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1. Translating Multibyte Characters

P.J. Plauger

Abstract

The Standard C library includes several pairs of functions that map be-
tween character-set representations. One pair maps a character string to
a form that collates properly. A second pair maps multibyte characters
to wide characters. A third does the reverse.
I have written an implementation of the Standard C library intended

to be both exemplary and highly portable. It lets you alter the behavior
of these functions when you change locales. It also lets you define your
own locales as human-readable text files.
The various mapping functions are built around table-driven finite-

state machines. You specify state tables in the locale file to define each
mapping. The result is a set of mapping functions that is highly config-
urable, yet still offers modest performance.

Introduction

The C Standard lets you define an open-ended set of collation sequences. By
calling setlocale(LC COLLATE, xxx), you can switch to the collation sequence
defined by the locale xxx. (xxx points to a null-terminated string that names
the locale.) The C Standard imposes no limit on the number of named locales
that an implementation can or must support. Nor does it dictate how to specify
a collation sequence. It simply describes functions in the Standard C library
that enforce the collation sequence for the current locale.
The C Standard also defines limited support for large character sets. One

way to represent these sets is as multibyte encodings—sequences of one or more
eight-bit (or larger) codes. Another way is as wide-character encodings—fixed-
size integers large enough to represent all codes in the set. You can alter these
encodings, at least in principle, by calling setlocale(LC CTYPE, xxx). (What
happens to multibyte and wide-character literals when you change code sets
is a thorny issue.) Again, the C Standard doesn’t describe the machinery for
specifying code sets. The Standard C library simply includes functions that
map between these representations.
The functions in question are:

• strcoll and strxfrm, declared in <string.h>, which map a character
string to another character string, to define a collating sequence.

1
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• mbtowc and mbstowcs, declared in <stdlib.h>, which map multibyte
characters and strings to wide characters and wide-character strings, re-
spectively.

• wctomb and wcstombs, declared in <stdlib.h>, which map a wide-char-
acter string to a multibyte string.

Collation sequences vary tremendously around the world. Try to look up
a name in a Swedish telephone book and you will find that ‘I’ and ‘J’ sort
interchangeably. Indeed, languages with accent marks try to outdo each other
in devising esoteric collation rules. Even within a given language and culture
you will find cause for variation. Compare an English dictionary, a telephone
book, and the output from the MS-DOS sort utility. Each has a different notion
of proper ordering rules.
The situation is only slightly better with multibyte encodings. Several en-

codings exist for Kanji, currently the most important of the large character sets
(commercially). Larger vendors can afford to choose one set of codes and pro-
mote it. Smaller vendors are wise to write code that adapts easily to different
codes.
The need to change these various mappings is very real. For widely-used

mappings you may want functions tailored for size and performance. In general,
however, you are better off trading space and speed for flexibility. You want
some way to specify a collation sequence or a multibyte mapping that a program
can digest on the fly.

Implementation

I have written a portable implementation1 of the Standard C library. I wanted
to convince myself that a number of untested conjectures in the C Standard
are correct. In particular, I wanted to see if locales and multibyte support
could be implemented reasonably. If so, I wanted to provide an exemplary
implementation for others to use, if only as a starting point.
I described how I implement locales, at least in general terms, in my article

in the previous issue of The Journal. (See “Implementing Locales,” Volume 2,
number 4, March 1991.) At the end of that article, I mentioned the problem
of describing various mappings in a human-readable “locale file.” I observed
that a table-driven finite-state machine offers a reasonable compromise between
flexibility and performance. You can specify the contents of state tables as part
of a locale. The functions can execute these tables to perform a wide variety of
mappings. That is why I chose to implement each of the three pairs of mapping
functions as a table-driven finite-state machine.

1That library is now complete and will soon be published by Prentice-Hall in a book called
The Standard C Library. The machine-readable source, over 9,000 lines of C code, is also
available at a reasonable price. Refer to page 87 for more information.
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It is not an easy matter to code the tables for a finite-state machine. The
idea is not to bring this technology to the man in the street. Rather, I wanted
people to be able to include predesigned mappings as chunks of text in a locale
file. The more adventuresome may also choose to tinker. They do so at their
peril.
In this article, I describe the workings of the three table-driven functions in

this implementation of the Standard C library. I also show the notation you
use to specify a state-table in the locale file. And I provide example locale files
for several widely-used mappings.

Writing the Locale File

The three table-driven functions are necessarily different. Defining a collation
involves mapping a string of characters to another string of characters. Trans-
lating multibyte characters to wide characters maps a string of characters to a
string of wide characters. Translating wide characters to multibyte characters
does the reverse. Other subtleties arise as a side effect of these basic differences.
Nevertheless, the functions have many similarities. For that reason, I was

able to define a single table format to accommodate all three table-driven func-
tions. (The table format also meets the needs of the <ctype.h> testing and
mapping functions, but that is being somewhat precocious.) The behavior may
vary in small ways, but the table entries have much the same meaning in all
cases.
You can specify up to 16 state tables for each of the three entity names:

collate
mbtowc
wctomb

Each table has UCHAR MAX+1 entries, one for each value representable by
type unsigned char. Thus, the entry collate[0, ’a’] specifies how to pro-
cess the character code 'a' in state 0. A mapping starts out in state 0 with
a wide-character accumulator set to a known state. The wide-character accu-
mulator currently consists of two 8-bit bytes. It is set to zero for collate or
mbtowc and to the current wide character for wctomb.
For each entry, you can specify:

• A mapped value to use in place of the character code,
• A successor state, and
• Four action flags.

The action flags determine what happens with a given character code in a
given state. Using the notation of the locale file:
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• $F folds the mapped value into the least-significant byte of the wide-
character accumulator.

• $R rotates the wide-character accumulator one position to the left.

• $O produces output from the wide-character accumulator (mbtowc), from
a nonzero mapped value (collate or wctomb), or from the least-significant
byte of the wide-character accumulator (collate or wctomb).

• $I consumes the current input if it is nonzero.

Mapping proceeds until the function produces an output code of zero. Exe-
cuting from a nonexistent state table or from a zero element causes the mapping
to terminate with an error.
In the "C" locale, all three functions share a common state table zero. Tables

1–16 are nonexistent. You can specify this initial state in a locale file as:

mb_cur_max 1
collate[0, 0:$#] $@ $F $O $I $0
mbtowc [0, 0:$#] $@ $F $O $I $0
wctomb [0, 0:$#] $@ $F $O $I $0

The first line determines the value of the macro MB CUR MAX, defined in
<stdlib.h>. The table specifications cause all three functions to perform a
one-to-one mapping between input and output. The symbol $# has the value
UCHAR MAX, defined in <limits.h>. So the subscript [0, 0:$#] specifies all
elements (0:$#) of state table zero (0,). Each element says:

• Fold the mapped value into the wide-character accumulator ($F)
• With the input code mapped to itself ($@)
• Write either the mapped value or the contents of the wide-character ac-
cumulator as the output ($O)

• Consume the input ($I)
• The successor state is state zero ($0).

Symbols $0–$7 name the first eight successor states. The locale file provides
no special symbols for successor states 8–15. As I indicated last month, you
can write simple expressions, store values in the variables A–Z (using SET), and
add comment lines (using NOTE). This hardly constitutes a major language, but
it seems to suffice for specifying many locales.
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Dictionary Order

Let’s look at a few examples that are somewhat less trivial. The first shows
the simplest version of a special collation function. Say you want to order pairs
of strings by “dictionary order.” Here, I’ll take that to mean that only letters
are important. Punctuation and spacing go away. Moreover, uppercase and
lowercase letters are equivalent.
One way to define that collation is to discard everything but letters in the

collation mapping. Uppercase letters map to their corresponding lowercase
brethren. You get this behavior for the locale SIMPLE DICT defined by the file:

LOCALE SIMPLE_DICT
NOTE simple dictionary collation sequence
collate[0, 0:$# ] $I $0
collate[0, ’a’:’z’] $@ $O $I $0
collate[0, ’A’:’Z’] $@+’a’-’A’ $O $I $0
LOCALE end

Now let’s add a refinement. Some languages require that collation proceed
in two stages. If two strings compare equal in the first stage, they are checked
by a different set of rules in the second stage. Accented letters, for example,
may compare equal unless all letters to the right also compare equal. Then the
difference matters.
The collate functions have a special property to permit such collations.

When a table entry attempts to consume the terminating null on the input
string, it doesn’t just stick there (as mbtowc and wctomb do). Instead, it resets
the input pointer to the start of the input string. A request for more input
characters rescans the string. You can write state tables that make multiple
rescans, not just one.
In the case of our dictionary sort, we can add such a second stage. If two

items compare equal in the first stage, we’ll compare them as raw text in the
second stage:

LOCALE DICT
NOTE dictionary collation sequence
collate[0, 0 ] ’.’ $O $I $1
collate[0, 1:$# ] $I $0
collate[0, ’a’:’z’] $@ $O $I $0
collate[0, ’A’:’Z’] $@+’a’-’A’ $O $I $0
collate[1, 0:$# ] $@ $O $I $1
LOCALE end

A null character now produces a dot to terminate characters generated in the
first phase. The rescan occurs in state 1, which copies all characters unchanged.
Visiting the terminating null the second time terminates the mapping.
You can be even more ambitious. Some name lists insist that ‘McTavish’
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and ‘MacTavish’ sort equal. It takes a few more states to gobble ‘Mac’ and
translate it to ‘mc’—and to undo the damage you do to ‘Mason’ along the way.
But it can be done. Try it.

Mapping Multibyte Characters

You have to specify multibyte and wide-character mappings in pairs. (I assume
you want the transformations in both directions to agree.) They also tend to
be messier than simple collation functions. I have been able to specify all the
popular Kanji encodings I know about, however—at least to the extent that I
understand them properly.
I assume, by the way, that the internal codes for wide characters are mine

to choose. I know there is some controversy about this. Committee X3J11 has
gotten flak in the past for:

• Commandeering code value zero for a terminating null character
• Using '\n' internally in place of carriage return and line feed externally
• Requiring that '0'+1 equal '1'
• Commandeering code value zero for a terminating null wide character
• Requiring that L'a' equal 'a'
Our position on these issues is, I believe, quite defensible. Other groups can

standardize what codes go in and out of a program. It is up to each C im-
plementation to match relevant interchange standards. What goes on inside a
C program, however, is the business of the C Standard and its implementors.
The machinery in this implementation of the Standard C library is pretty

powerful. In many cases, you can contrive a mapping from a given set of
multibyte codes to a given set of wide-character codes. But you can’t always do
so. I content myself, in these examples, to show that an adequate wide-character
encoding exists. That’s often hard enough.
One of the simplest of the popular Kanji encodings is the EUC code de-

veloped to internationalize UNIX software. I believe that DEC still uses the
stripped-down version of EUC. In this scheme, a character code in the range
0xA1–0xFE signals that it is the first of a two-character code. The second
character code must be in the range 0x80–0xff. Here is a locale that supports
this encoding, with full checking:

LOCALE EUC
NOTE EUC codes with 0xA1-0xFE followed by 0x80-0xFF
SET A 0xa1
SET B 0xfe
SET S 0x80
SET T 0xff
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SET X 0
mb_cur_max 2
mbtowc[0, 0:$#] $@ $F $O $I $0
mbtowc[0, A:B ] $@ $F $R $I $1
mbtowc[1, 0:$#] X
mbtowc[1, S:T ] $@ $F $O $I $2
mbtowc[2, 0:$#] 0 $F $R $0
wctomb[0, 0:$#] $R $1
wctomb[1, 0:$#] X
wctomb[1, 0 ] $R $O $I $0
wctomb[1, A:B ] $@ $R $O $2
wctomb[2, 0:$#] X
wctomb[2, S:T ] $O $I $0
LOCALE end

The convention here, as with the collate examples, is to first flood a state
table with the most common entry value. I use X to signal an error state, the
commonest flood value. Subsequent lines may overwrite intervals within the
same state.
State 0 of mbtowc handles all single-character codes. State 1 puts all valid

second characters. State 2 simply clears the high-order part of the wide-
character accumulator before returning to state 0. The wide-character code
is zero concatenated with a single character or the first character concatenated
with the second.
State 0 of wctomb simply rotates the wide-character accumulator and enters

state 1. You have to test the more-significant character to determine whether
the wide character represents one character, two characters, or an error.

Shift JIS

Microsoft introduced one of the more popular encodings for the PC several
years ago. Shift JIS is based on the older JIS standards for multibyte and wide-
character encodings. It is somewhat simplified, however, and more restrictive.
Basically, it follows the same philosophy as EUC. The first of a two-character
code has values in the range 0x81–0x9F or 0xE0–0xFC. The second byte must
lie in the range 0x40–0xFC. (IBM’s DBCS encoding is the same, except that
it excludes 0x7F as a second-byte code.) You will find its locale reminiscent of
that for EUC:

LOCALE SHIFT_JIS
NOTE JIS codes with 0x81-0x9F or 0xE0-0xFC
NOTE followed by 0x40-0xFC
SET A 0x81
SET B 0x9f
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SET C 0xe0
SET D 0xfc
SET M 0x40
SET N 0xfc
SET X 0
mb_cur_max 2
mbtowc[0, 0:$#] $@ $F $O $I $0
mbtowc[0, A:B ] $@ $F $R $I $1
mbtowc[0, C:D ] $@ $F $R $I $1
mbtowc[1, 0:$#] X
mbtowc[1, M:N ] $@ $F $O $I $2
mbtowc[2, 0:$#] 0 $F $R $0
wctomb[0, 0:$#] $R $1
wctomb[1, 0:$#] X
wctomb[1, 0 ] $R $O $I $0
wctomb[1, A:B ] $@ $R $O $2
wctomb[1, C:D ] $@ $R $O $2
wctomb[2, 0:$#] X
wctomb[2, M:N ] $O $I $0
LOCALE end

The only significant difference is the need to specify two bands of values for
the first of two characters.

Shift EUC

EUC has been extended to include many more Kanji characters. It defines two
escape characters, 0x8E and 0x8F. Each can be followed by a character in the
range 0x80–0xFF. My understanding is that the subrange 0xA1–0xFE signals
that yet another character follows, as usual. For these escape sequences, I chose
to set the wide-character code as follows:

• 0x8E followed by a single character gets a high-order code of 0x40. The
low-order code is the single character code (0x80–0xA0 or 0xFF).

• 0x8E followed by two characters gets the usual code minus 0x6000.
• 0x8F gets the same code as 0x8E minus 0x80.

This scheme yields non-overlapping bands of code values. With a bit of head
scratching, you can easily verify it. Its locale file is:

LOCALE SHIFT_EUC
NOTE SHIFT_EUC codes with 0xA1-0xFE followed by 0x80-0xFF
NOTE plus 0x8E and 0x8F shifts
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SET E 0xa1
SET F 0xfe
SET S 0x80
SET T 0xff
SET W 0x60
SET X 0
SET Y 0x8e
SET Z 0x8f
SET C E-W
SET D F-W
SET M E-S
SET N F-S
SET A C-1
mb_cur_max 3
mbtowc[0, 0:$#] $@ $F $O $I $0
mbtowc[0, Y ] $I $3
mbtowc[0, Z ] $I $5
mbtowc[0, E:F ] $@ $F $R $I $1
mbtowc[1, 0:$#] X
mbtowc[1, S:T ] $@ $F $O $I $2
mbtowc[2, 0:$#] 0 $F $R $0
mbtowc[3, 0:$#] X
mbtowc[3, S:T ] A $F $R $4
mbtowc[3, E:F ] $@-W $F $R $I $4
mbtowc[4, 0:$#] X
mbtowc[4, S:T ] $@ $F $O $I $2
mbtowc[5, 0:$#] X
mbtowc[5, S:T ] A $F $R $6
mbtowc[5, E:F ] $@-W $F $R $I $6
mbtowc[6, 0:$#] X
mbtowc[6, S:T ] $@-S $F $O $I $2
wctomb[0, 0:$#] $R $1
wctomb[0, S:T ] $R $5
wctomb[1, 0:$#] X
wctomb[1, 0 ] $R $O $I $0
wctomb[1, A ] Z $R $O $2
wctomb[1, C:D ] Z $O $3
wctomb[2, 0:$#] $@+S $O $I $0
wctomb[2, M:N ] X
wctomb[2, S:T ] $O $I $0
wctomb[3, C:D ] $@+W $R $O $4
wctomb[4, 0:$#] $@+S $O $I $0
wctomb[4, S:T ] $O $I $0
wctomb[5, 0:$#] X
wctomb[5, 0 ] $R $O $I $0
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wctomb[5, A ] Y $R $O $2
wctomb[5, C:D ] Y $O $3
wctomb[5, E:F ] $@ $R $O $4
LOCALE end

Tracing this logic is a bit more daunting. I have executed it, on simple
inputs at least, so I have reason to believe it is correct. You will find that it
takes a bit of study to understand. All I will tell you is that states 2 and 4 of
wctomb are almost identical. The former simply performs a bit more checking
than the latter.

State-Dependent Encoding

I conclude with an even messier example. Another popular Kanji encoding
contains “locking” shift states. In the examples so far, each multibyte character
is a self-contained group of one to three characters. The older JIS encoding,
however, contains escape sequences that influence any number of characters
that follow. The shift state stays in effect until a subsequent escape sequence
changes it.
The multibyte functions in the Standard C library are prepared to handle

locking shifts. What causes problems with JIS is the nature of the escape
sequences. The two most important are the sequences ESC+(+B, which shifts to
two-character mode, and ESC+$+B, which shifts back to one-character mode. (I
ignore others for now.) In two-character mode, both character codes must lie
in the range 0x21–0x7E. Here is what you have to specify in the locale file:

LOCALE JIS
NOTE JIS codes with ESC+(+B and ESC+$+B
SET A 0x21
SET B 0x7e
SET X 0
SET Z 033
mb_cur_max 5
mbtowc[0, 0:$#] $@ $F $O $I $0
mbtowc[0, 0 ] $@ $F $O $I $1
mbtowc[0, Z ] $I $1
mbtowc[1, 0:$#] X
mbtowc[1, ’$’ ] $I $2
mbtowc[1, ’(’ ] $I $3
mbtowc[2, 0:$#] X
mbtowc[2, ’B’ ] 0 $F $R $I $0
mbtowc[3, 0:$#] X
mbtowc[3, ’B’ ] $I $4
mbtowc[4, 0:$#] X
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mbtowc[4, Z ] $I $1
mbtowc[4, A:B ] $@ $F $R $I $5
mbtowc[5, 0:$#] X
mbtowc[5, A:B ] $@ $F $O $I $4
wctomb[0, 0:$#] $R $1
wctomb[1, 0:$#] X
wctomb[1, 0 ] $R $O $I $0
wctomb[1, A:B ] Z $O $2
wctomb[2, 0:$#] ’(’ $O $3
wctomb[3, 0:$#] ’B’ $O $4
wctomb[4, 0:$#] X
wctomb[4, 0 ] Z $O $7
wctomb[4, A:B ] $@ $R $O $5
wctomb[5, 0:$#] X
wctomb[5, A:B ] $O $I $6
wctomb[6, 0:$#] $R $4
wctomb[7, 0:$#] ’$’ $O $7+$1
wctomb[8, 0:$#] ’B’ $O $1
LOCALE end

It takes almost 8K bytes of code tables to implement this encoding. Over 2K
of those bytes simply reads and writes ‘B’s. You can argue that this is hardly
an efficient way to do the job. I agree. If you intend to process great quantities
of JIS-encoded text, you should certainly write a specialized function. It will
run much faster and occupy much less space.
What this example demonstrates is that you can avoid writing such a func-

tion, if you so choose. Table-driven finite-state machines can handle a broad
assortment of encodings. They do simple jobs well enough that you may never
need to supplant them. They do the harder jobs well enough to show you what’s
worth recoding when efficiency becomes paramount.

P.J. Plauger serves as secretary of X3J11, convenor of the ISO C working
group WG14, and Technical Editor of The Journal of C Language Translation.
He is currently a Visiting Fellow at the University of New South Wales in
Sydney, Australia. His latest book, The Standard C Library, will soon be
available from Prentice-Hall. He can be reached at uunet!plauger!pjp.
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2. A Standard C Compiler for the Transputer2

Rob E.H. Kurver
PACT

Foulkeslaan 87
2625 RB Delft
The Netherlands

Abstract

The Inmos transputer is a family of processors featuring on-chip point-
to-point communication (link) engines and hardware scheduling support,
designed to be the building block for parallel Multi-Instruction Multi-
Data (MIMD) computers. Both 16- and 32-bit versions exist. The 32-bit
version is available both with and without an on-chip FPU. All trans-
puters feature 2K or 4K of on-chip, fast memory. Designed for parallel
processing, the transputer features a hardware scheduler and hardware
process support, yet has no MMU for memory protection or virtual mem-
ory. This article mentions some of the peculiarities of the transputer, and
discusses some of the problems and decisions involved in the implemen-
tation of the standard-conforming PACT Parallel C Compiler for that
chip.

The Transputer

The Inmos transputer family consists of three series of processors: the 16-bit
T2 series, the 32-bit T4 series, and the 32-bit T8 series with on-chip FPU.
Each series offers the basic combination of a RISC core unit, some amount of
on-chip 1-cycle memory, and the links for intercommunications. Only the T8
series features an on-chip FPU, which runs in parallel with the core unit. The
T4 and T8 series are pin-compatible and thus easily interchangeable.
Because it requires little interface logic to hook up some ROM, and has

on-chip RAM as well as links to communicate with the outside world, the
16-bit version makes for an interesting controller. Its 64K address space is
often large enough to hold both code and data. The 32-bit versions with their
intercommunications, parallel processing support, and optional on-chip FPU
constitute powerful building blocks for parallel computers.
Many transputer applications can easily be designed to run on a variable-

sized set of transputers, resulting in a scalable system. When things get too
2Transputer is a trademark of Inmos.
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slow you simply add a couple of transputers and redistribute your processes
over the new network. By checking for correct behavior and redirecting tasks
elsewhere in case of failures, fault-tolerant systems can be created.
The transputer has a limited instruction set and no addressing modes. Not

all instructions execute in a single cycle, and the instructions are executed from
microcode. Whether it can be called RISC depends on your definition. If care
is taken not to rely on particular hardware characteristics, object code can be
executed on all members of the transputer family or a subset thereof (e.g., 32-bit
processors only).
The transputer instruction set supports creation and manipulation of pro-

cesses. Processes can execute at two levels of priority. A hardware sched-
uler schedules the processes in the low-priority queue in a round-robin fashion.
High-priority processes can interrupt low-priority processes any time and are
not time-sliced.
Synchronized interprocess communication is provided by channels and chan-

nel input/output instructions. The interprocessor communication links appear
to the software just like ordinary channels—all communication details are han-
dled in hardware by the link engines, using DMA.
Two timers are provided, one for each priority level. The low-priority timer

is advanced every 64 µsec (15,625 times per second). The high priority timer
is advanced every µsec (1 million times per second). The timers can be used
to timeout certain (e.g., communication) operations. Processes waiting for the
timer to reach a certain value are placed in a timer queue, again under complete
hardware (and microcode) control.

Memory Management

The transputer has no hardware memory-management unit (MMU). It has no
memory protection or virtual memory—just a big, flat address space. This is
a bit of a problem if we’re going to have a bunch of processes running, each
growing and shrinking stacks and allocating heap space as necessary. We’ve
got a real problem if these processes can be created dynamically and we can’t
determine the amount of stack needed for each of them in advance.
Because of the dynamic nature of this system, we have no other option than

to allocate everything, including stacks, from a heap and allow stacks to grow
and shrink as necessary. When a new process is started, we allocate a chunk
of memory to serve as a stack. Each function prologue checks to make sure the
amount of stack space that function needs, is available. If necessary, the stack
is expanded by allocating a new block of memory and copying the current stack
frame, including the function parameters. This new block is released again at
the end of the function.
When a function decides the stack needs to be expanded, it allocates a little

more than necessary. By doing so it reduces the potential need for functions
called from this function to have to expand the stack again. This granularity,
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as well as the size of the initial stack given a new process, can be set with
compiler pragmas. It is also possible to disable stack checking and expansion.
This can be useful for production code once maximum stack sizes are known
and fixed, and for small leaf functions. For example, most functions in the
standard library are small enough to be compiled without stack checking.
A smart linker can use a call graph to determine whether to check for stack

overflow, and if so, where to check. This way, stack checking can be completely
eliminated. An initial stack of exactly the right size is allocated if the process
is non-recursive and doesn’t make any indirect calls.

Signed Pointers

On the transputer, pointers are signed integers. This allows the faster signed
integer instructions to be used with them. This means that the transputer’s
address range extends from INT MIN to INT MAX (0x8000–0x7FFF on the T2
series and 0x80000000–0x7FFFFFFF on the others). The transputer’s internal
memory is mapped starting at address INT MIN. A number of words at the
very start are reserved for various processor control functions. This poses the
problem of what to do with NULL. Address 0 is right in the middle of the address
range, and on the 16-bit T2 series it’s quite possible that real memory is mapped
at this address.
Note, however, that the 32-bit T4 and T8 series transputers are not likely

to have memory at address 0. If address space is to be mapped contiguously to
real memory, address 0 would point into real memory only if more than 2GB
were installed. Although not impossible, it is very unlikely for a node in a
parallel machine to contain this much memory. If memory is scattered over the
address range, it is easy enough to avoid mapping to address 0.
The transputer itself uses INT MIN as its nil pointer to terminate the various

queues it maintains. However, the problem with using anything other than 0 for
NULL, despite X3J11’s efforts to permit this, is that there is software out there
that assumes that all the world’s a VAX (for example), and a NULL pointer is
represented by a zero-bits pattern. (The problems of arrays of pointers allocated
with calloc or initialized with memset come to mind.)
Therefore, we decided to define NULL as 0 and take care to never allocate

anything at that address. This involves a straightforward check in malloc and
related functions. This is hardly a concern for the 32-bit T4 and T8 series, which
are unlikely to have memory at address 0 anyway. It is deemed acceptable on
the 16-bit T2 series.

Expression Evaluation

The transputer has but a few registers. The most important ones are:

Iptr – The instruction pointer (program counter)
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Wptr – A pointer to the current workspace (stack frame)

Areg, Breg, Creg – Core expression-evaluation stack

FAreg, FBreg, FCreg – FP expression-evaluation stack (T8 series only)

The expression-evaluation stack consisting of Areg, Breg, and Creg is used
to evaluate expressions and pass arguments to functions. By loading something
in the Areg, the old values of Areg and Breg are moved to Breg and Creg
respectively, and the old value of Creg is lost. Similarly, popping the Areg
moves the old values of Breg and Creg to Areg and Breg, respectively, and loads
Creg with an indeterminate value. Transputer instructions get their operands
(up to three for some instructions) from the stack and place their results back
there.
The T8 series has a similar evaluation stack for floating-point operands.

Each stack register can hold either a single- or double-precision value, and is
tagged as such. This operand tag is used by the FPU to determine whether to
operate in single- or double-precision.
One of the advantages of this small register set is that it results in a fast

context switch, which is very important for a processor running many processes
in parallel. (Hundreds of processes is normal.) Low-priority processes can only
be descheduled at particular points, at which time the evaluation stack is empty.
So the typical context switch has no registers to save except the Iptr and Wptr.
(A high priority process can interrupt a low-priority process at any time. It
does save and restore the evaluation stack(s).)
Efficient code generation for this evaluation stack requires finding a sub-

expression-evaluation ordering that allows subexpression results to be kept on
the stack as much as possible. The PACT Parallel C Compiler uses DAGs
(Directed Acyclic Graphs) for the intermediate representation of a basic block.
In addition to allowing a number of interesting optimizations, DAGs also map
quite easily to the transputer’s stack architecture. When generating transputer
code for the DAG, the compiler walks the DAG twice. The first pass attributes
each DAG node with stack requirements: the number of core and FP stack
registers needed to evaluate the node, and the number of stack registers left
on the core and FP stacks after the evaluation. On the second pass, actual
transputer assembly code is generated. The stack requirements information is
used to determine when to spill values to memory.
It turns out that many basic blocks can effectively be evaluated on the

evaluation stack without requiring any spills at all. Function calls are big
spoilers, however. They require everything on the stack to be saved and later
restored. We’ve found the evaluation stack to be relatively easy to generate
good code for, and to give satisfactory performance.
The first few words of function arguments are passed on the evaluation stack.

Functions return their results on the evaluation stack, ready for further use.
Inline assembly is provided by a pseudo-function with the following prototype:
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void __asm (const char *s, ...);

The first argument is emitted verbatim to the assembler file. The other
arguments, if any, are evaluated as if they were function arguments. This makes
it very easy to use C expressions as the arguments for transputer instructions.
If a transputer instruction returns a value, asm can be cast to a function
returning an object of the appropriate type and the result can be used as any
other value returned by a function. This way, function-like macros can be
defined that expand to inline transputer assembly, without the user being aware
of it. For instance, the clock function has been implemented as follows:

#define clock() (((clock_t (*) (const char *)) __asm) \
("ldtimer"))

Parallel Processing

The transputer is meant to be used in parallel computers. As such, it has
hardware support for process creation and control, as well as for interprocess
communication. Interprocessor communication is simply a special case of in-
terprocess communication, largely transparent to the programmer. A typical
transputer program consists of a large number of processes, dynamically created
and terminated, distributed over a number of processors.
Although parallel processing support could be provided through a library

containing functions to start processes, engage in communication, etc., we felt
it was absolutely crucial to provide the proper level of abstraction necessary to
write complex programs consisting of many communicating processes. There-
fore, we decided to extend the C language with constructs to spawn child pro-
cesses and to engage in communication. These constructs compile directly to
transputer instructions and suffer no function call overhead. These extensions
are described elsewhere3.
The most important new construct is the one that starts child processes.

This construct, in its most complex form, looks like this:

par ( exp-1 ; exp-2 ; exp-3 ) {
statement-1
statement-2
. . .
statement-n

}

The parenthesized expressions following the par keyword are collectively
called the replicator, and look just like the controlling expressions in the C for
construct. Each expression in a replicator is called a replicator expression. All

3For a description of these parallel extensions refer to A Parallel Extension to ANSI C by
the same author in The Journal Volume 2, number 4 page 267.
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variables that occur in the replicator expressions are called replicator variables.
The construct above is called a replicated par. Each statement in the replicated
par body is started as a child process. The processes 1–n are collectively called
a process group. The replicator serves to start every process in the process
group once for every iteration through the replicator. For every replication,
the process group gets a unique copy of all replicator variables. For example,
to start 5 processes calculating and displaying x2 and 5 more calculating and
displaying x3 for x = 1 to 5, the following could be used:

par (i = 1; i <= 5; i++) {
printf("%d**2 == %d\n", i, i*i);
printf("%d**3 == %d\n", i, i*i*i);

}

In this example the process group consists of two processes each doing a
simple calculation and printing the result. The replicator variable i is copied
to each process group and is shared between the two processes in each process
group.
For each process group started in a replicated par a block of memory, al-

located from the heap, contains the stacks for all processes in the group. This
same block of memory contains the instantiation of the replicator variables for
this process group, as well as a pointer back to the parent process’ workspace.
Inside processes the normal C scope rules apply. That is, each process has
access to any and all variables that are defined in enclosing scopes. Access
to variables in parent processes involves traversing the dynamic chain. In the
following example, variable ch resides in the parent workspace and can only be
accessed by traversing the chain:

ch = getchar();
par (i = 0; i < 10; i++) {

process_char (ch, i);
}

Another language extension is the addition of the channel type. This al-
lows channels to be declared as simply as other variables, and allows for simple
and efficient interprocess communication. Using and setting an operand with
channel type translates directly into channel input and output transputer in-
structions.

Miscellaneous Issues

The transputer has no interrupts (except for a high-priority process interrupting
a low-priority process) or exceptions. All error signalling is done with one single
error flag. This flag is set after (signed) integer overflow and a few special test
instructions (e.g., check if array index is within bounds). The error flag can be
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used to trap programming errors in a number of ways. The first is to simply
check the flag after certain operations to see if the flag got set. If so, do whatever
is necessary to fix things. It is also possible to stop the process when the error
flag turns out to be set, allowing for somewhat graceful system degradation as
processes encounter errors. Meanwhile, the transputer keeps executing its other
processes. Finally, it is possible to configure the transputer to halt when the
error flag gets set. This is mostly useful for debugging purposes or in certain
fault-tolerant systems.
The compiler has to support the various ways in which the error flag may

be used. It may have to insert checks after certain transputer instructions
automatically to detect errors as soon as possible and raise a software signal. If
the error flag is not used at all it is possible to replace some checked instructions
(instructions that set the error flag on overflow and similar conditions) by faster,
unchecked instructions. The PACT Parallel C Compiler has five error flag
modes:

1. Don’t pay any attention to error flag.

2. Be sure not to set the error flag erroneously.

3. Check error flag after certain operations and call exception handler.

4. Check error flag after certain operations and stop process.

5. Halt processor as soon as error flag is set.

The T8 series transputers have a similar flag to detect FP errors. This FP
error flag must be explicitly tested, and may be used in the same way as the
core error flag.
Processes running at low-priority can be descheduled at certain instructions

only. The instructions that cause descheduling are the unconditional jump and
the loop instructions, plus a few special parallel processing support instructions.
These instructions normally occur at least once in each loop, guaranteeing that
no process can loop forever and consume all processor cycles. Sometimes, how-
ever, it may be necessary or advantageous to make sure a particular piece of code
will not be descheduled. The two ways to do this are to run it at high-priority,
or to make sure the code does not contain any descheduling instructions. The
PACT Parallel C Compiler supports a compilation mode where every uncon-
ditional jump is replaced by a conditional jump preceded by an instruction to
ensure the conditional jump is always taken. This is slightly slower, of course,
but allows code to be made slightly more atomic (high-priority processes can
always interrupt the low-priority process) without resorting to running it at
high priority.
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Conclusion

The transputer is somewhat of a strange beast. Its unique parallel processing
capabilities provide a powerful parallel programming platform but also resulted
in such peculiarities as signed pointers, no memory protection, an evaluation
stack instead of registers, etc.
The stack checking and expansion system, although expensive, is absolutely

crucial for parallel program development. Especially on the transputer, where
stack overflows are not in any way trapped or signalled. They just overwrite
some other process’ data.
The expression evaluation stacks are relatively easy to generate good code

for and allow for minimal context switch delays.
It has turned out to be possible to provide a standard-conforming C compiler

that also gives access to the transputer’s unique parallel processing capabilities
in an intuitive manner. The language extensions maintain the spirit of C quite
well, and the resulting Parallel C language provides a powerful programming
tool.
The current generation of transputers basically stems from 1986 and, as

such, doesn’t perform too well compared with todays RISC processors. The
next generation of transputers, the T9000 series, is expected to become available
later this year or early next. The T9000 will be a superscalar architecture
performing at some 200 MIPS and 25 MFLOPS peak (115 MIPS, 18 MFLOPS
sustained). It will also be object code compatible with the current generation
of transputers. It will have some form of memory protection, 16KB of on-chip
cache, and faster and better interprocessor communication. This should make
the T9000 a very interesting processor indeed.

Rob Kurver is the founder and president of PACT. He can be reached elec-
tronically at rob@pact.nl. Pact is a developer of transputer software develop-
ment systems.
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Abstract

The Numerical C Extensions Group (NCEG) was formed at a meeting
in May 1989. Since then there have been four more meetings, the most
recent of which was held at Norwood, Mass., in March 1991. A major
goal of this meeting was to identify subcommittees that could produce
documents for public comment by the end of the January, 1992 meeting.
We also discussed issues which resulted from our liaison with X3J11, ISO
WG14, X3J16, X3H5, IFIP/WG 2.5, and X3T2. In this article I report
on the outcome of that meeting and on the status of NCEG issues in
general.

Introduction

The fifth meeting of the Numerical C Extensions Group (NCEG) occurred
March 4–5, 1991. It was hosted by Analog Devices at their facility in Norwood,
Mass. The primary purpose of the meeting was to continue refining the propos-
als of the active subcommittees. The subcommittees presenting at this meeting
were:

Subcommittee Primary Contact Secondary Contact
Aliasing Bill Homer Tom MacDonald
Array Syntax Frank Farance Tom MacDonald
Complex Tom MacDonald Bob Allison
Extended Integers (new) Randy Meyers
Floating-point Extensions Jim Thomas Dave Hough
Variable-length Arrays Dennis Ritchie Tom MacDonald

Considerable agenda time was devoted to liaison activity, especially for the
Language Compatible Arithmetic Standard (LCAS) being produced by X3T2,
and the C language binding to the parallel execution model being developed
by X3H5 (formerly the Parallel Computing Forum). Formal presentations were
made by representatives from X3T2 and X3H5.

20
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The primary goal of committee NCEG is to produce a professional, high
quality Technical Report (TR) that defines extensions to C such that C will
be more attractive for numeric and scientific programming. Recently X3 voted
to accept the project proposal for NCEG and approved the creation of the
technical committee X3J11.1, a working group within X3J11. Since NCEG is
now an official ANSI working group, our procedures will have to be a little
more formal. For example, only paid-up X3J11 and X3J11.1 members will be
allowed to cast formal votes. In the past we have striven for consensus to resolve
issues. Producing a TR for public review requires that we make decisions about
issues that are currently unresolved. Most likely this will happen by a two-thirds
majority vote. We have also been recognized by the ISO C committee WG14, so
NCEG has agreed to provide that committee with copies of relevant documents.

Liaison Activity

Committee X3H5

NCEG provided several hours of agenda time to Bob Gottlieb (HP-Apollo’s
representative to X3H5) so that he could present their proposed C binding. This
talk was intended to both educate NCEG about X3H5’s current status and to
solicit input from NCEG and X3J11 about how to make the proposed language
binding better. This prompted NCEG to reactivate its parallel subcommittee
in order to collate responses to X3H5.
The X3H5 parallel-programming model is too extensive to cover in detail

here. The following is a very brief and simplified overview of their model.
The model is based on a shared-memory architecture rather than on a dis-

tributed-memory. A parallel program begins executing with a single process
(just like a serial program) called the base process. When the base process
encounters a parallel construct, a team of processes is formed. Inside a parallel
construct all code is executed by every process in the team. Typically there
is at least one work-sharing construct inside a parallel construct that provides
the opportunity to distribute the work among the processes in the team. All
processes are blocked from leaving the work-sharing construct until all processes
have finished their share of the work. When all have finished, they continue
executing the code following the end of the work sharing construct. This pat-
tern continues until the end of the parallel construct is encountered. Again,
processes are blocked until all have finished executing their code inside the par-
allel construct. Then the base process continues executing in a serial fashion
until another parallel construct is encountered. Nested parallelism occurs when
a process executing inside a parallel construct encounters another parallel pro-
cess. At that point the process becomes a base process for the nested parallel
construct.
The set of data objects accessible to a process is called the data environment

for that process. An object that can only be accessed by a single process is
private to that process. An object that can be accessed by two or more processes
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is shared between the processes. Synchronization is provided to control access
to shared objects and coordinate execution among processes.
The language binding specifies new syntax (where required) and semantics

for all of the concepts in the execution model. The C binding is very new and
many issues are still being addressed. The following is a brief overview of that
binding:
New keywords are proposed. They are:

parallel – Identifies the beginning of a parallel construct. The C punctuators
{ and } delineate the range of a parallel construct.

pfor – Identifies an iterative work-sharing construct. This is intended to be
similar to a C for loop except that each iteration is a unit of work that
can execute in parallel.

pstatements – Identifies a non-iterative work-sharing construct. Each state-
ment inside the pstatements is a unit of work. The following fragment
identifies three separate units of work:

pstatements { /* work1, work2 and work3
can execute in parallel */

work1();
{ /* work2 start */

inner1(); /* inner1 must complete */
inner2(); /* before inner2 begins */

} /* work2 end */
work3();

}

pwait – Implements the non-iterative synchronization between units of work.
The operands of pwait are statement labels. For example:

pstatements { a:f1(); b:f2(); pwait(a,b); f3(); }

critical – Implements the critical section notion of the model. A critical
section is a common concept within the field of parallel programming.
However, I could not find any definition for it in the model document.

stkextern – This appears to be implementing some notion of sharing stack
data across compilation units by name. I am convinced that this idea
needs closer examination. The C language binding specification states:

“Any place that extern is used in the C standard should be
interpreted [as] referring to stkextern also.”

Certainly this is intended to be confined to the declaration of data objects
and not the declaration of functions. The C standard requires a single
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definition without the extern keyword to exist in some compilation unit.
It is not clear if there is a similar mechanism used to actually define the
stkextern object.

lock, event, counter – These are type-specifiers. Objects declared to be of
these types are not permitted to be initialized.

There are also a number of new library routines:

int init lock ( lock );
void lock ( lock name, LOCK WAIT );
int lock ( lock name, LOCK NOWAIT );
void unlock ( lock name );
int is lock ( lock name );

int init event ( event );
void post event ( event );
void clear event ( event );
void wait event ( event );
int is posted ( event );

int init ctr ( counter, iv, inc );
void post ctr ( counter, value );
void wait ctr ( counter, value );
long value of ctr ( counter );

where iv is the initial value of the arithmetic sequence, inc is the increment of
the arithmetic sequence, and value is one value of the arithmetic sequence.
My initial reaction to this proposal is they do not need so many new key-

words. For instance, the new type-specifiers could be typedef names defined in
a new header (e.g., <parallel.h>) and called lock t, event t, and counter t,
respectively. (This is similar to the object type fpos t defined in the header
<stdio.h>.) Otherwise, these names will only unnecessarily usurp the user’s
name space.
It also seems that other keywords, such as pwait and critical, might be

disguised as macros. There seems to be a problem with having two functions
named lock, one returns void and the other returns an int. And I’m not
convinced that stkextern is necessary at all, however, I must admit to not
understanding all the issues being addressed by this new keyword either.
Again I should stress that the proposed C binding is very new and this is

just an initial glance. Their execution model is intriguing. A good language
binding will provide a nice parallel environment for shared memory machines.
I look forward to following their progress.
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Committee X3T2

NCEG was fortunate to have Martha Jaffe attend our meeting and talk to us
about X3T2’s efforts to create a “Language Compatible Arithmetic Standard”
(LCAS) across architectures and languages. Some of the highlights of LCAS
follow.
LCAS is incompatible with Standard C because LCAS requires sqrt to raise

a visible exception if its argument is a negative number. Standard C defines
the (somewhat controversial) errno behavior which explicitly states that no
visible exceptions are raised when sqrt executes. The sqrt function is the only
function defined in the <math.h> header that is addressed by the LCAS.
The LCAS is intended to be a software specification. This is in contrast

with the IEEE floating-point standard which is primarily a hardware standard
(although it can be implemented in software). However, there are a few areas
in the LCAS specification that dictate hardware support for an efficient im-
plementation. For instance, the LCAS requires notification of operations that
produce integer overflow. [Ed. In practice, this requirement is more of a prob-
lem for LCAS and C than the similar one for sqrt. A separate LCAS-oriented
math library would suffice for sqrt, while notification on integer overflow is a
direct language change and is difficult to implement efficiently on many popular
architectures.] Another issue is that the floating-point accuracy requirements
rule out architectures that do not use a guard bit (e.g., Cray Y-MP). Only the
signed integral types signed int and long int can conform to the LCAS. All
of the other integral types do not conform. All three floating types float,
double and long double can conform.

Committee X3J16

Committee X3J16 (C++) has inquired about any possible conflicts with the pro-
posed <complex.h> header as a header by this name also exists in C++ imple-
mentations. C++ headers are processed differently than C headers due to issues
with name mangling and overloaded functions. For this reason C++ headers
often reside in a different directory than C headers. Therefore, there appears to
be no obstacle to having <complex.h> in both standards some day. It should
be noted that the proposed NCEG approach to complex arithmetic is different
from the C++ overloaded operator and function approach. [Ed. This diver-
gence may be problematic to those vendors that provide a combined C and C++
programming environment.]

Variable Length Arrays

There are two competing proposals for adding Variable Length Arrays (VLA)
to C. One proposal is described in an article Variable-Size Arrays in C by
Dennis Ritchie in the September, 1990 issue of The Journal, but was not pre-
sented at this meeting. (Ritchie’s proposal is not discussed in this article.) The
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other proposal (developed by Steve Collins at Cray Research) was presented at
this meeting. Cray’s proposal is similar to the GNU C implementation and is
described in an article Variable Length Arrays in the December, 1989 issue of
The Journal. The following is a list of issues raised with the Cray Research,
Inc., (CRI) proposal at the March meeting.

VLAs as Structure Members

The first discussion revolved around allowing structure and union members to
have VLA types.

Question: Should there be some way to declare a VLA member?

Yes: 11 No: 1 Undecided: 4

There seems to be considerable sentiment among NCEG members for adding
this feature. Two possibilities were briefly discussed:

Within Structure Outside Structure

int n = 5;
struct tag { struct tag {

int n; int m;
double a[n]; double a[n];

} x = { 5 }; } x;

The committee was much less decisive on which of these approaches was
preferred.

Question: Which method would you prefer?

Within Structures: 6 Outside Structures: 3 Undecided: 7

A comparison of both approaches is needed in order to determine which
method is best.

The sizeof Operator

The sizeof operator does not produce a compile-time constant when its operand
has a variable length array type. This seems to be generally acceptable.

Compatible VLA Types

The following are all compatible types:

double a[m][n];
double b[x][y];
double c[6][n];
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implying that the following pointer to a two-dimensional array of doubles

double (*p)[m][n];

is assignment compatible with the addresses of all three arrays:

p = &a; p = &b; p = &c; /* all acceptable */

Of course there is a requirement that the execution-time values of x and m
must both be 6, and n and y must have the same value. No objections were
raised about these semantics.

Local static VLAs

Although there is no issue with prohibiting local static VLAs such as:

int n = 12;

{
static a[n]; /* error */

}

there was sentiment for allowing local static pointers to VLAs as follows:

int x[12];
int n = 12;

{
static (*p)[n] = &x; /* OK */

}

with n being captured each time the block is entered but with the value of p
being initialized to the address of x once only, at program startup. The proposal
will be changed to reflect this new behavior.

Lexical Ordering

The lexical ordering issue is by far the most controversial. The following exam-
ple is used to explain the issue. Which n does the VLA declaration of parameter
a bind to?

int n = 5;

void f(int a[n][n], int n) { /* which ‘n’ ? */
/* ... */

}
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According to the Cray Research proposal, the VLA declaration binds to
the formal parameter that is lexically after parameter a. This is controversial
because it forces two passes over the parameter declarations. The first pass
identifies all parameters that are VLA declarations and assigns them a universal
type that allows the VLA expression to be parsed. The second pass binds
the identifiers found in VLA expressions to their definitions. This permits an
identifier in a VLA expression to be defined lexically after that expression.
The semantics are defined this way for the benefit of the programmer. The

proposal maintains that programmers should not be burdened with worrying
about the order in which parameters are specified. There are no other cases
where the parameter order is important. The lexical ordering issue only exists
for parameters because of the new prototype syntax introduced into Standard C.
If programmers are burdened, they may write them with old style declarations
such as:

void f(a, n)
int n;
double a[n];

{
/* ... * /

}

where the lexical ordering is not a problem. Another opinion is that program-
mers will learn to write their programs in the lexically correct way.

Enumeration Constants vs. Formal Parameters

The lexical ordering issue raises sub-issues such as the following:

enum { n = 5 };

void f(int a[n][n], int n) {/* well defined in Std C */
/* ... */

}

This example is well defined in Standard C because the enumeration con-
stant n is used in the declaration of parameter a. Therefore, the rule is, “If an
identifier is a constant it binds in the first pass over the parameter list.” This
means that in the following example:

enum { r=3, s=4, t=5 };

void f(int n, float x[][n+t], int t); {/* enum used */
/* ... */

}
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the parameter x uses the enumeration constant t (bound in the first pass) and
not the lexically following parameter.

VLAs in Function Prototypes

With the current proposal, all of the following prototype declarations are com-
patible.

extern int n;
void f(int a[n]); /* ‘n’ is in scope */
void f(int a[*]); /* ‘*’ means VLA */
void f(int a[x]); /* no ‘x’ in scope */
extern int x;

The issue here surrounds the use of x before it is declared. Should this be
an error? Some members of the committee felt that the [*] syntax or a visible
identifier should be required; otherwise, it is an error. The implication of this
change is that two passes will be required over function prototype declarations
(i.e., not a definition) with VLA parameters to determine if the identifiers in
the VLA size expression are visible.

void f (int a[n][n], int n); /* OK */
void g (int b[n][n]); /* error */

The current proposal only requires two passes over a function prototype
definition (i.e., with a function body) and not a simple prototype declaration.
Identifiers that are part of the size of a VLA expression in function prototype
declarations are assigned the universal type, just as they are in function proto-
type definitions. However, no second pass is made over the parameters in the
prototype declaration because they go out of scope at the end of the prototype.
This new requirement forces two passes over a simple function prototype dec-
laration just to issue these new error messages. In general the [*] seems to be
the most widely accepted and least controversial syntax.

Question: Which notation is preferred to denote a VLA parameter
(in a prototype)?

Arbitrary [x] (where x can include undeclared names): 0
[*]: 11 Undecided: 3

Type Definitions

The committee agreed that the size of a VLA type does not change if a variable
used to define the type is modified.
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void f(int n) {
typedef int A[n]; /* A has size n, n evaluated now */
n++; /* Does not affect type of A */
{

A a;
int b[n]; /* b and a have different sizes */

}
}

Initialization

There was no disagreement with disallowing initialization of VLA objects.

extern int n;

main () {
int a[n] = { 1, 2 }; /* error - can’t init VLA */
int (*p)[n] = &a; /* OK - p is a scalar */

}

Bypassing VLA Declarations

Another issue involves entering a block and bypassing the VLA declaration.
The current proposal states that this is undefined behavior if the VLA object
is referenced. These semantics are generally agreed upon.

void f( int n ) {
int j = 4;
goto L3; /* error - bypassing VLA declaration */
{

double a[n];
a[j] = 3.14;

L3:
a[j-1] = 0.1;
goto L4; /* OK - stays within scope of VLA */
a[2*j] = 1.4;

L4:
a[j+1] = 1.4;

}
goto L4; /* error - bypassing VLA declaration */

}

Another possible way of bypassing a VLA declaration is with a switch state-
ment. Of course setjmp and longjmp provide their own unique problems with
leaving dynamically allocated memory around. If a longjmp causes abnormal
termination of a block with an allocated VLA, memory may be lost.
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Floating-Point Extensions

New Relational Operators

The new relational operators, !<>=, <>, <>=, !<=, !<, !>=, !>, and !<> are in
the current proposal principally to support NaN-cognizant comparisons. (The
NaN concept is part of the IEEE Floating-point standard and stands for “Not
a Number.”) Applying comparison operators to floating-point values requires
thinking about the NaN case. Prior to IEEE arithmetic, two numbers always
compared greater than, equal to, or less than each other. The invention of
NaNs introduces the concept of unordered comparisons. The following table
shows their effect both in the number of operators and comparison types. (The
first six operators are from Standard C. The rest are NCEG inventions. In the
table, T represents True and F is False.)

Relational and Equality Operators
Less Than Equal To Greater Than Unordered

< T F F F
<= T T F F
> F F T F
>= F T T F
!= T F T T
== F T F F
!< F T T T
!<= F F T T
!> T T F T
!>= T F F T
<> T F T F
!<> F T F T
<>= T T T F
!<>= F F F T

Since a NaN does not even compare equal to itself, it is possible to use
something like the following:

a != a || b != b || a <= b

instead of the operator !>. However, the new operators are provided because
such conditional expressions are too awkward.

Widest-Scanned Semantics

There was a good deal of discussion about the meaning of widest scanned. The
idea behind this is to capture as much precision as the widest type present.
Therefore, if the type of one operand increases in range or precision then all
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operands should increase, including floating-point constants. For example, as-
sume widest-scanned semantics are in effect for the following example:

float f1;
float f2;
float f3;

f1 = f1 + f2 + f3; /* all arithmetic done as ‘float’ */

Now if the declaration of f3 changes to:

long double f3;

and widest-scanned mode is in effect, then all of the operations are evaluated in
long double arithmetic including f1 + f2. The following operators terminate
the widest-scanned semantics: function call, cast, relational, equality, logical
AND, logical OR, assignment, conditional, sizeof, and comma. A question
was raised about the semantics of embedded assignments. In the following
example:

f1 = f1 + f2++ + f3;

it is not clear how f2++ is evaluated since assignment operators terminate
widest-scanned semantics. One possible interpretation is that f2 is updated
with a float value but the value of the entire expression f2++ is evaluated as
a long double.

Floating-point Environment

There was some sentiment for allowing statements such as:

y = x * 1;

to simply be optimized to:

y = x;

even if x might be a signaling NaN. The issue is that the multiply operation
causes the signal to be raised while the simple memory reference need not. The
motivation for this is most programs do not need strict signaling NaN semantics.
Another optimization issue involves examples such as:
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void f ( ) {
void g(void);
double x = 0.1;
double y = 0.1;
double z;

z = x + y;
g();
z = x + y;

}

The two x + y expressions cannot be considered as common subexpressions
by the compiler because the call to function g might change the rounding modes
and produce a different answer, or might check for an inexact computation. The
proposed solution to this problem is to allow a #pragma fenv access off or
#pragma fenv access on to be placed prior to the definition of f. This flag
tells the compiler that g (or some function invocation within g) may examine
or change the floating-point environment (on), or must not examine or change
the floating-point environment (off). For instance, if g changes the rounding
mode then both x + y expressions may produce different results including the
raising of exception flags. The directive #pragma fenv access off does not
forbid g from temporarily changing the environment but it must change it back
before returning control to f. The proposed default of #pragma fenv access
off is counter to the strict letter of the combined Standard C and IEEE FP
requirements.

New Math Functions

Although their definitions are not complete the following library functions are
expected to be added:

acosh aerf atanh erfc hypot max
acot annuity compound erf lgamma min
acsc asec cot expm1 log1p sec
aerfc asinh csc gamma log2 solve

There is some question about the behavior of max and min if NaNs are
present since they have no notion of order. One proposal is to just ignore them.
If all of the operands are NaNs then both max and min return a NaN. Another
way to view this is to say that a NaN is minimal for the max function and
maximal for the min function.

NaN Names

The names for NaNs are still open to debate, but the draft document now uses
NAN and nan as prefixes for quiet NaNs, and NANS and nans as prefixes for
signaling NaNs, uniformly.
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Array Syntax

The Array Syntax subcommittee is still unable to converge on a single approach.
There does seem to be a focus, though, on only two approaches. The first ap-
proach is based largely on the C* language as developed by Thinking Machines
Corporation. A major enhancement provided by C* is a way of declaring par-
allel data. For example:

shape [512][512]Ashape;

uses the new keyword shape to define a parallel shape named Ashape. The
declaration of a parallel shape is similar to an array except that the dimensions
are specified to the left of the name. Parallel variables can then be declared
with that shape.

double:Ashape p1, p2, p3;

This declares three parallel variables p1, p2, and p3 each having the shape
Ashape. Parallel variables can be used in ways similar to arrays through the
use of left-indexing:

[2][2]p1 = [3][3]p2;

but also provide access to the whole parallel variable. This makes parallel
variables first-class objects because an operation is performed on every element
of the parallel variable.
The new keyword with specifies the current shape for parallel data execution

within the with body. For example:

with (Ashape) {
p1 = p2 + p3;

}

The next statement causes every element of parallel variable p3 to be added to
corresponding elements of parallel variable p2 and the result is assigned to p1.
The array syntax proposal presented by Cray Research has similarities to

that in Fortran-90. However, there is no access to whole arrays without the [;]
syntax. The following example parallels that of C* above:

typedef double A[512][512];
A p1, p2, p3;

{
p1[;][;] = p2[;][;] + p3[;][;];

}
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The Cray Research proposal does not add any new declaration syntax or
statements but does force the usage of the [;] syntax to gain access to whole
arrays. This is a fundamental difference between the two proposals. A vote was
taken to determine the interest in declaring parallel data.

Question: Should a distributed memory architecture model be part
of the array syntax proposal?

Yes: 13 No: 1 Undecided: 3

Question: For an explicitly declared parallel object, should parallel
accesses be implicit (e.g., name, not name[;])?

Yes: 9 No: 5 Undecided: 4

There was also some support expressed for documenting both approaches
to array syntax in the TR.

Aliasing

At the initial NCEG meeting, aliasing was cited as the highest priority issue.
The solution being explored to the aliasing problem in C introduces the concept
of a restricted pointer. For the most part the restricted pointer solution to
the C aliasing problem seems to be fairly well received. However, there are
some severe reservations being expressed by a few individuals who feel that it is
inappropriate to solve the aliasing problem by enhancing C’s typing mechanism.
The motivation and a more complete description of restricted pointers is

presented in the article Restricted Pointers in the December, 1990 issue of The
Journal. Essentially, a new keyword restrict is introduced that can be used
to qualify a pointer declaration.

double *restrict p; /* p is a restricted pointer */

The concept is that the compiler may treat a restricted pointer, for the
purpose of alias analysis within its scope, as if it points into a unique entity.
This is intended to be in the same sense as an array being a unique entity, or
a call to malloc returning a pointer to a unique entity. This unique entity is
called an associated array. The compiler is at liberty to assume that a file-scope
restricted pointer points into a unique associated array (as if it were allocated
by malloc) upon entrance to main. If the restricted pointer has block scope
then for each execution of the block the compiler may assume it points into
a unique associated array that is allocated upon entrance to the block. The
assumption that a restricted pointer points into an associated array is only
used by the compiler to determine that two lvalues reference disjoint objects.
Of course an implementation is at liberty to ignore all assumptions implied by
the use of the restrict keyword.
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Restricted Formal Parameters

The formal definition allows the compiler to assume that a restricted pointer
points into an associated array that was allocated upon entrance to the block.
This means the compiler can assume that a formal parameter that is a restricted
pointer cannot point into the same array as a file scope unrestricted pointer
when the function begins execution. This is a change from the last NCEG
meeting. This is a direct result of the formal definition and has the benefit of
allowing more optimizations. There were some objections raised to this implicit
disjoint nature between a formal parameter that is a restricted pointer and a
file scope unrestricted pointer. In defense of the formal definition, it is easy to
understand, it is consistent, and it is quite concise.

New Syntax

The current proposal introduces new syntax for formal parameters that are
restricted pointers:

void f( int x[restrict][100] )

declares parameter x to have type “restricted pointer to an array of 100 ints.”
This is equivalent to:

void f( int (*restrict x)[100] )

which contains the cryptic “(*restrict x)[100]” pointer declaration. There
were no objections to this new syntax. All in all there seems to be some con-
vergence on restricted pointer semantics.

Extended Integer Range

There is a new subcommittee studying extended integer ranges. Some vendors
provide a long long integral type. NCEG has formed a new subcommittee
to study its effect on C. The motivation for a long long type is to provide a
64-bit integral type. An argument can be made that most implementations can
use the following mapping:

short 16 bits
int 32 bits
long 64 bits

but there is concern that there are too many existing applications that assume
type long is 32 bits. (I still remember when someone asked X3J11 to standard-
ize the size of a word at 16 bits.) Some of the areas of the C standard that are
affected are:
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• New <limits.h> names: LONGLONG MIN, LONGLONG MAX, ULONGLONG MAX.

• Suffixed constants with type long long such as 3LL.

• Suffixed constants with type unsigned long long such as 4LLU.

• Larger, optionally suffixed constants such as 9223372036854775807U.
• Usual arithmetic conversions.
• Controlling expression of switch having long long type.

• Preprocessor #if expressions (currently evaluated as long or unsigned
long).

• Library issues concerning ∗printf, ∗scanf, strtoll, strtoull, llabs,
lldiv t, and lldiv.

Complex Arithmetic

The complex proposal is rapidly approaching closure and there are no serious
issues left to be resolved. The committee accepted three new macros for creat-
ing complex numbers: CMPLXF, CMPLX, and CMPLXL that create complex values
with types float complex, double complex, and long double complex, re-
spectively.
The committee also accepted a change to the usual arithmetic conversions

that allows a scalar floating operand of the operators /, *, +, -, ==, and !=
to remain a scalar type even if the other operand has a complex type. The
motivation for this change is that promoting a scalar operand to a complex
type introduces a zero imaginary part that sometimes leads to a different result
than is expected. For example:

(3.0, +∞) × (2.0)
=> (3.0, +∞) × (2.0, 0.0)
=> (3.0× 2.0 − +∞× 0.0, +∞× 2.0 + 3.0× 0.0)
=> (6.0 − NaN, +∞)
=> (NaN, +∞)

which is not the same as the expected result:

(6.0, +∞)

Issues needing further investigation include:

• Providing a j suffix that is identical to the i suffix so that complex con-
stants appeal to both engineers and mathematicians.
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• Explicitly state that complex library functions do not interact with the
troublesome errno macro.

• There is no definition of the result of many complex library functions
when an argument contains a real or imaginary part that is infinity, NaN,
and sometimes a signed zero.

Miscellaneous

I have recently setup an E-mail distribution list at nceg@cray.com. (This is
separate from that used by X3J11, which is currently at x3j11@sri-nic.arpa.) If
you would like to be added to this facility then send me your E-mail address.
There is considerable sentiment expressed within NCEG for some form of

lightweight function overloading to alleviate the name space explosion occurring
in the math and complex libraries. However, no proposals have been submitted
yet.
Due to its immediate acceptance by NCEG, the initializer enhancements

proposed by David Prosser (based on work by Ken Thompson) are easily over-
looked. Essentially, this provides a capability for initializing individual members
of structures and unions, and individual elements of arrays. For example:

struct {
int m1;
float m2;
char m3;

} x = { .m2=3 };

double a[5] = { [4]=3.14, [2]=0.1 };

The initializer for x only explicitly initializes member m2. Similarly the
initializer for a only explicitly initializes elements 2 and 4. The others are all
zero.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is Cray Research Inc’s representative to X3J11 and a major
contributor to the floating-point enhancements made by the ANSI C standard.
He specializes in the areas of floating-point, vector, array, and parallel process-
ing with C language and can be reached at (612) 683-5818, tam@cray.com, or
uunet!cray!tam.
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4. C/C++ Compatibility

Paul Kohlmiller
Control Data Corporation

Abstract

This paper gives a brief overview of some compatibility issues between C
and C++. The perspective is from the X3J16 committee charged with
producing an ANSI standard for C++.

From the very beginning the X3J16 committee stated that ANSI C++ should
be “as close as possible to Standard C but no closer.” (You have probably all
heard this quote by now).
I am not going to try to answer the compatibility issues here, but I want to

make you aware of the relevant discussions that go on in X3J16. Some of these
issues come up at meetings of the ANSI C Compatibility subgroup, of which I
am a member. Others, as you will see, involve other X3J16 subgroups as well.
Whenever a discussion is brought before the whole committee there is never a
lack of opinions.

Modes of Compatibility

C++ is not a superset of Standard C. The fact that C++ can be turned into
strict C code only says that C is a good assembly language. (For that matter,
Lisp can be turned into C code as well.) So, when does C++ compatibility
with C really matter? There are three scenarios to consider:

1. Mixed C/C++ code

In this case, C and C++ code coexist in the same application. A favorite
target in this case is setjmp/longjmp. Consider the following. A C rou-
tine does a setjmp and then calls a C++ routine that goes down several
layers of function calls and then calls a C routine that does a longjmp
back. What happens to all of the destructors at the end of the C++
routines?

Another interesting question is which translator gets to compile main.
The semantics are not quite identical between C and C++. I know of
one C environment where executing main initializes the C I/O routines.
I also know of a C++ environment (on a separate machine) where main
causes some variables to be initialized. In many implementations main

38
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is actually called from a runtime library routine. Can the C++ startup
routine call a function main that is written in C?

2. Standard C code run through a C++ translator

Can Standard C code be run through a C++ translator? Well, for around
$200 you can buy a C++ compiler that also handles Standard C on a PC.
Why would you want a separate C compiler? Translators like this have
switches to go from C to C++ mode, but shouldn’t strictly-conforming
Standard C code work in C++ mode? The one obvious exception is old-
style function declarations and definitions which the C standard labels
obsolescent. After eliminating these obsolescent features, the Standard C
code looks like pretty good C++ code.

Of course, a lot of people are already doing their C code in a C++ envi-
ronment. It works, as long as you avoid a few of the swampier parts of C.
X3J16 hopes to define those parts of the swamp that contain alligators.

3. C++ code calling the C library routines

If the first two cases sounded obvious then this one surely does also. Can
a C++ program call the C library routines? There is a separate subgroup
at X3J16 looking at library issues. They will eventually come up with
a section that is at least the moral equivalent of §4, Library, of X3.159-
1989. One outstanding question in this regard is “Should the ANSI C++
document simply reference this section from Standard C or should it copy
and carefully edit it?” The setjmp/longjmp issue is still relevant but in a
new way. You don’t want implementors to copy the entire contents of libc
minus two routines. You also don’t want to force C++ compilers to detect
calls to routines with suspicious names. That leaves one alternative, to
specify what happens to class destructors when setjmp/longjmp is used.
That specification might be very simple—undefined behavior.

Why Bother with Compatibility at All?

The C++ community could certainly take the stance that C is a separate lan-
guage and compatibility is no more important between C++ and C than it is
between C++ and Fortran. There is at least one good reason for rejecting this
hard line. C++ is new—maybe not to you—but to a lot of people like managers
and the people who act like them. If we want to move programmers to C++
then a little lubrication along the migration path is a good idea.
Even if we take the hard-line approach, the C compatibility subgroup is still

charged with producing a document (for the X3 folks) that carefully outlines
those areas in which C++ is not strictly upward compatible from Standard C.
This kind of document is always necessary for languages that are upgrading
their standards (like Fortran 90 from Fortran 77). But in this case we have a
bit more latitude, since C++ is a separate language. (There is an interesting
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footnote to this. It seems that COBOL dropped a feature when it was changing
the standard. Some people were so strongly affected that they threatened to
take legal action against ANSI for allowing this to happen.)

National Character Sets

A funny thing happened last March. X3J11 voted very strongly against the
principle established by a proposed set of digraphs and keywords that could be
used instead of the hated trigraphs. (In some circles this is called the Danish
proposal, given that it was first proposed by Denmark at the ISO C level.) One
week later, X3J16 voted almost as strongly in favor of the proposal. This issue is
surprisingly passionate with charges of national chauvinism leveled against the
insensitive Yankees and, “Are you still using vacuum tubes?” charges against
the Europeans who do not have terminals that can handle the Latin 1 character
set. The problem is a serious one. My last name lost one or two umlauts
between Bavaria and Pennsylvania. If I was living in Europe I would not take
this lightly. The arguments against this proposal are many. I’ll describe just
one small part of them. Take the following Standard C code sequence:

#define str(x) #x

printf("%s\n",str(<>));

The problem is that (< is the proposed digraph that substitutes for curly
brace {. There are at least two ways to solve this problem without destroying
the Danish proposal altogether. One solution is to force C programmers to put a
space between the parenthesis and the angle bracket unless you really want that
kind of token replacement. This kind of solution was what was swiftly rejected
at X3J11. A second solution is to note that the macro invocation str(<>) will
be expanded at preprocessor time. The digraph (< will be left alone if these
new digraphs are not implemented for the preprocessor. In Standard C terms,
the preprocessor expands macro definitions in translation phase 4 time while
the digraphs could be handled at the same time as escape sequences (phase 5)
or treated as new tokens only when preprocessing tokens are itnverted to tokens
(which would leave it to phase 7). Note that in a string, braces and the backslash
would still require trigraphs.
Another example of code that would be broken is:

#define apply(op, l, r) ((l) op (r))

CPP Despised!

While I’m at it, I should point out that several members of X3J16 look down
with great disdain at one of the hallmarks of C compilers. I speak of course
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about the preprocessor. Already people are looking forward to ANSI C++ 99
when the preprocessor can be legislated out of existence. The above example
with the stringizing operator can be cited as an example of what some people
say is just bad programming. [Ed. However, stringized expressions are nec-
essary to provide the assert macro and similar constructions; these are an
important part of good programming.] Simple object-like macro constants can
be defined just as easily with the const keyword (in C++, not in C). Function-
like macros can be done with inline functions. (In C++ inline is a keyword
not an optimization policy.) If you like incremental compilers then you dislike
what #defines can do to you anyway.
One major reason for using the preprocessor today is to do file inclusion

via the #include directive. But some environments are already moving away
from a simple file-copy model of #include. As I understand it, Borland’s latest
C/C++ compiler provides a header precompile facility. At compile-time, you
are actually processing some kind of symbol table rather than a text header
file. Some implementations do not grab a file when including the standard C
header files but simply make parts available when the #include directive for
the appropriate header file is found. This does not mean that some kind of
resource inclusion is not needed, but it is becoming less necessary to have that
inclusion take place in a preprocessor. In the future, a compiler might only need
to bring in those resources during the syntactic or semantic analysis phase.
This still leaves conditional compilation directives and pragmas. These

things will also hurt the incremental compiler because any change can force
a full recompilation of the translation unit. I think X3J16 is not in the mood
to consider pragmas as being very important because there aren’t any portable
pragmas. At the moment, I don’t see how one can get the benefit of conditional
compilation without a preprocessor.

What’s Next?

I have only scratched the surface of the C/C++ compatibility issue. The
C Compatibility subgroup is going through the C++Annotated Reference Man-
ual (ARM) and the working draft of the C++ standard looking for every item
that is a change from Standard C. Tom Plum (X3J11 Vice-Chair and X3J16
member) estimates that there are about 200 such items in chapters 2–6 alone
of the ARM. Most of these are simply upward-compatible features in C++. In
a future article, I’ll discuss some of the changes that represent true incompati-
bilities between C and C++.

Paul Kohlmiller is a consultant at Control Data Corporation. He is a mem-
ber of both X3J11 and X3J16 and can be reached at paul@svl.cdc.com.
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5. ANSI C Interpretations Report

Jim Brodie
Motorola, Inc.
Tempe, Arizona

Abstract

This is the fourth article in an ongoing series on the Requests for In-
terpretation being handled by X3J11. This month I will look at some
of the Interpretation requests handled at the March 1991 meeting, held
at Norwood, Mass. Questions related to preprocessing, tokenizing, and
external linkage are discussed. In addition, X3J11’s reply is presented for
the long-standing question, “Do functions return values by copying?”

Preprocessing

The early actions of translation (tokenizing and preprocessing) have always
been areas of considerable confusion among C programmers. This has been
particularly true when people move between environments, because existing
practice has traditionally varied greatly. The C Standard addresses this area
by significantly increasing the discussion of the preprocessing activities. Specific
operators, such as the token-pasting operator (##), were added to establish a
universal way to accomplish actions which had been previously implemented us-
ing significantly different mechanisms. The macro replacement and rescanning
processes were also formally defined.
Beyond the preprocessing activities, the Standard attempts to disambiguate

the order in which the early tokenizing and preprocessing activities take place.
This is done by specifying the phases of translation.
There are eight phases to the translation process. In ANSI X3.159-1989

§2.1.1.2, Translation Phases, these phases are defined as follows:

“The precedence among the syntax rules of translation is specified
by the following phases.

1. Physical source file characters are mapped to the source char-
acter set (introducing new-line characters for end-of-line indi-
cators) if necessary. Trigraph sequences are replaced by corre-
sponding single-character internal representations.
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2. Each instance of a new-line character and an immediately pre-
ceding backslash character is deleted, splicing physical source
lines to form logical source lines. A source file that is not
empty shall end in a new-line character, which shall not be
immediately preceded by a backslash character.

3. The source file is decomposed into preprocessing tokens and
sequences of white-space characters (including comments). A
source file shall not end in a partial preprocessing token or com-
ment. Each comment is replaced by one white-space charac-
ter. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is re-
tained or replaced by one space character is implementation-
defined.

4. Preprocessing directives are executed and macro invocations
are expanded. A #include preprocessing directive causes the
named header or source file to be processed from phase 1
through phase 4, recursively.

5. Each source character set member and escape sequence in char-
acter constants and string literals is converted to a member of
the execution character set.

6. Adjacent character string literal tokens are concatenated and
adjacent wide string literal tokens are concatenated.

7. White-space characters separating tokens are no longer signifi-
cant. Each preprocessing token is converted into a token. The
resulting tokens are syntactically and semantically analyzed
and translated.

8. All external object and function references are resolved. Li-
brary components are linked to satisfy external references to
functions and objects not defined in the current translation.
All such translator output is collected into a program image
which contains information needed for execution in its execu-
tion environment.”

Several interpretation requests explore the new Phases of Translation and
extended preprocessing portions of the standard.
The writer of one request for interpretation asks:

“While processing a token within phase 4 it is sometimes necessary
to get the following tokens from the input (e.g., reading the argu-
ments to a function-like macro). But when getting these tokens it
is not clear how many phases operate on them.
Do the following tokens only get processed by phases 1–3 or by

phases 1–4?
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When an identifier declared as a function-like macro is encoun-
tered, how hard should an implementation try to locate the open-
ing/closing parentheses?”

The first example given in the request addresses the issue of finding the
initial parenthesis of a function-like macro invocation. Given the following
macro definitions:

#define lp (
#define fm(a) a

to what does the following text expand?

fm lp "abc" )

Let’s look at what happens as the translator processes this text. First
it identifies the name fm. The translator must resolve the question “Is this
the beginning of an invocation of the function-like macro fm?” The standard
addresses the rules for answering this question. In §3.8.3, Macro Replacement,
after describing the definition of a function-like macro it states:

“Each subsequent instance of the function-like macro name followed
by a ( as the next preprocessing token introduces the sequence of
preprocessing tokens that is replaced by the replacement list in the
definition (an invocation of the macro).”

In this case, the next token is lp. If left unexpanded (lp is the name of the
object-like macro) it fails to meet the above criteria. Therefore, fm would not
be the start of the function-like macro invocation. If lp is first processed as
a macro, the result is different because the lp macro expands to the opening
parenthesis which would then meet the above requirement.
The committee’s decision on this question is that the next token must be a

( at the point when the potential function-like macro name is being processed.
A parenthesis which is the result of a macro expanding tokens later in the token
sequence is not sufficient to meet the requirement.
To answer the request for interpretation directly, this means that the tokens

following get processed only by translation phases 1–3 prior to being checked
for being a (. The macro expansions called out in phase 4 are not performed.
Therefore, the text

fm lp "abc" )

expands to

fm ( "abc" )
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This request for interpretation provided another example, which questions
whether a macro expansion can be used to provide the closing ) for a function-
like macro invocation. For example, given the macro definitions

#define i(x) 3
#define a i(yz
#define b )

to what does the following text expand?

a b )

Does it expand to 3 or 3)?
Let’s look at this expansion process. First the name a is encountered. Since

it is an object-like macro name, it is expanded. This results in

i(yz b )

The key question is whether the b is expanded to be a ) before determining
what constitutes the argument list. In §3.8.3, Macro Replacement, the standard
identifies the end of the macro invocation as

“The replaced sequence of preprocessing tokens is terminated by the
matching ) preprocessing token, skipping intervening matched pairs
of left and right parenthesis preprocessing tokens.”

Using the same principle applied above, the committee decided that the text
requires an explicit ) token, not one generated from a macro expansion of one
of the tokens from the following sequence of tokens. In this example, this means
that the expansion continues

i(yz ) )

where yz ) is the argument list to the function-like macro i. The final expan-
sion results in the answer 3.
Although not referenced in the formal reply to this request for interpretation,

the committee’s position is further supported by the discussion in the standard,
§3.8.3.1, Argument Substitution:

“After the arguments for the invocation of a function-like macro
have been identified, argument substitution takes place. ... Before
being substituted, each argument’s preprocessing tokens are com-
pletely macro replaced ...”

These words indicate that identification of the argument list is done prior
to any argument substitutions.
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These interpretations are consistent with the committee’s stated goal of
defining an overt preprocessing activity. As a general rule, the committee has
consistently voted in favor of a straightforward preprocessing activity rather
than one where the ‘obvious’ semantics are changed by macro expansions.
The next request for interpretation addresses the new preprocessing token-

pasting operator (##) by posing the following puzzle. Given the following set
of macro definitions:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

To what does the following macro invocation expand?

join(x, y)

The requestor asked whether this expanded to either xy or x ## y.
From the macro definition of join the first step of the expansion results in:

in_between(x hash_hash y)

Next, we need to expand the in between macro invocation. As part of this
macro expansion, we expand the hash hash macro (from the token sequence
making up the in between argument).
This is the point of interest. The hash hash macro calls for concatenating

the two #s which precede and follow the ## operator. Does this result in the
preprocessing token-pasting operator? In the reply, the committee writes:

“... expanding hash hash produces a new token, consisting of two
adjacent #s, but this new token is not the token-pasting operator.”

In other words, a preprocessing operator cannot be introduced by macro
substitution. Again, the bias for an overt preprocessing activity was supported.

The Relaxed Ref/Def Linkage Model

Another area which has prompted a number of questions centers around how the
acceptance of certain constructs affects the conformance or non-conformance of
translators. One request asked:

“Is a compiler which allows the Relaxed Ref/Def linkage model to
be considered a conforming compiler? That is, consider a compiler
which compiles the following code with no errors or warnings
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/* FILE 1 */

#include <stdio.h>
void foo(void);
int age;
void main ()
{

age = 24;
printf("my age is %d.\n", age);
foo();
printf("my age is %d.\n", age);

}

/* FILE 2 */

#include <stdio.h>
int age;
void foo()
{

age = 25;
printf("your age is %d.\n", age);

}

and which produces the following output:

my age is 24.
your age is 25.
my age is 25.

Can this be called an ANSI-compliant compiler?”

The issue is that age has been defined in both FILE 1 and FILE 2. This
violates the restriction stated in the Semantics portion of §3.7, External Defi-
nitions:

“If an identifier declared with external linkage is used in an ex-
pression (other than as part of the operand of a sizeof operator),
somewhere in the entire program there shall be exactly one external
definition for the identifier;...”

An important point to remember is that this restriction is part of the Semantics
portion of that section.
We need to reference three other portions of the standard to determine

whether the fact that the translator accepted this program without complaint
forces the translator to be considered non-conforming. The first is §1.7, Com-
pliance, where a conforming implementation is defined:
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“The two forms of conforming implementation are hosted and free-
standing. A conforming hosted implementation shall accept any
strictly conforming program. A conforming freestanding implemen-
tation shall accept any strictly conforming program in which the
use of the features specified in the library section (§4) is confined
to the contents of the standard headers <float.h>, <limits.h>,
<stdarg.h> and <stddef.h>. A conforming implementation may
have extensions (including additional library functions), provided
they do not alter the behavior of any strictly conforming program.”

Earlier in the Compliance section (§1.7) a definition of strictly conforming
is provided:

“A strictly conforming program shall use only those features of the
language and library specified in this standard. It shall not produce
output dependent on any unspecified, undefined, or implementa-
tion-defined behavior, and shall not exceed any minimum imple-
mentation limit.”

Finally, in §1.6, Definitions of Terms, it is stated:

“If a ‘shall’ or ‘shall not’ requirement that appears outside of a
constraint is violated, the behavior is undefined.”

The violation of the restriction on multiple definitions means that the pro-
gram relies on undefined behavior. Since the program relies on undefined behav-
ior, it is not a strictly conforming program. Since a translator is only required
to accept strictly conforming programs, the translator is free to accept, reject,
or do strange things with this program while still meeting the requirements of
being a conforming implementation. In other words, yes, the translator can
accept this program while still claiming to be ANSI-compliant.
This request demonstrates one of the key reasons for including undefined

behavior within the C standard. Many people view undefined behavior as an
undesirable property, where X3J11 simply put insufficient restrictions on how
a translator should respond to error conditions. While it is true that much
undefined behavior is allowed because it was ‘too hard’ for the translator to
detect and handle an error, undefined behavior has also been consistently used
to define a clear arena where language extensions or increased features are
allowed. To modify an old saying, “One person’s error is another person’s
feature.”
It is important that translators be given this realm of freedom. It allows

flexibility so that existing practices which are no longer directly supported by
the C Standard but still in use can be supported by a translator without forcing
the translator to be non-conforming. It also provides an area where experimen-
tation and new language features can be tried. This process of experimentation
is important to the long-term health and growth of the C language.
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Library Function Issues

Several requests for interpretation explored the handling of boundary or error
conditions when dealing with the library functions. One such request asks

“What is the resultant output from printf("#.4o", 345)? Is it
0531 or is it 00531?”

The cited reference is §4.9.6.1, The fprintf Function, which includes the
statement:

“For o conversion, it increases the precision to force the first digit
of the result to be zero.”

The question is essentially whether the precision is increased by at least one,
even if the increased precision is not required to guarantee the leading 0?
The committee’s position is that the increase is only provided if required to

support a leading 0. In this case no increase in precision is performed and the
answer should be 0531. In other words, an increase of 0 positions of precision
is appropriate when the number can be represented with a leading 0 in the
specified precision.

Functions Return By Reference or By Value?

In Volume 2, number 3 (December 1990) I discussed, at length, the interpre-
tation request, “Do functions return values by copying4?” After long consid-
eration X3J11 finally came to a decision. The committee decided that the
function return must be done as if a copy was being performed. Op-
timizations are, of course, allowed, so long as the observed behavior is not
different from what would be obtained by the copy action.
The committee’s answer is based upon the description in §3.6.6.4, The

return Statement. Of particular importance is the statement:

“If a return statement with an expression is executed, the value of
the expression is returned to the caller as the value of the function
call expression.”

The committee interpretation response notes that

“If any storage used to hold ‘the value’ overlaps storage used for any
other purpose, then ‘the value’ would not be well-defined. Therefore,
no overlap is allowed.”

4For a discussion of how this interpretation came about see Paul Eggert’s article, page 54.
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This decision has a direct impact on how translator developers implement
structure return actions. Before structure return optimizations such as passing
an address of a regular object rather than pushing a value onto the stack can
be used, there must be appropriate checks to ensure that no overlap can occur.
Until these additional checks are made and in cases where the translator is

unable to determine whether an overlap occurs, less efficient code will probably
be generated. This is a tradeoff between ‘the right answer’ and ‘the fast answer.’

Jim Brodie is the convenor and Chair of the ANSI C standards committee,
X3J11. He is a Software Engineering Process Manager for the Semiconductor
Products Sector of Motorola, Inc., in Tempe, Arizona. He has coauthored
books with P.J. Plauger and Tom Plum and is the Standards Editor for The
Journal of C Language Translation. Jim can be reached at (602) 897-4390 or
brodie@ssdt-tempe.sps.mot.com.
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Abstract

An increasingly common way to implement special-purpose and exper-
imental languages is to write a translator that generates C code. The
resulting system can be portable, relatively efficient, and easier to build
and support than a native code generator. We have recently written a
translator from a C variant called “C-cured” to Standard C itself. Be-
cause the languages were so close and the target so standardized, the
problems that we encountered are likely to occur in any project that
uses C as an intermediate language. These problems include making the
C level invisible, working around deficiencies in Standard C and its im-
plementations, tracking C types, interfacing to external programs and
data, cross-compiling, and managing memory. Although such problems
are common to many such projects, they are rarely discussed openly. Our
solutions are discussed, and a basic checklist of design considerations is
proposed.

Introduction

In the old days, compilers generated machine code. But the increasing need
for specialized languages for application generators and for other special pur-
pose environments, coupled with the continued proliferation of CPU architec-
tures, has made it harder to justify writing a traditional compiler even where
good performance is required. Another option is compiling to a special-purpose
machine-independent intermediate language, but this can still require nontrivial
effort to port to a new machine. Many implementers are turning to a different
approach: instead of generating machine code, generate code using a portable,
low level programming language, then compile the resulting code on each target
architecture. The most common language used is C, because of its efficiency
and increasing popularity. Let us distinguish these new compilers by calling
them translators.
At first glance, it may seem that generating C code essentially solves most

problems of code generation, letting the implementor concentrate on simpler
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issues like lexing, parsing, and symbol-table management. To some extent this
first impression is true. The translator writer need not worry about questions
like whether clrl d0 or moveq #0,d0 is more efficient. At some cost in per-
formance, such low level issues are no longer the translator writer’s concern.
This makes the translator smaller, simpler, and easier to build, support, and
port than a full fledged compiler. In effect, such a translator is reusing the
C compiler’s code generator, with substantial software-engineering savings.
However, several problems of traditional code generation resurface in altered

form in translators. And some new issues arise, partly because C is more com-
plicated than most architectures, and partly because when the source language
is C-like there is a natural desire to make the translation resemble the source.
We have written a translator to Standard C for a C variant called “C-

cured.” This variant language makes it relatively easy for a compiler to check
for common programming errors like subscript violations and dereferencing null
pointers. It is intended for sensitive applications where high software reliability
is required [6]. C-cured is intended to complement the use of formal methods:
whereas formal methods address the issue of high-level bugs (e.g., a program
raising a robot arm that it should have lowered), C-cured addresses the issue
of low-level bugs (e.g., a program dumping core).
Much of the C-cured translator is devoted to issues like linear programming

and sophisticated type checking that is beyond the scope of this paper. However,
the software engineering issues involved are similar to those of other translators
that generate Standard C. In fact, since the source language C-cured is so
similar to Standard C, the relatively few problems with translating it may
well be common to most translators to Standard C. Furthermore, since C-
cured is a syntactic extension of C, translators for other languages that have
C as a sublanguage (e.g., embedded SQL) may well have similar design issues.
Therefore, although this study concentrates on problems in translating into
Standard C, it will also discuss problems in translating among Standard C
variants.
Standard C is a natural choice for a target language because it is standard-

ized, it will soon be ubiquitous, and it permits low-level manipulations that
a translator might need. In the future, C++ may be a suitable target, but
C++ is not yet standardized and C++ technology is less mature. Unless the
source language is class- or object-oriented, C++ is little better than C as a
translator target. Because some crucial areas like exception handling were not
fully standardized, we chose Standard C over C++ for our first project.

Design Goal

No matter what the source language is, any translator to C should keep the
C implementation invisible. Although the user may know that the system is
C-based, its internal details should not be exposed to view.
For example, compile-time error messages should be generated by the trans-
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lator to C, not by the C compiler itself. C compiler messages will probably
confuse the programmer because the underlying C code may not resemble the
source code. Therefore, the output of the translator should be accepted by the
C compiler without complaint.
For another example, when the programmer is debugging a program, the

C level should be invisible. Views of the source code and commands to the
debugger should be expressed in the source language, not in C. If the source
differs enough from C, this will probably require changes to the programmer’s
debugger. The translator writer will still need access to the C debugger to
guard against errors in translation, but the translator user should normally be
insulated from the C level.

Syntactic Issues

C-cured’s context-free grammar is an extension of C’s. C programs usually
violate the stricter type rules of C-cured. But when given an unmodified C pro-
gram, the translator should generate type-violation messages that are more
useful than “syntax error.” Unfortunately, C’s grammar is not easy to extend
in certain ways. For example, it is tempting to invent keywords to represent the
extended concepts, but this would invalidate existing programs that happen to
use those words as identifiers. Therefore, C-cured introduces no new keywords
except for new, which it borrows from C++.
It is hard to add new type constructors to C because its type syntax is

already so confusing. Because C-cured requires much more precise types, incre-
mental changes to the C type syntax would be hopelessly confusing. Instead,
we use a new syntax for C types and C-cured extensions. We support the old
syntax for compatibility purposes. The following table shows two types in both
syntaxes.

C vs. C-cured Type Constructors
C C-cured Explanation

char (*)[10] &[10]char pointer to array of 10 char
char * [10] [10]&char array of 10 pointers to char

This new syntax lets C-cured add new type constructors in a disciplined way.
For example, +[10;]char stands for “nonnull pointer to a null-terminated array
of 10 characters.” It would have been difficult to add this notion to the already-
confusing C type syntax without straining it beyond recognition. It is quite a
strain to shoehorn the new type syntax into the grammar while keeping the
language context free, because both old and new syntaxes had to be supported.
Future versions of C should support a simpler type syntax. We suggest C-
cured’s new syntax as a starting point.
In contrast, adding new type qualifiers is straightforward. C has just the

type qualifiers const and volatile. In C-cured, const is used so often that it
can be abbreviated as ‘<’. A new complementary qualifier ‘>’, for unreadable
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storage, is easy to add to the syntax. The relative ease arises partly because
type qualifiers cannot be confused with normal identifiers, unlike typedef names.
The following table shows two examples.

C vs. C-cured Type Qualifiers
C C-cured Explanation

const int * &<int pointer to unwritable integer
int * const <&int unwritable pointer to integer

Bugs in the C Standard

One design decision that we do not regret is that of translating to Standard C
instead of to traditional C. The new standard defines a better language and
has fewer loopholes than the traditional definition. We recommend that future
implementers study the C standard carefully. However, because translators
often generate code that no human would write, they tend to explore unused
corners of standards and implementations, where bugs are more likely to lurk.
We found two bugs, one minor, and one major.
The minor bug, discovered by Mike Coleman, was that the December 1988

ANSI C draft [1] permitted multiple definitions of unused identifiers with ex-
ternal linkage. For example, consider the source file

int V = 0;
int V = 1;

where V is mentioned in no other source file. Ironically, we found this bug when
considering what checks to put into the C-cured translator itself, because in this
area C-cured is identical to C. We caught this bug before the final standard
was approved, and X3J11 fixed it in the final standard by inserting the phrase
“there shall be no more than one [external definition of an identifier]” at the
end of §3.7.
The major bug is that the standard does not clearly state whether functions

must return values by copying. Returning by reference can be more efficient
than returning by copying, but the results can differ in the presence of aliasing.
Using unions, one can write an assignment S = f(X) in which f(X) obtains
the returned value from an object whose storage overlaps that of S. Here is an
example, where S is u.a and f(X) is deref(&u.b.s).

struct s { int i, j; } t;
struct s deref(struct s *q) { return *q; }

union {
struct s a;
struct { int i; struct s s; } b;

} u;
void p() { u.a = deref(&u.b.s) };
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This is quite unlikely to appear in programs written by humans, but was
uncovered during the design of our code generator when considering the code it
might generate for unions. We filed a formal request for interpretation on this
question. After lengthy debate [4], X3J11 decided in March 1991 that functions
must return values as if they were copied5.

Bugs in the Underlying Implementation

One problem with a translator-oriented approach is faults in the underlying
system. We have encountered a few bugs in GCC [12] and a few more bugs in
Sun software. Using the translator ourselves has proved to be of great use in
this area.
One major remaining trouble spot is checking for memory exhaustion at

run-time. This cannot be done by the compiler at present and, unfortunately,
needed abilities like robust recovery from run-time stack overflow are not yet
widely available. This is particularly a problem with C-cured, where software
reliability is paramount, but we expect it also to be a problem in any translator
that makes more than casual use of the run-time stack. Exhausting the heap
area is also related to garbage collection issues discussed below.

Implementation-Specific Code Generation

Ideally, the code generated by the translator should be portable to any Stan-
dard C implementation. In practice, this goal cannot be achieved. Partly, this is
because the translator must take advantage of some implementation-dependent
information. For example, to check for arithmetic overflow, the translator must
know the value of ULONG MAX for the target implementation. Otherwise it cannot
tell whether the constant 4294967296 will overflow. The problem of knowing
the target architecture is particularly acute when considering C’s sometimes
odd rules for integer arithmetic. For example, in C the expression

-1 > (unsigned)0

yields 1. In contrast, C-cured uses a subset of the mathematical integers and
largely ignores C’s distinction between signed and unsigned integers of various
sizes.
Even ignoring the problem of checking for overflow at compile-time, code

generation depends upon knowledge of the target architecture. For example,
in C on any 32-bit machine with IEEE floating point, comparison need not be
exact. The sample code

5For further information on this interpretation see Brodie’s report on page 49.
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float f = 2147483648;
int i = 2147483647;

if (i == f && (double)i != (double)f)
printf("weird");

can output weird because the first comparison is permitted to discard informa-
tion about i before comparing it to f. In contrast, C-cured performs compar-
isons exactly, so that the C-cured comparison (i == f) must be translated on
such a machine to something like the C comparison ((double)i == f). A sim-
ilar analysis applies when comparing a value stored in a C int object to a value
stored in a C unsigned object, to avoid the problem of -1 > (unsigned)0
mentioned above.
The target compiler may have extensions that the translator can take ad-

vantage of. For example, C-cured supports local arrays with size not known
at compile-time. This notion is not supported by Standard C, but it is a com-
mon extension [10, 11], and it appears in GCC. Another C-cured feature that
maps directly into GCC is constructors. In general, the translator must fall
back to less efficient Standard C to support these constructs, but it should take
advantage of them if it knows the target compiler supports them efficiently.
With this in mind, it should be clear that the translator suffers the same

cross-compilation issues as a traditional compiler. A program translated for
one target architecture may not compile correctly on another, or may compile
but run incorrectly.

Interfacing to C Data Structures

A common desire when using a special-purpose language is to link to code writ-
ten in C. Usually the main problem here is not naming or calling foreign func-
tions. Instead it is passing data of a common format back and forth. Choosing
a language close to C mitigates this problem, but does not always eliminate it.
For example, C-cured uses the same run-time representation as C, so there is no
problem with run-time conversion of values when passing data back and forth.
However, there is a compile-time problem with the description of the data. A
C compiler cannot parse the C-cured type syntax. Thus it cannot incorporate
C-cured headers. Conversely, the C-cured translator rejects a C-cured program
that attempts to use C headers, because the C types appear hopelessly loose,
and their use in the C-cured program violate many of the stricter C-cured type
rules. We have worked around this problem internally by writing a translator
from C-cured headers to C headers.
This solution is not entirely satisfactory because of preprocessor directives.

Normally, the C-cured translator first passes the input text through the stan-
dard C preprocessor, then translates the resulting text from C-cured to C. But
this cannot be done for headers, because it loses preprocessor definitions needed
by modules that include the headers. For example, if a C-cured header id.h
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contains the code

#define ID_MAX 10000

|0:ID_MAX| mainid;

the C preprocessor generates

|0:10000| mainid;

and the C-cured translator might then generate

unsigned mainid;

But one cannot put just this last line into the translated C header id.h,
because a C program might contain

#include <id.h>

char tab[ID_MAX+1];

and thus need the preprocessor symbol ID MAX. We currently address this prob-
lem by a rigid layout for C-cured headers that permits copying the preprocessor
information bodily to the C headers. But this solution is not entirely satisfac-
tory.

Preprocessor Issues

Writing a translator to C naturally raises another issue: should this transla-
tor operate before the C preprocessor or afterwards? In general, Standard C
does not require that the C preprocessor operate as a separate pass, but most
implementations have options for running the C preprocessor separately.
C-cured uses an unmodified C preprocessor, and the C-cured translator

operates between the C preprocessor and the C compiler proper. However, this
setup is suitable only for languages that have the same lexical tokens as C. One
should beware using the C preprocessor for a widely different notation (e.g., as
a preprocessor for makefiles). Even the slightest deviation should be cause
for concern. For example, C-cured originally used a more Pascal-like notation
|0..N| for the range of integers from zero throughN , but this had to be changed
to |0:N| because a quirk in the Standard C preprocessor tokenization rules
means that 0..N is a single (preprocessor number) token, and the preprocessor
cannot expand the N when N is a macro.
Because C-cured is so close to C, it is not unreasonable for programmers to

use existing C debuggers with little or no modification. To communicate with
the C debugger the translator must put the tedious but necessary line-number
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information into its output file.
Source languages whose names and scope rules differ markedly from C’s

may require more extensive interfaces and changes to the debugger, but with
C-cured these problems are rare. For example, C-cured has the same scope
rules as C and can therefore output the same names that it input. Although
it generates names for temporary variables that are visible to the debugger,
they do not distract the user because the user never sees them. Also, C-cured
uses the same expression sublanguage as C, so there is little need to change
the syntax of debugger commands that have C expressions as operands, and we
use a standard C debugger for C-cured programs. A language with a different
expression syntax would need changes to the debugger.

Managing Memory

Many modern languages require garbage collection in some form. C has no
builtin support for garbage collection, so this must be added by the translator
writer. Translated code must put all root pointers in global storage known
to the collector so that the collector will correctly mark all reachable storage.
This must be done even in the presence of signal handlers and interrupts. One
can put local pointer variables of the source language into a large C array
that is managed as a stack. A better method, adopted by the Unisys Swift
translator [7], is to take advantage of C’s builtin stack by translating source
local variables into C local variables, storing both a type descriptor and a
parent-frame pointer in each C stack frame. This maintains efficiency while
letting the garbage collector easily traverse stack frames in an implementation-
independent way.
Recently a new “conservative” method for garbage collection in the C run-

time environment has been proposed. It was first implemented by D. McIlroy of
Bell Labs, and first described by Boehm and Weiser [3]. Instead of maintaining
run-time type descriptors, it traverses the entire run-time stack and assumes
that all properly aligned bit patterns that could be pointers are in fact pointers.
Although conservative collection is not suited for every application [13], and it
does not work well when a pointer to an object component can outlast the
pointer to the containing object, we will use it in the first C-cured implemen-
tations because it is so easy to integrate. We consider memory management to
be one of the biggest potential trouble spots in any translator to Standard C.

A Basic Checklist of Design Considerations

If you find yourself in a project that will write a translator that emits C, ask
yourself the following questions:

• How close to C do you want to make your source language? The closer
the language is to C, the less design freedom you will have. On the other
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hand, it will be more likely to appeal to existing C programmers, and you
will be able to use existing software like the C preprocessor if your source
language is sufficiently close.

• How will you map generated code back to source? Without this mapping,
programmers will not be able to use their debuggers. Without debuggers,
programmers will be far less likely to use your system.

• How will you map deficiencies of the underlying standard or implemen-
tation back to the source? Something must give when C lacks features
needed for smooth translation of the source language. For example, if the
source requires garbage collection, the translated code must be either less
portable, less efficient, or more complicated, and will probably have at
least two of these three properties.

• How will new programs interface to existing software? If the source lan-
guage is close to C, the answers to this should be straightforward, and
simple descriptions of layout and naming conventions will often suffice. If
not, careful thought must be given to the needs of developers who must
link modules in the source language to modules written in C.

Related Work

Translators to C have been with us since the days of yacc [2]. General-purpose
language implementation started adopting this approach in the early 1980s
(e.g., AT&T’s C++ translator [8] and Unisys’s Swift language [7]). Since then,
this approach is becoming the method of choice for new experimental imple-
mentations that are meant to execute efficiently (e.g., Kyoto Common Lisp,
Eiffel, SRC Modula-3, and Scheme-to-C). A related, flexible approach can be
found in application generator technology (e.g., AT&T’s MetaTool [5]).

Conclusion

Translating to Standard C, and choosing a C-like source language, can ease im-
plementation of an experimental language. Both can also bring new problems.
The underlying C implementation must be kept invisible, and the translator
must avoid triggering error messages in it. Extending C’s syntax can be an ad-
venture in itself, especially if changes are made to the already baroque syntax of
declarations. One must beware of bugs not only in the underlying system, but
in the C standard itself. The software engineering issues of cross-compilation
are not much less severe than with traditional compilers. Careful thought must
also be given to interfacing source language data structures to C data struc-
tures. When the source language is sufficiently close to C, the C preprocessor
may also be used, but this can complicate data structure interfacing. Finally,
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memory management and garbage collection can be among the trickiest issues
when the source language’s memory model differs from C’s.
Despite all these problems, we have been quite happy with our approach.

Porting to a new architecture is simple. Because of the success of the UNIX
operating system, new hardware architectures are often coupled with excellent
C compilers, and the generated code is far superior to what we could have
developed with our own resources. We also expect that many of the problems
we have identified will be addressed by future C implementations as translating
to Standard C becomes more popular.
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7. Electronic Survey Number 8

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an E-mail report on the results.)
The following questions were posed to 100 different people, with 22 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

putenv

Standard C defines getenv but not putenv. Does your getenv do anything
useful? If so, do you also supply putenv? Where is putenv declared?

• 2 – getenv doesn’t do anything useful.
• 16 – getenv works as per the UNIX definition.
• 8 – Have the standard UNIX putenv.

• 9 – Don’t have putenv.
• Comments:

1. I don’t do my own compiler, but a missing putenv is certainly an
indication of the quality of the implementation.

2. The lack of putenv is an obvious flaw in the standard.

3. putenv is declared in <stdlib.h>. Of course, when the compiler is
standards conforming, the declaration is not seen in the header.

4. We provide putenv but it is not declared in any standard header.

62
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Alternates to Trigraphs

In order to have have more readable and writeable versions of trigraphs, Den-
mark has proposed alternate spellings for the 9 affected tokens that cannot be
directly represented in the ISO-646 character set. Their latest proposal is to
add the following alternate spellings for the tokens indicated:

(: :) [ ] bitxor ^
(< >) { } bitcompl ~
and && bitand= &=
or || bitor= |=
bitand & bitxor= ^=
bitor |

Thus far, this proposal has been favorably looked upon by X3J16 (ANSI C++)
but not so by X3J11. If Standard C (and C++) were to require such sup-
port, currently conforming Standard C programs will be broken. Your comments
please on the specific technical proposal and on the problem in general.

• 3 – It’s OK.
• 7 – It’s OK, but ...
• 10 – Don’t like it.
• Comments:

1. I don’t object to most of these new tokens and keywords. However,
I do object to using and or or as keywords, since they are too short
and probably too common.

2. This is a great idea. Trigraphs were a botched kludge!
The tokens spelled as identifiers could be implemented now by some
sort of standard header, ostensibly one which redefines the trigraphs.
The bracketing tokens, however, do seem to break possibly existing
features of some code. I can see this happening in the case

#define postfix_dyad(a,b,x) ((a) x (b))

postfix_dyad(s,t,>)

which, under the current standard, after preprocessing, expands to

(s) > (t)

but, using the proposed translations, in translation phase 1 the code
would instead become
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#define postfix_dyad(a,b,x) ((a) x (b))

postfix_dyad(s,t,]

And that is intractable.
This example is one of such utility that it makes me believe that the
character sequences >) and (< should retain their current untrans-
lated nature.

3. Specifically, I would use and, or, and xor for the bit-wise operators,
and andif and orif for the logical ones. Generally, so long as they
can guarantee this won’t impact ASCII and Latin-1 I don’t much
care.

4. I have discussed the favorable reception of this in X3J16 with our
representative. I have deep concerns regarding the intention to make
these keywords and tokens. The attitude of having switches to cover
the C programs doesn’t address the situation of the shop with a very
large body of existing C code that they want to incrementally convert
to C++. This is a very large burden to place on those shops, and I
will do all I can at the X3 level to prevent this from being allowed
as part of the C++ standard.

5. Trigraphs were a mistake, and the Danish alternative is no better.
There are better ways to solve the problem than by tweaking the
standard language. For example, it’s not especially difficult to con-
figure GNU Emacs to display non-native characters as Danish di-
graphs, without actually changing the contents of the file.
I programmed in APL for years on a plain ASCII terminal. I used
a front-end that translated ASCII trigraphs into APL characters.
There was never any need to change the standard APL language to
make those trigraphs universal.

6. I think it’s ugly. I can’t see having all this as a requirement. As
an option to the user it’s OK. Of course I understand options are
awkward, there being no standard way to specify them.

7. First, the deficient keyboards and terminals that prompted this pro-
posal have been obsoleted by the ISO 8859 character set. Why add
complexity to an international language standard because of obso-
lete gear? However, even assuming one had to add brain damage to
C to work around this local disaster, this proposal is a bad technical
solution to the problem. A good technical solution would have the
following properties:

(a) Existing conforming programs run without change.
(b) Programs using the new syntax can be transported easily to

implementations that support only the old syntax, e.g. using
macros.
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(c) The solution is easy to explain.
(d) The solution is compatible with new notations, e.g., C++.

The proposed solution fails on all four counts. It obviously fails
on 1. It fails on 2 because no simple editor script or C macro set
can transform programs from the new syntax to the old. It fails on 3
because one must explain to programmers that

char b[100], p = bitand a;

is legitimate because bitand is shorthand for &, even though no bit-
wise arithmetic is being performed here. It is also counter-intuitive
that & is shorter than &&, but its counterpart bitand is longer than
and.
Finally, the proposal fails on 4 because it will make C++ hard to
read: e.g., destructors will use a strange syntax:

class String {
public:

bitcompl String(); // a destructor
...

};

and in general, English symbols like bitand will have to used in
contexts where they are wildly inappropriate.
Although I’m sympathetic to the Danes’ plight, their proposal is
seriously deficient and needs further thought.

8. We strongly oppose this idea since it would cause large problems
with our lexical analyzer. It also raises the issue of reducing the
users’ name space.

9. I understand the desire to have alternate spellings for the [ and
] tokens. They are critical to convenient language use. However,
I believe that Tom Plum’s proposal of a standardized header with
standard macros for the other tokens is a more reasonable approach.
One doesn’t, for example, have to wait for implementors to provide
conforming implementations to begin to use the agreed names. If we
can just find some reasonable alternate spelling for [ and ], I would
be hard-pressed not to support such a combined (standard header
plus two new tokens) scheme. The best reasonable alternate spellings
would be ones that do not change the behavior of strictly conforming
C code. (One possibility might be <: and :>, for example.)

10. I don’t see why several of these alternate spellings can’t just be sup-
plied as macros. The and, or, bitand, bitor, bitxor, and bitcompl
can be added by anyone who likes without any special effort on the
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committee’s part. Personally, I find the bitFOO= token form more
than a little disgusting. The alternate spellings for [] and {} seem
okay to me though.
Whenever I see these proposals it makes me wonder why we are step-
ping back in time to support character sets that are obsolete? This is
an issue for much much more than just the people saddled with old,
C-hostile equipment. If C implementations were required to support
these forms, those forms would be with us forever. Every implemen-
tation would have to add these strange forms. Programmers would
have to be aware, when they learn the language, that C uses multiple
spellings for this collection of tokens.
This latest proposal adds more keywords than any other single pro-
posal ever put forward for C. Frankly, this capability is not worth
six keywords.
Local macro substitutes have the advantage of not imposing on other
environments. The people with inadequate equipment have the prob-
lem and they need the fix. The majority of C programmers who don’t
have the problem shouldn’t have to conform to a dwindling minority
who will ultimately become non-existent.

11. Unlike heads, two trigraphs are not better than one. Other than
that and the obvious problem of introducing many new keywords it
is easy enough to implement. I would suggest allowing the bitandop
operators to be two tokens for the sake of automatic paragraphers
and such.

12. I think the concept is fine. I would prefer, however, bitnot to
bitcompl as more in the spirit of C. I would object if a space were
not allowed between the identifier part and the = though.

13. I don’t like the use of macros. I think that the alternative spellings
are OK.

14. I voted in favor of this proposal on X3J16. C++ is already intro-
ducing new keywords, so the impact of the proposal on C++ is less
than on C.
If the proposal goes into C I would expect many vendors to have to
support a transition mode in which these keywords were not recog-
nized as such into the indefinite future.
Since we do not yet have a standard-conforming compiler I’d ex-
pect adding new keywords would be possible at the time we intro-
duce the standard-conforming compiler without creating many (ex-
tra) headaches.

15. If they really want this, I could live with it, but it would have to be
on a command line option (or by including some special header).

16. While we are sympathetic to the problem being solved, we think
there are several problems with the Danish solution being proposed:
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it breaks existing programs and it includes changes that are not
necessary (e.g., the and names are not needed). We would look more
favorably on a solution using macros.

17. We’re opposed to this proposal for C (at least). Trigraphs are ad-
mittedly ugly but we’ve seen nothing better so far.

18. I agree that the proposed syntax is more readable than trigraphs.
However, as described, the proposal does have problems. I think a
macro solution makes more sense.

19. My guess is that if we support these alternate spellings some (or
many) of our customers will complain about it because of the name
space conflict.

20. Most of the alternatives are much more readable than the corre-
sponding trigraphs. However, I can see a number of drawbacks: It
breaks existing code and in C++ the template-argument-list is de-
limited by <> which is ambiguous in some cases with the relational
operators < and >.
The spellings for the tokens && through ^= tokens are a bad idea
because they break existing code. The problem can be solved using
macros.

Validation

Given that NIST has chosen a validation suite different from that used by BSI
how important to you is mutual recognition of validation certificates in the U.S.
and Europe? (Don’t care, minor issue, or major problem.) What resources
(staff, etc.) do you perceive you will need to dedicate to conformance testing?
(For example, 1 person half-time, full-time, etc.)

• 10 – I care about mutual recognition.
• 6 – I don’t care about mutual recognition.
• Comments:

1. This issue only affects users if there is a difference in the quality
of the translators certified by the validation suites. The users will
want to know which is the most protective and look for assurance
that the translator they want meets that. As such, I am opposed to
having mutual recognition. This is the only way a user can be certain
the ISO and FIPS-compliant compiler has met the most thorough
validation tests.

2. We test with both suites [Perennial and Plum-Hall]. We may not
seek certification from both if reciprocity is required.
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3. We feel its important to be validated by both but are very disap-
pointed that two different validation suites have been chosen. We
feel that validation for both NIST and BSI will require 1 person
approximately 8 hours per week.

4. I presume that we would get both if mutual recognition doesn’t hap-
pen. We have used the test suites for both and have no outstanding
bugs that would cause problems. (Although there may well be a few
rulings put in the works on the correctness of the tests once we start
the validation process.) Thus, it would be nice if each recognized the
validity of the other, but I doubt that it’s a big problem.

5. Multiple conformance certificates presents a small problem to us. We
regard conformance validation as an internal QA function as well as
an external acceptance function. As a result, we use validation suites
as part of our standard test suites and don’t actually measure the
costs of validation separate from our QA costs.

6. It’s a minor issue. Our validation testing is part of our normal
product-release testing so I can’t really give a very good estimate
of how much time we spend on it—less that 1 person half-time I
would think.

7. I will test against every suite anyway since it’s a one-time cost.

8. I think that it is a good idea to have lots of test suites. That way
there is some competition. Any vendor worth their salt will use all
available tests suites. The expensive bit is having to pay out for the
official validations. I think that there ought to be some procedure
for mutual recognition.

9. The divergence in conformance standards is important to us in direct
proportion to how often customers are asking for conformance to
both standards. At present this is a minor issue but it has potential
for being a major issue. Our perception is that conformance testing
will take one person part-time.

10. We have one full-time person doing compiler testing including con-
formance testing.

11. We intend to run and pass both validation suites. Therefore, the
manpower requirements are not significant if there is not mutual
recognition. The only issue will be the actual cost of certification
and so we will get certification for both only if that is required for
our customers.

12. Here, in Japan, validation is not required officially. At this stage, I
don’t care about any differences between U.S., Europe, and Japan.
If any official requirement for the validation comes out there must
be a mutual convention that accepts a compiler validated by other
organizations.
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13. Compiler verification is an important issue and marketing aspect for
us. Therefore, we are willing to spend at least 1 person full-time
during the validation test period.

AT&T’s cfront

Have you determined whether AT&T’s C++ cfront works with your C imple-
mentation? If so, any comments on the effort?

• 4 – Works fine.
• 3 – Works but we had problems.
• 6 – Don’t know/care.
• Comments:

1. It only partially works but will be working fully shortly. The prob-
lems are in cfront.

2. The only interesting problem is significant name lengths, and our
C compiler imposes no limits other than those enforced by memory
allocation, etc. Each new cfront doesn’t take very long to port.

3. We have a C++ compiler integrated with our C compiler so cfront
compatibility is not an issue for us.

4. My experiences with cfront in the dark corners have been uniformly
dismal.

5. We had to fix a couple of minor C compiler bugs. The whole effort
including fixing bugs and adjusting headers took less than two weeks.

6. The porting effort took a significant fraction of a man-year. The
process uncovered bugs in both our compiler and in cfront.

Implementation Language

What language is your translator written in?

• 16 – All in C.
• 3 – Mostly in C.
• 1 – Some in C++.
• 1 – Some in Pascal.
• 1 – Some in Assembler.

∞



8. Emitting C Source

Paul Long
3365 Arbor Drive

West Linn, OR 97068-1115

Abstract

This paper discusses problems associated with emitting well-structured
Standard C source. Alternative solutions are presented, culminating in
the one chosen by the author. A set of C functions is described that imple-
ments this solution, followed by limitations, enhancements, and possible
uses.

Introduction

Emitting code in a high-level, free-format language such as C presents problems
that do not occur when emitting machine or assembly code. Machine code, by
its nature, is not particularly human-readable—nor is it intended to be. There is
no impetus to make it so. Assembly code is inherently well-structured because it
has short instructions that start in fixed positions and traditionally occupy one
line each. In contrast, emitted high-level code often contains lines of arbitrary
length. Its style dictates indentation that reflects a structural aspect of the
code. As an example, a heavily-qualified structure member reference occurring
at a deeply-nested point in the code may extend well past the end of a typical
80- or 132-character line.
When C is produced as an intermediate language, the programmer may

need to refer to the emitted code from time to time. When used as a target
language, however, the code produced takes on a life of its own. It irrevocably
diverges from the original form in many cases. Consider, for example, a program
that is converted from Fortran to C. In both cases, it is desirable to emit
well-structured, human-readable high-level code with two lexical qualities in
particular—a reasonable limit to line width and proper indentation.

Line-Width Control

For a source translator, such as Pascal-to-C, if there were a one-to-one lexeme
translation from one language to the other(e.g., := to =) the widths of the
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emitted lines would be about the same as the original lines. However, an across-
the-board, one-to-one translation is rarely possible. Even if the semantics of
the original program were carried over to the emitted program, the form would
likely be distorted. One lexeme may expand into many, and many lexemes may
contract into a few, one, or none. Practically speaking, contraction is not a
problem, but a line that was originally 75 characters wide, for example, may
expand into one that is 300 characters wide, making it impossible to display or
print in an elegant manner.
Other types of source-code-emitting programs may not even have an original

source-code representation. There are no reasonable line widths, written by
programmers, to exploit. Such an origin can at least indirectly limit the line
widths of the emitted code.

Hasty Solutions

Since one cannot just truncate all lines wider than the maximum line width,
the next solution would be to start a new line every time the maximum width
is reached. C is free-form and allows statements to span several lines, so this
solution looks promising. However, a line break will frequently occur in the
middle of a lexeme, which is intolerable. Line-spanning lexemes would be re-
placed with invalid or unintended lexemes. For example, if a line was broken in
the middle of the C decrement operator, --, the result might be a subtraction
operator followed by unary minus operator—not at all the same thing.
One solution made possible by Standard C [6] is to terminate the continued

line with a backslash wherever the line break occurs and continue the lexeme in
the first column of the next line. However, this would not be very readable. We
are not accustomed to seeing lexemes split in this way. Besides, the continued
lines would visually detract from our indentation.

Smart Emitter

The trick then is for the emitter, the function that handles the output of code,
to recognize distinct lexemes. If a line break is about to occur in the middle
of a lexeme, break the line right before it. The code generator, upstream to
the emitter, could separate lexemes with a character that does not occur in the
emitted language’s character set. That would sufficiently distinguish lexemes
from each other. However, the emitter would then have to treat each separator
character the same, typically by replacing it with white space, such as a single
space. Some programmers like a lot of white space, but most would agree that
this would result in a tedious programming style.
But what if the emitter could recognize lexemes on its own? The code gener-

ator could implement whatever programming style it liked because it would not
have to separate lexemes with a special character that was eventually (always)
translated into more white space. Although more complex to implement than
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using a separator character, this is the approach the author took to control line
width.
The code generator just has to feed discreet, logical lines of code to the

emitter. They must be discreet because the emitter is not aware of the emitted
language’s syntax. Therefore, it cannot recognize a sequence of lexemes, such
as an assignment statement, that might typically occupy a line by itself. The
emitter is being told that no other lexemes are to occupy the same line (or lines,
if broken) as these. The lines must be logical because the code generator sends
the emitter a sequence of lexemes that it considers ‘a line’s worth.’ The emitter
may then have to break it up into two or more actual lines if it is too wide.

Proper Indentation

The most obvious way to achieve the second quality, proper indentation, is
just to carry the original indentation (if there is any) over to the emitted code.
But this information is typically lost as white space in the early, lexical anal-
ysis phase of a well-partitioned translator. Even if carried over somehow, the
structure of the original program is often modified so much that handling the
complications would be a nightmare. (For example, translating a case statement
into a set of nested ifs or creating a multi-threaded version of a single-threaded
program.)
Depending on the compiler’s translation context (specifically, the current

indent level of its input source), the code generator could pass sufficient white
space to the emitter at the beginning of every line to achieve the desired in-
dentation. However, the emitter would have to decide on its own how far to
indent the continuation of too-wide lines that had to be broken, because the
code generator does not know about these. Regardless of whether it could be
done, this type of coupling between the code generator and emitter should be
avoided as poor design because the same function is performed in two places [5].

Indentation Within the Emitter

The author chose to consolidate indentation in the emitter. The code gen-
erator only has to tell the emitter when the indentation level is increased or
decreased—something it should have no trouble doing—and the emitter decides
how much to actually indent each line. It is the code generator’s responsibility
to make certain that for every indent there is a corresponding exdent6. For
example, after a left-brace punctuator, the code generator tells the emitter to
increase the indent level (by one) and subsequently, before the corresponding
right-brace, to decrease the indent level.
The code generator can also temporarily suspend the emitter’s automatic

indentation by instructing it to left-justify the next line. This is useful for
6Throughout this paper, a negative indent will be referred to as an exdent.
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emitting labels that are the targets of goto statements, however harmful—one
has carte blanche when emitting intermediate code.

Calling Protocol

The emitter is accessed through four functions: set emit, clear emit, femit,
and emit. set emit is called once to initialize the emitter. clear emit flushes
the emitter’s internal output buffer. The femit and emit functions do the
actual emitting. The latter two accept arguments very similar to the fprintf
and printf functions defined by Standard C.

set emit

EMIT_FILE *set_emit(FILE *stream, const char *string,
unsigned num_colms, unsigned max_width,
void (*errorf)(E_Code *),
void (*new_linef)(EMIT_FILE *));

This function allocates a buffer to hold an EMIT FILE control block. It re-
turns a pointer to the buffer unless there was an error. Otherwise, it returns
NULL. This pointer thereafter identifies the output stream for the emitter in
much the same way as a FILE pointer does for the functions in stdio.h. How-
ever, the pointers are not interchangeable.

stream is the Standard C library stream to which the output is sent. If
NULL is used instead, the output is sent to stdout.

string is a pointer to the character string to output for each level of in-
dentation. num colms is the number of columns the string represents. It is
particularly needed when the indent string contains a horizontal-tab character,
as in Example 4. If NULL is given as the string argument, the default indent
string (three spaces) is used, and num colms is ignored.

max width is the maximum width of the emitted line. If zero is given, this
width defaults to 80.
The arguments errorf and new linef are pointers to functions that allow

the emitter to be expanded without modification. If they are NULL, default
functions are used that have no effect. If specified, the function pointed to by
errorf is called with an error code when an error occurs. Errors occur when the
indent level goes negative (more exdents than indents) or an invalid Standard C
lexeme is encountered. (It is still emitted upon return, however.) If new linef is
not NULL, the function to which it points is called before each new line is output.
This gives an opportunity, for example, to intermix source-language statements
as comments or #line preprocessor directives with the emitted C source. The
function is passed a pointer to the corresponding EMIT FILE control block so
that it has access to the emitter’s current indent level, line state (not described
herein), and output stream, among other things.
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clear emit

void clear_emit(EMIT_FILE *buffer);

Besides flushing the emitter’s output buffer, clear emit releases the control-
block buffer that was allocated by set emit. (The output buffer is contained in
the control-block buffer.) Its sole argument is a pointer to the buffer. If NULL
is given instead, it will use the buffer that was last allocated by set emit.

femit and emit

void femit(EMIT_FILE *buffer, const char *format, ...);
void emit(const char *format, ...);

The difference between femit and emit is that femit has an extra argument
(buffer) that points to an EMIT FILE control-block buffer, in the same way that
fprintf has a file pointer while printf does not. The emit function uses the
control block last allocated by set emit.
The ability to identify a specific control block with femit allows several

output streams to be in use at the same time, e.g., to generate a header file at
the same time as a source file. Using emit means that one does not have to
worry about such details if there is no need for multiple output streams.
Although both use one output stream, compare Examples 1 and 2. C source

files that contain calls to the emitter functions must first include emit.h as
shown.

#include <ctype.h>
#include "emit.h"

main()
{

int c;

set_emit(NULL, "", 0, 1, NULL, NULL);

while ((c = getc(stdin)) != EOF)
emit("%c", isprint(c) ? c : ’ ’);

clear_emit(NULL);
}

Example 1. Print one lexeme per line with no indentation
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#include <ctype.h>
#include "emit.h"

static unsigned line_number = 0;

static void on_error(E_Code ec)
{

fprintf(stderr, "\n** %s error on line %u **\n",
ec == EC_LEV ? "level" : "lexical",
line_number);

}

static void on_new_line(EMIT_FILE *efp)
{

if (efp->line == EL_FIRST)
fprintf(efp->out_fp, "Lexeme Listing\n\n");

++line_number;
}

main()
{

int c;
EMIT_FILE *efp;

efp = set_emit(stdout, "", 0, 1,
on_error, on_new_line);

while ((c = getc(stdin)) != EOF)
femit(efp, "%c", isprint(c) ? c : ’ ’);

clear_emit(efp);
}

Example 2. More elaborate version of Example 1

The remaining arguments to femit and emit are just like those for the
printf family of functions—a format string followed by zero or more arguments.
In fact, since a member of that family, vsprintf, does the formatting for the
emitter, one can use whatever printf conversion features are present in the
library that is linked with the emitter.

Embedded Control Characters

Once a line has been formatted, four embedded control characters (horizontal
tab, backspace, new-line, and carriage return) have special meaning to the
emitter. The horizontal-tab character, '\t', increases the indent level by one.
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Subsequent lines will automatically be indented (in the same way) one more
level. The backspace character, '\b', decreases the indent level by one so that
subsequent lines will be indented one less level. The carriage-return character,
'\r', temporarily overrides the current indent level causing only the next line
to be left-justified. (Subsequent lines will go back to being indented.) The
new-line character, '\n', terminates the current line and causes subsequent
lexemes to be output on the next line, with indentation based on the previous
use of horizontal-tab and backspace characters. No other control characters are
allowed. Example 3 shows the use of all emitter control characters. Listing 1
shows what the code in Example 3 would generate.

labelNo = 5;
set_emit(NULL, " ", 5, 80, NULL, NULL);
emit("\t\t\t"); /* Not normally done */
emit("if (id > MAXID)\n{\n\t"); /* 2 lines, 1 call */
emit("goto lbl%u;\n", labelNo); /* Var part of lexeme*/
emit("\b}\rlbl%u:\n", labelNo++); /* Left justify label*/
emit("resetId(&id);"); /* Not justified */
emit(" /* A comment */\n"); /* 1 line, 2 calls */
emit("\b\b\b"); /* Not normally done */

Example 3. The emitter control characters in use

if (id > MAXID)
{

goto lbl5;
}

lbl5:
resetId(&id); /* A comment */

Listing 1. Output from Example 3

Automatic Line Breaks

Besides these explicit format commands to the emitter, there is an automatic
operation that is solely under the control of the emitter. This is the line-break
operation. If a C lexeme will not fit on the current line, it is automatically placed
on the next line, indented one extra level. (This seems customary, although
double indentation is occasionally used. It is a matter of style.) If necessary,
this continuation line may also be continued on more lines, but not with further
indentation. A new line, indicated by a new-line or carriage-return character,
terminates the extra, line-continuation indentation.
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Example 4 shows a situation where a line would have been broken in the
middle of a logical AND operator. As Listing 2 shows, the emitter backs up to
the beginning of the operator, breaks the line there, and continues the logical
line, indented, on the next physical line. Note that the subsequent line goes
back to the pre-continuation-line indent level.

set_emit(NULL, "\t", 4, 20, NULL, NULL);
emit("\tif (id > MAXID && isLast)\n{\n\t");

Example 4. Automatic line break just waiting to happen

if (id > MAXID
&& isLast)

{

Listing 2. Broken line

Although unusual, if a lexeme plus the current indentation is longer than
the maximum line width, it is still output, even though the line is wider than
the maximum width. There is no other choice. This would probably happen a
lot with Examples 1 and 2, where the maximum line width is set to 1.

The Lexical Analyzer

Although it is not the purpose of this paper to describe the implementation, it
might be useful to mention a few things about the lexical analyzer used by the
emitter.
The lexical analyzer is implemented as a deterministic finite automaton

(DFA) [1] that recognizes spaces, the four emitter control characters, and pre-
processor tokens. Preprocessor tokens are the minimum lexical elements in
Standard C’s translation phases 3–6 that can be separated by white space [6]
and, therefore, the emitter’s line breaks.
The author took liberties with Standard C regarding comments. Instead

of looking for C lexemes in comments or just skipping them entirely, the DFA
shifts to just recognize spaces, the four emitter control characters, and non-
space character sequences. It then shifts back to recognizing C lexemes after
the comment. This simple form of word-wrapping inside comments, like that
used in word processing, results in a much more natural division of comments
into several lines when it is needed.
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Using It

The emitter is straightforward to use. However, it is difficult to come up with a
meaningful, brief example program that uses it, as an example. A real source-
code generating program, such as a translator, might make an occasional call
to emit with multiple-statement sections of target code and then lots of calls
with little bitty pieces—a relational operator here, a bracket there, part of an
identifier now, the rest later. Since the kind of programs that could use this
emitter tend to be fairly complex, even a relatively simple meaningful program
would overwhelm the parts relating to the emitter.
As with language development in general, be aware of the difference between

the source and execution character sets. To emit the following statement:

printf("Hello\n");

one might, at first, expect to use a call to the emitter such as:

emit("printf("Hello\n");\n");

However, one quickly realizes that this will not achieve the desired goal. The
proper call is, of course:

emit("printf(\"Hello\\n\");\n");

Limitations

Nested comments are not allowed but they are rarely needed in emitted code
anyway.
Header names used in #include directives are not recognized as distinct (h-

char and q-char) lexemes. Although this causes no problem with most quoted
names (they are treated just like strings), there is theoretically a problem with
an angle-bracketed name. It is seen as < and > typically enclosing identifiers
and a period. However, since #include directives tend to hug the left-hand
margin, this is rarely a practical concern. They have little to fear from line
breaks.
If a #define directive is wider than the maximum line width, the emitter

breaks it into multiple lines as usual. This is a problem because such breaks
must be marked with a back-slash character, \. Since macro definition directives
(and preprocessor directives in general) are more predictable than the rest of
emitted C, this is usually not a problem. The code generator must generate
back-slash-separated lines itself and not depend on the emitter to do so.
Currently, of the character set defined for Standard C source files, the ver-

tical tab and form-feed characters are invalid as input to the emitter.
Standard C trigraph sequences are not recognized. This decision was made
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based on the added complexity they would have imposed on the DFA versus
their benefit to most users of the emitter.

Possible Enhancements

The first enhancements the author would provide are:

1. The ability to disable and re-enable the emitter’s lexeme enforcement in
order to break the rules occasionally and emit something that is invalid
in the emitted language;

2. Allowing the form-feed character as input into the emitter.

3. To be more consistent with the standard library’s printf family of func-
tions, perhaps printed-character counts should be returned and other
emitting functions implemented, e.g., the analogue to puts.

Though the author chose not to, partly for portability reasons, the emitter’s
lexical analyzer could be generated with lex [4]. This would make the lexical an-
alyzer easier to maintain than the existing finite state, hand-coded machine [3].
The next big step for the emitter would be to format (break and indent) lines
based on the syntax of the language, without any help from the code generator.
To do this would require parsing its input, possibly with a parser generated by
yacc [2]. However, this would be going too far. The size and complexity of the
resulting emitter could approach that of the rest of the main program.

Possible Uses

The emitter described here could be used in the back end of a source-code
reformator, e.g., a ‘pretty printer,’ that does not translate between languages.
It just rearranges source code according to some prescribed style.
It could also be used to emit code in an application generator. For exam-

ple, once a user has interactively defined the layout and behavior of a set of
screens with such a program, the source code for an application is automatically
generated, ready to compile.
The most obvious uses, however, are in a source-language translator where

Standard C is the target language, e.g., a Pascal-to-C translator, and in a
preprocessor where Standard C is an intermediate language.

Notes

Although this facility has always been written in C, it first supported TAL,
Tandem Computer’s system language. It was developed simultaneously on a PC
running XENIX and a Tandem VLX running its proprietary operating system
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using their respective C compilers. It was then ported to a DEC 3500 running
VMS and DEC’s VAX C compiler. After that, the shift from supporting TAL
to C occurred, along with an opening up of the implementation of the DFA
to eliminate some redundant processing by remembering DFA state between
emitter calls [3]. More recently, it was ported to a PC running MS-DOS and
Borland’s Turbo C compiler.
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9. Miscellanea

compiled by Rex Jaeschke

Constructing Header Name Tokens

In §3.8.2, Source File Inclusion, page 89 lines 9–17, the Standard reads:
“A preprocessing directive of the form

# include pp-tokens new-line

(that does not match one of the two previous forms) is permitted.
The preprocessing tokens after include in the directive are pro-
cessed just as in normal text. (Each identifier currently defined as
a macro name is replaced by its replacement list of preprocessing
tokens.) The directive resulting after all replacements shall match
one of the two previous forms. The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token
pair or a pair of " characters is combined into a single header name
preprocessing token is implementation-defined.”

I have been studying this and related sections of the standard to try and de-
termine whether this directive format can be used at all in a strictly-conforming
program. As such, I wrote a number of small test cases and ran them through
5 compilers claiming to be either standard-conformant or ‘very close to it.’ I’ll
refer to the compilers as C1–5.

Test 1:

#define M1 <stdio.h>
#include M1

All five compilers found the header stdio.h and processed it. Let’s look
closer at what is going on here. In §3.1.7, Header Names, page 33 lines 33–34,
the standard reads:

“Constraints : Header name preprocessing tokens shall only appear
within a #include preprocessing directive.”

From this, one can deduce that a header name token only exists in the
context of an #include directive. Specifically, in the definition of macro M1,

81
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<stdio.h> is not recognized as a header name. Instead, it is seen as the token
sequence

{<} {stdio} {.} {h} {>}

When M1 is called this set of tokens is combined (in an implementation-defined
manner) to form a token that is expected to look like a header name. Since
implementation-defined behavior must be documented I went in search of a
description of how the 5 compilers constructed this new token. I found almost
nothing in their documentation, and certainly not enough to tell me would
happen in the rest of my test cases.

Test 2:

#define M2 < stdio /*...*/ . h >
#include M2

Compilers C1 and C2 ignored all white space and formed the header name
<stdio.h> and found the correct header. C3 and C5 reduced each lot of con-
tiguous white space to a single space finishing up with < stdio . h > (which
did not map to an existing header). C4 took a similar approach although it
stripped off leading and trailing white space giving <stdio . h>. Three of the
compilers seem to differentiate between the absence and presence of white space
between tokens when the final header name is constructed.
Can all the white space legitimately be ignored? Well the standard simply

says “The method by which a sequence of preprocessing tokens ... is com-
bined into a single header name preprocessing token is implementation-defin-
ed.” There is no mention about any white space that may be separating these
tokens.
Can any of the white space legitimately be retained? You can argue “Yes”

since it is implementation-defined as to how the header name is constructed.
You could also argue “Yes” since nothing is stated about white space so this
aspect is unspecified—anything can happen.

Test 3:

#define A stdio
#define B h
#define C <A . B>
#include C

C1 produced <A.B>. This is an error since iterative macro expansion should
occur on the call to C. C2 had no problem. As before, C3, C4, and C5 kept
some white space but C3 and C4 replaced the macros and C5 didn’t.
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Test 4:

#define A stdio
#define B h
#define D <A.B>
#include D

While Test 3 contains white space, Test 4 does not, so one might expect
more predictable results. C1 and C5 produced <A.B> failing to expand the
macros. (They should have expanded the call to A and B.) C2, C3, and C4 all
expanded both A and B and the header was processed.

Test 5:

#define XX std ## io
#define Y h
#define Z <X ## X.Y>
#include Z

Based on the results from Test 4 the results of this test were predictable.
C1 and C5 again failed to expand macro calls and produced <XX.Y>. On the
other hand C2, C3, and C4 processed <stdio.h>.

Test 6:

#define M3(arg) #arg
#include M3(a.h)

In this much more straightforward case, all compilers formed the header
name "a.h", as expected.
Admittedly most of these examples are academic. However, the primary

reason for this format of the #include directive existing in the first place is to
allow the programmer to construct a header-name token from pieces. Yet such
a token can never exist except when hard-coded in an #include directive or
as the result of some magic incantations which are labelled as implementation-
defined. From this I deduce that one cannot portably rely on the outcome of
any usage of this directive format. Even the simplest case (Test 1) might not
work since the way in which the tokens are put together is implementation-de-
fined (although it hard to image what other reasonable token could be formed
here). And in the situation where the macro is defined on the compilation
command-line, the command-line processor may treat the < and > characters
as command-line redirection characters instead. The bottom line then is that
the construct
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#ifdef X
#include <a1.h>

#else
#include <a2.h>

#endif

is strictly-conforming, but

#ifdef X
#define M <a1.h>

#else
#define M <a2.h>

#endif

#include M

is not. On the other hand, if headers with names of the form "..." were used
instead of <...>, either approach is strictly-conforming since tokens of this form
are treated as string literals from the beginning until finally being ‘converted’
into a q-char sequence.

Calendar of Events

• July 8–10, Tutorial and workshop on High Performance Compilers
– Location: Portland Marriot Hotel, Portland, Oregon. For information
regarding course content contact the instructor Michael Wolfe at (503)
690-1153 or mwolfe@cse.ogi.edu.

• August 12–16, International Conference on Parallel Processing –
Location: Pheasant Run resort in St. Charles, Illinois (near Chicago).
Submit software-oriented paper abstracts to Herbert D. Schwetman at
hds@mcc.com or by fax at (512) 338-3600 or call him at (512) 338-3428.

• August 16–17, 1991 Hot Chips Symposium III – Location: Stan-
ford University, Stanford, CA. This IEEE-sponsored conference will con-
sist of presentations on high-performance chip and chip-set products,
and related topics. It is directed particularly at new and exciting prod-
ucts. The emphasis is on real products, not academic designs. For fur-
ther information contact Martin Freeman at (408) 991-3591 or mfree-
man@sierra.stanford.edu.

• August 26–28, 1991 PLILP 91: Third International Symposium on
Programming Language Implementation and Logic Program-
ming – Location: Passau, Germany. The aim of the symposium is to
explore new declarative concepts, methods, and techniques relevant for
implementation of all kinds of programming languages, whether algorith-
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mic or declarative. Contact plilp@forwiss.unipassau.de for further infor-
mation.

• September 24–27, 1991 Numerical C Extensions Group (NCEG)
Meeting – Location: At an Apple facility in Cupertino, California (Sili-
con Valley area). Note that this will not be a joint meeting with X3J11. As
such, NCEG will meet more than the usual two days. For more informa-
tion about NCEG, contact the convenor Rex Jaeschke at (703) 860-0091 or
rex@aussie.com, or Tom MacDonald at (612) 683-5818 or tam@cray.com.

• November, 1991ANSI C++ X3J16 Meeting – Location: Toronto, On-
tario. For more information, contact the Vice-Chair William M. (Mike)
Miller, P.O. Box 366, Sudbury, MA 01776-0003, (508) 443-7433 or wm-
miller@hplabs.HP.com.

• November 14–16, 1991 Supercomputing Debugging Workshop ’91
– Location: Albuquerque, New Mexico. This workshop will be held in
conjunction with Supercomputing ’91. For information, contact one of
the following: Jeffrey S. Brown, (505) 665-4655 or jxyb@lanl.gov; Peter
Rigsbee, par@cray.com; or Ben Young bby@craycos.com.

• December 1–5, 1991 Third IEEE Symposium on Parallel and Dis-
tributed Processing – Location: Dallas, Texas. For more information
contact Vijaya Ramachandran, (512) 471-9548 or spdp@cs.utexas.edu; or
Greg Pfister, (512)823-1589 or pfister@austin.iinus1.ibm.com.

• December 11–13, 1991 Joint ISO C SC22/WG14 and X3J11 Meet-
ing – Location: Milan, Italy. WG14: Contact the US International
Rep. Rex Jaeschke at (703) 860-0091, or rex@aussie.com, or the convenor
P.J. Plauger at pjp@plauger.com for information. X3J11: Address corre-
spondence or enquiries to the vice chair, Tom Plum, at (609) 927-3770 or
uunet!plumhall!plum.

• January 6–10, 1992Numerical C Extensions Group (NCEG) Meet-
ing – Location: In the Dallas, Texas area, hosted by Convex. Note that
this will not be a joint meeting with X3J11.

• January 7–10, 1992 Workshop on Parallel Programming Tools –
Location: Kauai, Hawaii. This event is the Hawaii International Confer-
ence on System Sciences – 25 (HICSS-25). For information, contact Dr.
Hesham El-Rewini at (402) 554-2852 or rewini@unocss.unomaha.edu.

• January 19–22, 1992 Principles of Programming Languages – Loca-
tion: Albuquerque, NewMexico. This is the 19th Annual ACM SIGPLAN-
SIGACT symposium. For information, contact Andrew Appel at (609)
258-4627 or appel@princeton.edu.

• May 11–12, 1992Numerical C Extensions Group (NCEG) Meeting
– Location: Salt Lake City, Utah.
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• May 13–15, 1992 Joint ISO C SC22/WG14 and X3J11 Meeting –
Location: Salt Lake City, Utah.

News, Products, and Services

• Associated Computer Experts bv (ACE) of the Netherlands has inte-
grated their EXPERT C (and other language) compilers into the Motorola
VMEexec Real-Time environment. uunet!doeke@ace.nl

• Oakley Publishing, publisher of the Programmers’ Journal, has acquired
the C Gazette. Bobbi Sinyard (503) 747-0800.

• The third edition of C: A Reference Manual by Harbison and Steele is
now available from Prentice Hall. Call (201) 767-5937 for a 15-day free
trial.

• paracom, inc, vendor of Inmos transputer systems and software has been
renamed to parsytec. (708) 293-9525.

• To order a copy of the ANSI C standard (ANSI X3.159-1989) in Canada,
contact:

Foreign Standards Sales Section
Standards Council of Canada
350 Park St., Suite 1200

Ottawa, Ontario
K1P 6NT

(613) 238-3222

The cost is about Can$93.

• The ISO draft C Bindings for GKS/C and GKS-3D/C were registered
as a DIS in July 1990. Both bindings were approved by all P mem-
bers. Only 4 members had some comments, almost none of which seemed
controversial. As a result, the final standard is expected soon. For infor-
mation on these bindings contact Miente Bakker in the Netherlands at
miente@cwi.nl.

• ANSI has moved. The new address is:

American National Standards Institute
11 West 42nd Street
New York, NY 10036
(212) 642-4900

Fax: (212) 398-0023
Sales Fax: (212) 302-1286
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• Digital Equipment Corp. has announced V1.1 of the PDP-11 C com-
piler.

• Sun has announced V1.1 of their Sun C compiler which is now standard-
compliant.

• Zortech has announced a native mode C and C++ compiler for the Apple
Macintosh. For further information call: North America, (617) 937-0696
or Fax (617) 937-0793; England, (0)81 316-7777 or Fax (0)81 316-4138.

• P.J. Plauger has produced a portable implementation of the entire li-
brary of Standard C (ANSI X3.159-1989 and ISO/IEC 9899:1990). The
math functions have at most 2 bits of error. An open-ended set of locales
can be supported as text files. A Kanji locale is provided, as well as a
“simulated widechar” locale for Westerners. The entire source code, spe-
cial test programs, and full explanation are to be published as a textbook
by Prentice-Hall. (Anticipated release date: Summer 1991.)

Plauger has granted full rights to each reader to incorporate functions
from this library royalty-free into bound-binary (i.e., executable) pro-
grams, provided only that Plauger’s copyright notice is embedded some-
where in each copy. The reader may keyboard the functions by hand, or
obtain a diskette from the C Users’ Group at (913-841-1631).

Compiler vendors who wish to distribute source code or linkable libraries
containing some or all of the functions from Plauger’s library can license
these rights from Plum Hall at (609) 927-3770 or plum@plumhall.com).

• The Japanese agency JMI has signed a letter of intent to use Plum
Hall’s suite for official validation in Japan. For further information on
this suite, contact Plum Hall at (609) 927-3770 or plum@plumhall.com).
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