatory.
Here is a solution to the same problem, using iterators:

Iterators – Thomas J. Pennello 323

void Each_node(Node N) -> (Node) {
if (N == 0) return;
// Walk the subtrees.
for L <- Each_node(N->Left) do yield(L);
yield(N);
for R <- Each_node(N->Right) do yield(R);
}

Process_the_tree(Node Root) {
... // Do some stuff to the tree.
for Node <- Each_node(Root) do {

printf("Node is ");
... // Code to print a Node.
}

... // Do some other stuff to the tree.
}

Notice that the code for Process the tree mirrors the pseudo-code ex-
tremely closely, yet unlike the Standard C version the algorithm that deter-
mines the successive values of Node in the for loop body is recursive. This is a
major increase in expressive power.6

The body of Each node is not very elegant (or efficient) as written. The
recursive calls do nothing but re-yield a result already yielded at a deeper level
of recursion. Using nested functions7 and the fact that calls to yield can occur
within functions nested within iterators, we can produce an elegant version:

void Each_node(Node N) -> (Node) {
void P(Node N) {

if (N == 0) return;
// Walk the subtrees.
P(N->Left);
yield(N);
P(N->Right);
}

P(N);
}

Work done by the programmer in the Standard C version—packaging the
body of the pseudo-code for loop as a function—is done instead by the High C
compiler in the iterator version. This is appropriate. After all, compilers
were invented to promote more easily understandable and modifiable languages.
Why make a programmer do what the compiler can do?

6We are not claiming an increase in computational power. C is already Turing-machine
equivalent. We are claiming that algorithms can be expressed in a more natural fashion,
making the code easier to write, understand, and modify.

7The nesting of functions is another High C extension. It is documented in Volume 2,
number 3, page 240 of The Journal.

324 The Journal of C Language Translation – March, 1991

Replacing Macros with Iterators

Another place an iterator can be gainfully used is when the iteration algorithm,
although not recursive, is complex. Often, in this circumstance, a macro is
designed to make up for the shortcomings of the C for loop. Consider this
example from the High C 2.x series of optimizing compilers. The problem is to
sequence through the objects that overlap a given object obj in memory. Prior
to the addition of iterators, a macro was required to simulate the iteration:

#define for_each_overlapping_object(o,obj,p){\
struct obj_entry *_op = &objtab[obj];\
obj_class_type _class = _op->class;\
long _len = _op->len;\
long _disp = _op->disp;\
ushort _word = _op->un.word;\
bool is_deref = (ea_DEREF & _op->flags) != 0;\
bool is_adr = ((ea_ADR|ea_GLOBAL) & _op->flags) != 0;\
register struct obj_entry *p; int o;\
for(o=1,p=objtab+1;o<=last_object;o++,p++){\

if (is_deref && \
((p->flags&ea_DEREF) ||\

(p->flags&(ea_ADR|ea_GLOBAL))!=0 &&\
p->xlen >= _op->xlen &&\

_op->disp < p->xlen)||\
is_adr && (p->flags&ea_DEREF)!=0 &&\

p->xlen<= _op->xlen|| \
p->class == _class && \

(p->un.word == _word ||\
(p->flags&_op->flags&ea_TEMP)) &&\
(p->disp<=_disp && p->disp+p->len >_disp ||\
_disp+_len > p->disp && _disp < p->disp)){

It was invoked as follows:

object_index obj;
...
for_each_overlapping_object(o,obj,p)

... do things with o and p ...
}}} // Required to match {’s in macro.

The #define defined the variables o and p whose names were arguments to
the macro.
With this approach an enormous amount of code is reproduced each time

the macro is invoked. Every time a change is made to the macro, every module
where it appears must be recompiled. An iterator requires much less mainte-
nance. When a change is made, only the iterator itself and not its “client” for

Iterators – Thomas J. Pennello 325

loops need be recompiled. Another advantage is that the iterator can declare
the types of its parameter and yielded results, providing improved type checking
at the iterator invocation.

void Each_overlapping_object(object_index obj)
-> (int o, struct obj_entry *p) {

struct obj_entry *_op = &objtab[obj];
obj_class_type _class = _op->class;
long _len = _op->len;
long _disp = _op->disp;
ushort _word = _op->un.word;
bool is_deref = (ea_DEREF & _op->flags) != 0;
bool is_adr = ((ea_ADR|ea_GLOBAL) & _op->flags) != 0;
register struct obj_entry *p; int o;

for(o=1,p=objtab+1;o<=last_object;o++,p++){
if (is_deref &&

((p->flags&ea_DEREF) ||
(p->flags&(ea_ADR|ea_GLOBAL))!=0 &&
p->xlen >= _op->xlen &&

_op->disp < p->xlen)||
is_adr && (p->flags&ea_DEREF)!=0 &&

p->xlen<= _op->xlen||
p->class == _class &&

(p->un.word == _word ||
(p->flags&_op->flags&ea_TEMP)) &&
(p->disp<=_disp && p->disp+p->len >_disp ||
_disp+_len > p->disp && _disp < p->disp)) {
yield(o,p);

}
}

}

It is now invoked as follows:

object_index obj;
...
for o,p <- Each_overlapping_object(obj) do

... do things with o and p ...

Note that the iterator yields two results for each execution of the for loop
body: the int o and the struct obj entry *p.
Now we move away from examples and to a more precise specification of

iterators and iterator-driven for loops.

326 The Journal of C Language Translation – March, 1991

Syntax and Constraints

To invoke an iterator I for n for variables, write:

for N1,N2,...,Nn <- I(E1,E2,...,Em) do
... // Body of for loop, using Ni.

Iterators yield one or more values. The declarative syntax for both the
iterator input arguments and yield types follows that of the input arguments
to normal functions. An iterator I is declared as follows

void I(Formal parm list1) -> (Formal parm list2) {
... // Body of iterator, with calls to yield.
}

Arguments

The iterator’s Formal parm list1 has exactly the same constraints and semantics
as the formal parameter list of other functions, except that we additionally
require that this list use the ANSI prototype syntax. Old style C function
parameter declarations are not permitted. When the iterator is invoked in a
for loop, the expressions passed to it must satisfy the same constraints as
those of expressions passed to a function, given the same parameter list. The
parameters are passed in the same ways.

Formal parm list2 must also use the ANSI prototype syntax. Here, however,
the names of the parameters may be omitted, just as they may be omitted when
a function is declared but not defined.

Formal parm list2 is called the yield list. The for variables of a for loop
that invokes the iterator take on values of the types specified in the yield list,
respectively. The iterator supplies the values through a call to the function
yield which is defined in the body of each iterator:

yield(E1, E2, ... En);

where the following constraint must be satisfied:

If void yield(Formal parm list2); is a valid function declaration,
then yield(E1, E2, ..., En); must be a valid call to that function.

Alternatively, the syntax of High C’s named parameter association8 can be
employed to yield the values, just as in a function call. Formal parm list2 must
contain the names of the parameters. However, even if that notation is not
used, it is useful to name the “yield parameters” for the sake of documentation.
Like other functions, iterators can use the ... notation to specify that they

may take a variable number of arguments. The yield formal-parameter list may
8Named parameter association is another High C extension. It is documented in Volume 2,

number 3, page 239 of The Journal.

Iterators – Thomas J. Pennello 327

also use ..., requiring the use of the va arg macros within the for loop body
to access the remainder of the expressions yielded.

Semantics

Each time an iterator executes a yield statement, the body of the for loop
is executed with its ith for variable assuming the value of the ith expression
yielded, for all 1 <= i <= m. When the iterator returns (just as a function
may return), the for loop is terminated. A break or goto from the for loop
body also terminates the iteration.
The semantics of iterators and for loops that invoke them can be specified

precisely in terms of an implementation using nested functions, as follows. The
compiler bundles up the body of each iterator-driven for loop and turns it into
a function. Each so-bundled function is passed as an extra parameter to the
iterator. The iterator is called once per for loop and receives as a parameter the
function that used to be the body of that for loop. Each call to yield within
the iterator is translated to a call to the function that is its extra parameter.
More formally, the meaning of:

void I(Formal parm list1) -> (Formal parm list2) {
... // Calls to yield in here.
}

and:

for N1,N2,...,Nn <- I(E1,E2,...,Em) do
... // for loop body here.

is precisely the same as the meaning of:

void I(void yield(Formal parm list2)!, Formal parm list1) {
... // Calls to yield in here.
}

and:

{// Would-be for loop:
void For_loop_body(Formal parm list3) {

... // for loop body here.
}

I(For_loop_body,E1,E2,...Em);
}

where Formal parm list3 is Formal parm list2 but with the names N1, N2, ...,
Nn replacing the parameter names (if given) in Formal parm list2.

328 The Journal of C Language Translation – March, 1991

Note that the calls to yield in the iterator I become calls to function
I’s function parameter named yield—the syntax is the same in both cases.
Also, the for loop body is made into a function and passed as an extra first
parameter to the function I. Calling function I is what starts the loop. I’s
return terminates the loop, barring a goto out of the loop body.
It is the function I per se that does the iterating. That may occur via a

contained loop, for example, or by I calling itself recursively as it traverses
some data structure. Each time it wants to yield something to the for loop
body, it does so by calling its yield parameter and passing the value(s) of the
for variable(s) to the next iteration of the loop.
The ! declaration guarantees we can pass a nested (non-global) function to

the iterator. Because the for loop is guaranteed to lie within a function, the
for loop body, when transformed into a function, is guaranteed to be a nested
function. For example:

void Primes(int Lo,int Hi) -> (int ThePrime) {
// We named the yield result.
// Yield the primes in the interval Lo..Hi.

int I,J;
extern double sqrt(double);
for (I = Lo; I <= Hi; I++) {

// Ask if we can divide I evenly:
for (J = 2; J <= sqrt(I); J++)

if ((I/J)*J == I) goto Composite;
yield(I); // I is prime.

Composite: ;
}

}
...
for I <- Primes(1,100) do printf("%d is prime.\n",I);

This example has the same semantics as the following:

void Primes(void yield(int ThePrime)!,
int Lo, int Hi) {

// Yield the primes in the interval Lo..Hi.
int I,J;
extern double sqrt(double);
for (I = Lo; I <= Hi; I++) {

// Ask if we can divide I evenly:
for (J = 2; J <= sqrt(I); J++)

if ((I/J)*J == I) goto Composite;
yield(I); // I is prime.

Composite: ;
}

}

Iterators – Thomas J. Pennello 329

...
{
void For_loop_body(int I) {

printf("%d is prime.\n",I);
}

Primes(For_loop_body,1,100);
}

Predefined Function yield

Because the types yielded by an iterator are described by Formal parm list,
there is no restriction on the types except that they must be types that can be
passed to a normal function. Thus, an iterator can yield integers, structures,
functions, and even iterators. (An iterator that computes the strongly con-
nected components of a graph and an example of its use are provided with our
High C distributions. This iterator’s yield is itself an iterator that yields one
set of strongly connected components. No one has yet accepted our challenge
to rewrite this example in Standard C.)

Advantages and Disadvantages

Reusable Code

The major benefit of iterators is that the algorithm to determine the values
of the for variables for each loop iteration is defined separately in the itera-
tor. Unlike the Standard C for loop, the iterator can do an arbitrary amount
of computation and can automatically maintain its environment across passes
through the body of the loop, because it suspends rather than returns when it
provides the loop body with values. Once the iterator is written, it can be in-
voked by as many loops as desired without repeating the code that provides the
values used within the loop (as compared with using many copies of standard
for loops, which involve repeating the code for each loop).

Information Hiding

The term information hiding comes from the literature in structured program-
ming. It refers to the placement of information only where it is needed keeping
the information from where it is not needed. For example, a module imple-
menting a tree data type may wish to hide all the details of traversing trees
within functions defined in that module. In Standard C, however, traversing
the tree generally means exposing the tree data structure in any for loop se-
quencing through nodes of the tree. Instead, iterators can be used to localize
the sequencing techniques and their required data-structure access to within
the tree module itself. The for loop need only invoke an appropriate iterator.
It need not be concerned with the representation of trees.

330 The Journal of C Language Translation – March, 1991

Information hiding promotes better and more easily maintained programs,
and reduces recompilation of modified programs. Iterators promote information
hiding.

Execution Speed

The major drawback of iterators is that they are slow, compared to standard
for loops, because they involve the overhead of function calls. Speed is lost by
placing the computation of the iteration in a separate function. A loop that
executes n times involves n + 1 function calls related to loop overhead. The
speed loss occurs not only due to the function linkage but also because the
body of the for loop becomes a nested function. Any variables in the body’s
parent accessed from the body cannot reside in high-speed machine registers.9

For example:

int Sum = 0;
for I <- Upto(1,10) do

Sum += I;
printf("Sum of 1 to 10 is %d\n", Sum);

is implemented as:

int Sum = 0;
void Body(int I) {Sum += I;}
Upto(Body,1,10);
printf("Sum of 1 to 10 is %d\n", Sum);

Here, Sum cannot reside in a register because it is accessed from the nested
function Body. Thus all accesses to Sum will be slowed. Therefore, if extreme
speed is required, do not use iterators, especially for simple for loops where
the iteration algorithm is simple and there is no need for hiding it away in one
place in an iterator.
In earlier releases of our compiler, any function that includes an iterator

for loop containing an exit will have none of its local variables allocated to
registers, because of the way exit was implemented. However, we have avoided
this limitation in the latest release.

Conclusion

Iterators allow you to express some computations more naturally by virtue of
recursion. They can make your code easier to maintain because there are fewer
places where code must be modified if there is a design change. Recursion is
possible with iterators because the function that drives the for loop does not

9This is due to the current state of optimizer technology. An improvement may come some
day.

Iterators – Thomas J. Pennello 331

have to return. If you use for loops to access the elements of a data structure,
iterators allow you to change the implementation of the data type without
changing the implementation of the for loops. With an iterator, each for
loop is driven by an independently specified computation that can maintain its
environment across invocations of the loop. Without an iterator, the syntax
accessing the structure is inside each for loop. Therefore each for loop must
be modified, because the loops contain code specific to the data structure.

Thomas Pennello, MetaWare’s Vice President and Chief Technical Officer,
did his graduate work under Frank DeRemer at UCSC. Together, they devel-
oped fully-automatic error recovery, and efficient LALR look-ahead set compu-
tation. Thomas Pennello received his Ph.D. degree in transformational gram-
mars from UCSC. He may be reached at tom@metaware.com.

∞

36. Miscellanea

compiled by Rex Jaeschke

Implicit Function Declarations

I sent the following question to David Prosser, redactor of the C Standard,
for his unofficial comments. [Ed. This is not to be construed as an official
interpretation.]

§3.3.2.2, Function Calls, on page 41, lines 28–32 reads: “If the ex-
pression that precedes the parenthesized argument list in a function
call consists solely of an identifier, and if no declaration is visible
for this identifier, the identifier is implicitly declared exactly as if,
in the innermost block containing the function call, the declaration

extern int identifier();

appeared.” This is very clear to me. However, what I’m looking at
are cases like

(f)()

where f is not declared. Now f and (f) are both primary expressions
and, therefore, also postfix expressions. As such they can be used
with the () function call operator. The quote above says “If the
expression that precedes the ...” Which expression in my example
precedes the call? Well both the expression f and the expression
(f) do. The difference though, is that the quote also says, “If the
expression ... consists solely of an identifier ...” Well, lexically (I’m
guessing) the expression immediately preceding the call is (f) not
f. And since (f) contains more than just an identifier, does the
implicit typing apply? Taking the words literally, I think not. Note,
however, we don’t say “that immediately precedes”. But then again,
I don’t think we meant “that precedes it somewhere in the token
stream” either. That’s why I took it to imply “immediate.”

David’s reply was:

This issue was debated and the “can’t be parenthesized” side won.
The winning side argued that it was too difficult to recognize when

332

Miscellanea – Jaeschke 333

an undeclared identifier that wasn’t immediately followed by a left
parenthesis was still going to be an undeclared function to call. And
forcing all implementations to get this right was too high a price to
pay for little, if any gain.
I think I have correctly recalled the arguments. I, on the other

side, argued that a lazy-evaluating parser could delay complaining
about unknown identifiers until the entire context was clear. Thus,
even situations such as

(exp1, exp2, f)(arg-list);

could be handled when f is undeclared. As was common, the im-
plementors won the day. However, their argument does have a valid
point in that when functions are called, the name isn’t parenthe-
sized, isn’t the last element of a comma list, and isn’t the second
or third operand of a ?:. (That is, unless the function has already
been declared.)

I also involved Derek Jones in the discussion since he is the project editor for
the ISO C Normative Addendum. During this exchange he raised the following
related point.

Consider the following example:

void g()
{

if (f != 0) /* f undeclared here */
f(); /* implicit declaration */

}

Is this a valid construct? The Standard does say the implicit dec-
laration is as if it were really there, at the beginning of the block
before any statements.

David’s response was:

This is more interesting. It is just a variation on the BSI comment
#16 that I looked over when I was putting together the final ed-
itorial changes to the draft. I had been convinced that I needed
some wording change in the draft, but when reviewing the changes
with the officers of X3J11, we found that we’d be making substan-
tive changes by nailing down the declaration. No matter where
you choose to put the created declaration, it is possible to arrange
for a use of the name that would have otherwise been valid if the
declaration actually were present.
Thus, the argument goes, the only guarantee by the current

wording is that the created declaration is in scope by the time of

334 The Journal of C Language Translation – March, 1991

the function call expression, but need not be in scope earlier. You
say, “But in the above example, the only valid place for a declaration
is between the { and the if statement, and thus that use of f must
now be valid.” This is not unreasonable, but we know that certain
identifiers can be declared anywhere within a block (tags, structures,
unions, enumerations) due to sizeof and casts. It is not at all un-
reasonable that the created declaration occurs anywhere within the
block and, of course, carries its visibility forward until the closing }.
Even if my argument is tenuous, I don’t believe anyone ever

intended or expected the created declaration have any effect on pre-
vious expressions (or even, possibly, within the same expression).

Strict Type Checking

In §3.4, Constant Expressions, the following constraint is specified: “Each con-
stant expression shall evaluate to a constant that is in the range of representable
values for its type.”
Based on what appears to be loose checking in this regard by my ‘ANSI-

conforming’ compilers, I have contrived the following test case.

#include <limits.h>

char c[INT_MAX + 1]; /* error */

int i = INT_MAX + 1; /* error */

enum etag {e1 = INT_MAX, e2}; /* error */

void f()
{

void g(int);
static long l = INT_MAX + 1; /* error */

g(l);

switch (l)
case INT_MAX + 1: ; /* error */
}

The initialization of l is perhaps the most interesting since the type of the
initializer is int yet the value won’t fit in an int. This is more likely detected
on implementations in which int and long map to the same size.

Miscellanea – Jaeschke 335

Signed Address Space

[Ed: The following information comes courtesy of Conor O’Neill, INMOS Ltd.,
designers of the Inmos parallel processing transputer.]

Transputers use a signed address space, going from the most negative integer
address, through zero, to the most positive address. In many cases this can
simplify address calculations. (You don’t need to worry about overflow.) Hence,
an all-bits-zero pointer points smack into the middle of the address space.
There are three approaches one can take regarding defining a null pointer:

1. Use a different bit-pattern for NULL. Transputers normally use MOSTNEG
INT as a NULL pointer, because it is the address of a transputer link, so
data and code cannot reside there.

2. Use all-bits-zero to indicate NULL. Ensure that nothing is ever allocated
which crosses (or approaches very closely from below) the ‘zero’ address.

3. Ignore the problem—use all-bits-zero anyway.

We use approach 3 on our 32-bit processors. So far as we know, no one
has attached 2 Gigabytes to a transputer, so the problem of making sure that
nothing is allocated there does not arise. (Note, transputers do not use virtual
memory.) No doubt it would be possible to tailor both the loader and malloc
so that no memory was ever allocated at address zero. This would then satisfy
approach 2.
16-bit processors are a different matter. Many of our customers use more

than 32K of memory. Therefore we’ve taken approach 1, but used a specific bit-
pattern (MOSTNEG INT, or 0x8000) which can never correspond to user-accessible
memory.

Generate limits.h and float.h

[Ed: The following announcement was extracted from a posting to the conference
comp.compilers. I have tested the source with several compilers. It produces a lot
of useful information. For example: size, representation, and alignment of the
basic types, character packing order, and integral and floating type properties.
If nothing else, it serves as a good exerciser and sanity check. It broke one of
my compilers.]

Enquire.c (which used to be called config.c) is a program that determines
many properties of the C compiler and machine that it is run on. As an option
it produces the Standard C headers float.h and limits.h.
It is a good test-case for compilers, since it exercises them with many limiting

values, such as the ability to handle the minimum and maximum floating-point
numbers.

336 The Journal of C Language Translation – March, 1991

Version 4.3 of enquire.c has been submitted to comp.sources.misc, and will
appear as part of the gcc distribution (where it is used to generate float.h).
It is also available by anonymous ftp from mcsun.eu.net and hp4nl.nluug.nl as
misc/enquire43.c, and by mail from

info-server@hp4nl.nluug.nl

by sending the mail message

request: misc
topic: enquire43.c

ISO C Standard Status Report

ISO C is completed and it is technically equivalent to ANSI C.
ANSI and ISO now use the same format for standards but did not do so when

X3J11 started its task. Therefore, the ANSI standard had to be significantly
reformatted to make an equivalent ISO standard document. Unfortunately,
the line number references were not permitted to remain. This non-trivial
conversion has been done by the ANSI C redactor, David Prosser of AT&T.
(Many thanks, David.) The document is now wending its way through the ISO
maze for final processing.
New work is continuing in WG14, the ISO C committee. Several national

groups are heading up projects which will eventually result in one or more nor-
mative addenda. Derek Jones, of the UK delegation, was unanimously nomi-
nated as Project Editor for these addenda.
Specifically, the primary work items are:

• UK members are adding clarification wording to many parts of the stan-
dard but are not making substantive changes.

• The Japanese are working full steam on extra multibyte library support.
(At the Copenhagen meeting in October 1990, it was agreed this work
would be contained in a new header and would not impact the existing
standard headers.)

• The Danish continue to work on their alternate trigraph proposal. (Bjarne
Stroustrup issued a revised version late in 1990 which proposed a ! postfix
punctuator.)

It is expected that in a couple of years one or more of these addenda will
be completed and accepted by member nations in some form. At that time
they will be added to the ISO C standard and will have the full weight
of a standard. At that point, ISO C becomes a proper superset of ANSI C.
Whether these addenda are retrofitted back into the ANSI standard or not
remains to be seen.

Miscellanea – Jaeschke 337

In this regard, I foresee the standard possibly breaking into a mandatory
core part with optional modules, just like some other language standards. Why?
Well, the Federal Information Processing Standard (FIPS) is based on the cur-
rent ANSI C standard. FIPS reflects the needs of government agencies in the
US. If a new ANSI standard adopts all of the ISO addenda, it’s possible FIPS
could not use that new ANSI C standard since alternate trigraphs or multibyte
support [for example] might not be considered mandatory requirements for US
government business. So does FIPS then make its own standard? No, I think
it better they require ANSI C Base Level and not the other options.
It does seem reasonable, however, that at some time in the future the ANSI

standard will take on the ISO format to make it easier to reconcile the two
standards. At this stage David Prosser of AT&T is the redactor of both stan-
dards. I don’t know how that will work once the addenda come together since
they are not being produced by the redactor.
At the September, 1990 X3J11 meeting, the officers proposed that X3J11

consider moving all new C standard work to the ISO arena including,
eventually, interpretations. This proposal is under consideration. As you
might think, it is a controversial one. Due to ANSI requirements, the inter-
pretations must be done by X3J11 for at least the foreseeable future but new
work will almost certainly be restricted to the ISO level. Since it is acknowl-
edged by both X3J11 and WG14 that the bulk of the technical expertise lies
within X3J11, the two committees have agreed to meet jointly once a year (ev-
ery 2 meetings under our current schedule). As such, a joint meeting will be
held in Milan, Italy on December 11–13, 1991.
I was the US Head of Delegation at the Copenhagen meeting of WG14, held

last November. Before debate opened on the latest alternate trigraph proposal
from Denmark, I interjected a suggestion. Instead of continually shooting holes
in new and revised proposals, we should establish some guidelines for what
approaches might and might not be acceptable in terms of the existing language,
its history, and ‘the Spirit of C.’ This suggestion was then debated at length.
The primary categories for change are summarized in the electronic poll on
page 280. (I posed this question in order to get input to help make future
decisions and I intend to raise this issue at the March 1991 meeting of X3J11.)
Another prospect raised in WG14 (by Denmark) is more direct support for

extended national characters in identifiers and the idea of a compile-time locale.
(Note that the poll question on page 278 arose from that agenda item.)
I am looking forward to the next WG14 meeting to be held in May, in Tokyo,

Japan. Members of the Japanese delegation are major contributors to WG14
and will, no doubt, bring us up to date on their latest multibyte extension
proposal.

338 The Journal of C Language Translation – March, 1991

NCEG Status Report

The Numerical C Extensions Group (NCEG) is very much alive and well. In
September 1990, the ANSI group SPARC approved it as a working group within
X3J11 (tentatively called X3J11.1). There was 1 NO vote: that we should
produce a standard rather than a report. The parent body X3 must also vote
before the process is complete.
In November 1990, WG14 adopted NCEG as a rapporteur group within

WG14. NCEG now has the same role in both committees (WG14 and X3J11)—
to research numerical extensions and publish a Technical Report (tentatively
sometime in 1992). So NCEG issues now have impact in the ISO arena as
well. Most of the NCEG proposals are new inventions, although quite a few are
based loosely on prior art. Note that a Technical Report is not binding like a
standard.
The September 1991 meeting will not be in conjunction with an X3J11

meeting. As such, NCEG will meet for more than the usual two days in order
to start towards closure on the Technical Report.

Calendar of Events

• May 13–15, ISO C SC22/WG14 Meeting – Location: Tokyo, Japan.
Contact the US International Rep. Rex Jaeschke at (703) 860-0091, or
rex@aussie.com, or the convenor P.J. Plauger at uunet!plauger!pjp for
information.

• June 13–14, 1991 First ISO C++ Meeting – Location: Lund, Sweeden.

• June 17–21, 1991ANSI C++ X3J16 Meeting – Location: Lund, Swee-
den.

• June 24–28, 1991 ACM SIGPLAN ’91 Conference on Program-
ming Language Design and Implementation – Location: Toronto,
Ontario. The conference seeks original papers relevant to practical issues
concerning the design, development, implementation, and use of program-
ming languages.

• August 12–16, International Conference on Parallel Processing –
Location: Pheasant Run resort in St. Charles, Illinois (near Chicago).
Submit software-oriented paper abstracts to Herbert D. Schwetman at
hds@mcc.com or by fax at (512) 338-3600 or call him at (512) 338-3428.

• August 26–28, 1991 PLILP 91: Third International Symposium on
Programming Language Implementation and Logic Program-
ming – Location: Passau, Germany. The aim of the symposium is to
explore new declarative concepts, methods, and techniques relevant for

Miscellanea – Jaeschke 339

implementation of all kinds of programming languages, whether algorith-
mic or declarative. Contact plilp@forwiss.unipassau.de for further infor-
mation.

• September 23–27, 1991 Numerical C Extensions Group (NCEG)
Meeting – Location: At an Apple facility in Cupertino, California (Sili-
con Valley area). Note that this will not be a joint meeting with X3J11.
As such, NCEG will meet more than the usual two days. The actual num-
ber will be determined at the March 1991 meeting. For more information
about NCEG, contact the convenor Rex Jaeschke at (703) 860-0091 or
rex@aussie.com, or Tom MacDonald at (612) 683-5818 or tam@cray.com.

• November, 1991 ANSI C++ X3J16 Meeting – Location: Toronto,
Ontario.

• December 11–13, 1991 Joint ISO C SC22/WG14 and X3J11 Meet-
ing – Location: Milan, Italy.

• May 11–12, 1992Numerical C Extensions Group (NCEG) Meeting
– Location: Salt Lake City, Utah.

• May 13–15, 1992 Joint ISO C SC22/WG14 and X3J11 Meeting –
Location: Salt Lake City, Utah.

News, Products, and Services

• Prentice Hall is publishing a UNIX System V Release 4 manual called
ANSI C Transition Guide. 1990, 64 pages, ISBN 0-13-933698-2.

• paracom, inc is now shipping a Standard C compiler for their devel-
opment systems built around the transputer. The compiler is heavily
extended to support the parallel nature of the hardware and is available
as a cross-compiler from Sun-UNIX. (708) 293-9500 or fax (708) 884-9065.

• Intel has announced their 32-bit C development kit for Intel 386/486 sys-
tems running DOS. The kit includes the compiler, Microsoft-compatible
libraries and librarian, source-level debugger, linker, utilities, and Make.
It also includes a DOS extender.

• In an interesting development Cygnus Support is now providing com-
mercial support for GNU software from the Free Software Founda-
tion. Currently supported platforms include Sun-3 and SPARC, Silicon
Graphics IRIS-4D, and VAX Ultrix and BSD. For details call them in
California at (415) 322-3811 or fax (415) 322-3270.

• Based on some comments in a net conference recently, I tracked down a
couple of interesting papers. They are: A Study of a C Function Inliner

340 The Journal of C Language Translation – March, 1991

by Jack W. Davidson and Anne M. Holler; Software–Practice and Ex-
perience, Vol 18(8), 775-790 (August 1988); and Subprogram Inlining: A
Study of its effects on Program Execution Time, by the same authors. The
second is published by the Department of Computer Science at University
of Virginia where the authors work. A distribution kit for the INLINER
software is available for a handling fee provided you have a pcc source li-
cence. For more information contact Prof. Davidson at jwd@virginia.edu.

• XDB Systems Inc. of College Park, MD has announced an embedded
SQL C precompiler for DOS and OS/2. (301) 779-6030.

• LPI has upgraded its ANSI C compiler NEW C for Sun SPARC. Support
is provided for their CodeWatch symbolic debugger. The workstation
price is $1,695 while upgrades cost $425. (508) 626-0006 or fax (508)
626-2221.

• Bullseye Software of Seattle is shipping version 2 of its C source analysis
coverage program C-Cover. This MS-DOS-based package identifies the
control structures not used in your source and gives objective metrics to
use in testing. (206) 524-3575.

• [Ed: from comp.compilers] – The University of Colorado has released
a new version of the Eli compiler construction system for Sun3, Sun4,
and VAX computers. Eli integrates off-the-shelf tools and libraries with
specialized language processors to generate complete compilers quickly
and reliably.

Costs are: installation tape (DC600A cartridge $75, 9-track $100), op-
tional hard copy documentation (about 600 pages: $30)

The University requires payment in advance via a check or money order
drawn on a US bank and made payable to the University of Colorado. Be
sure to specify cartridge or 9-track tape, and optional documentation if
required. Mail your order to:

Software Engineering Group
Dept. of Electrical and Computer Engineering

University of Colorado
Boulder, CO 80309-0425

• Benjamin Cummings has published a C edition of Crafting A Compiler,
entitled Crafting A Compiler With C, by Charles Fischer and Richard
LeBlanc. ISBN 0-8053-2166-7.

∞

