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10. Floating-Point Primitives

P.J. Plauger

Abstract

The C library has always included seminumerical functions for manipu-
lating floating-point values. Early math functions were more robust and
portable for being written in terms of these primitives. IEEE 754 floating-
point arithmetic brings added complexities, however. It demands a differ-
ent set of primitives for dealing with infinities, not-a-number codes, and
other subtleties.

This article describes a set of primitives that I have found convenient
for writing the math functions of the Standard C library for IEEE-based
systems. It also discusses possible extensions to C that might ease the
burden of writing safe floating-point code for less sophisticated program-
mers.

Introduction

Floating-point arithmetic can generate a number of exceptional conditions:

• Overflow occurs when the magnitude of the result is too large to represent.
• Underflow occurs when the magnitude of the result is too small to repre-
sent.

• Loss of significance occurs when the magnitude of a sum or difference is
much smaller than that of either operand.

• A domain error (such as zero divide) occurs when you specify a combina-
tion of operands for which the operation is not defined.

Even the most naive programmers soon learn to worry about these excep-
tions. When they occur, different computers do different things. Some termi-
nate program execution abruptly. Others continue, but make some attempt
to signal the error. They may set an indicator (such as the notorious errno).
They may produce a result that:

• unequivocally signals a problem (such as some special code),

• equivocally signals a problem (such as zero or HUGE VAL), or
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90 The Journal of C Language Translation – June, 1991

• is pure garbage (such as an oversize exponent that wraps around)
If your goal is to write code that is both robust and portable, this spectrum

of possibilities is dismaying. You soon learn that the only safe way to deal
with exceptions is to avoid them. Test before you compute. Make sure that all
floating-point operations produce unexceptional results.
At the very least, localize the points at which exceptions can occur. That

lets you isolate any special code you must introduce to handle the exceptions
uniformly across diverse implementations. It lowers the cost of porting code.
One of the most demanding uses for floating-point code is in writing the

functions that constitute the math library. In C, these are primarily the func-
tions declared in <math.h>. (You can also include the functions that convert
between text representation and floating-point values.) These functions must
generate the most precise answers possible for all sensible inputs. They must
avoid intermediate exceptions even for the most extreme argument values. And
they often must be portable in the bargain, to recoup the investment of effort
across as many markets as possible.
The C library has striven to meet these goals from the outset. Dennis Ritchie

and his friends knew to avoid many of the common pitfalls in writing math
functions. While C has had its notorious lapses in this area, it has probably
fared better than most programming languages.
Evidence of this heightened awareness lies in the C library itself. There

you will find a handful of seminumerical functions. These are clearly aimed
at easing the burden of the cautious numerical programmer. They let you
dismantle floating-point values in various ways. You can then work with pieces
that are integers or floating-point values with a more restricted range. Finally,
you put the pieces back together to develop the ultimate result.
I call these functions seminumerical because they need not execute floating-

point instructions to get the job done. You can write them in C or assem-
bly language as if they are operating on arrays of integers. You shift, mask,
and merge to manipulate the components of a floating-point value separately.
True, some floating-point processors have instructions that do part or all of the
job. Even for these machines, however, you might still have occasion to avoid
floating-point instructions. I discuss why below.
The three most important functions in the seminumerical group are:

1. double frexp(double x, int *pex) – which extracts the power-of-two
exponent of x and stores it in *pex, then returns the residual fraction
whose magnitude now lies in the interval [1/2, 1) (or is zero).

2. double ldexp(double x, int ex) – which multiplies x by 2ex and re-
turns the result (hence undoing the damage caused by frexp).

3. double modf(double x, double *pin) – which extracts the integer part
of x and stores it in *pin, then returns the residual fraction whose mag-
nitude now lies in the interval [0, 1) and whose sign is the same as *pin
(and x).
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These operations play a pivotal role in implementing nearly all of the stan-
dard math functions declared in <math.h>.
Unfortunately, these particular functions don’t quite do the whole job. I

have written several math libraries over the years, most of them in C. In each
case, I ended up writing a different set of math primitives. The three functions
shown above always turned out to be easily expressed in terms of the primitives
I chose. But I could never quite do the job the other way around.

Exceptions

The problems lie primarily in the area of exception handling. Any of the three
functions can be handed an exceptional argument, at least in principle. The
function ldexp can generate an overflow or underflow. If the functions don’t
land on their feet when an exception occurs, you must ensure that they never
see exceptions. (Remember what I said earlier about the best way to keep
floating-point code portable.)
Because they are so widely used, these are the very functions you want to

have help you in writing robust code. You don’t want to have to call one function
to test for exceptions, then another to unpack an operand appropriately. You
don’t want to have to test first whether repacking is safe, then call a function
to do the actual repacking. That’s not a good recipe for writing code that is
both portable and efficient.
Consider the function ldexp as the simplest example. It is often the agent

that repacks the components you have manipulated separately (and safely).
You can thus make it the one and only place where overflow or underflow can
occur. As a seminumerical function, ldexp can detect an impending exception
without tickling the dragon’s tail. You can steer well clear of any hardware
traps when you write the function.
Unfortunately, you have only limited latitude in how you write ldexp. The

C Standard dictates its outward behavior. The function can (and must) set
errno on a range error. It can (and must) substitute HUGE VAL or zero for an
unrepresentable result when a range error occurs. But it has no nice way to
tell the caller that it did so. Comparing the return value against HUGE VAL and
zero can be both time consuming and inconclusive.
Now consider what frexp should do when handed the value HUGE VAL. On

some machines, this happens to be just a very large representable value. It can
be represented as a power-of-two exponent and a fraction. But should it? The
C Standard doesn’t really say. You probably want an unpacking primitive that
is smarter, and more informative, than frexp is allowed to be.
That’s the tip of the iceberg. The real danger to shipping lies in the com-

plexities introduced with the IEEE 754 Standard for floating-point arithmetic.
That standard introduces all sorts of codes for exceptions. Besides being a
finite, representable value, a floating-point operand can be:
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• a signalling NaN (for not-a-number) that should raise an immediate ex-
ception for any operation except a simple copy,

• a quiet NaN that should percolate through to the result wherever possible,
• Inf (for infinity), either positive or negative, or
• zero (either positive or negative).

The C Standard suffered a few last-minute edits designed to make it tolerant
of IEEE 754 arithmetic. HUGE VAL can be represented as Inf, for example.
Domain errors can be represented in a variety of ways, probably including a
NaN result. Those changes are necessary, but they are arguably not sufficient.
An implementation of C that endeavors to support IEEE 754 arithmetic has
little guidance from the C Standard.

Categorizing Operands

The Numerical C Extensions Group has, of course, addressed some of these
issues. Much of the recent discussion that I have seen centers on the problem of
comparing floating-point values in the presence of NaNs. Inf and zero, of either
sign, have sensible orderings defined for the comparison operators. NaNs do
not. Hence, in my opinion, the expression x < y can be neither true nor false
if either operand is a NaN. That pretty much obliges the program to raise an
immediate exception to handle a NaN when executing such an expression.
The basic idea I have seen most widely discussed is to introduce a slew of

additional comparison operators to the C language. An operator that begins
with a bang ! tolerates NaNs. Thus, x !< y is true if y is greater than or
equal to x or if either operand is a NaN. Such operators eliminate the need
to raise exceptions, at the cost of complexifying C even further. People might
even start accusing C expressions of being cryptic.
My experience to date is that such an approach is neither necessary nor

sufficient:

• You need to do more with NaNs than simply copy them or compare
them safely. You may need to distinguish quiet and signaling NaNs, for
example. You always want to treat them quite differently from other
operands.

• You often need to treat Inf quite differently from other operands.

• You may want to distinguish plus zero from minus zero in some contexts
(although personally I have reservations about the utility of minus zero).

I have found more useful a different approach. I find frequent occasion to
categorize a floating-point value before I muck with it. At the very least, I want
to distinguish between:
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• NAN for a quiet NaN,

• INF for Inf of either sign,

• 0 for zero of either sign, and
• FINITE for a finite, representable value of either sign.

Here is the simplest possible example. The function fabs looks to be trivial.
In principle, one could write it as:

/* compute absolute value */

double fabs(double x)
{
return (x < 0.0 ? -x : x);
}

In practice, this code is a sucker for NaNs. So I introduced the function
int Dtest(double *px) that categorizes *px seminumerically. The header
"xmath.h" declares Dtest and defines macros for the various integer category
codes it returns, as indicated above. (In principle, the return value is an enu-
meration.) Now fabs can be written safely as:

#include "xmath.h"
/* compute absolute value */

double fabs(double x)
{
switch (_Dtest(&x))

{ /* test for special codes */
case NAN:

errno = EDOM;
return (x);

case INF:
errno = ERANGE;
return (_Inf._D);

case 0:
return (0);

default: /* finite */
return (x < 0.0 ? -x : x);
}

}

( Inf is a union that is initialized as an array of short then accessed as the
double code for infinity.) This version is not nearly as fast or elegant as the
obvious version, but it works better.
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Here is what Dtest looks like. The various funny macro names that begin
with D define machine-dependent properties of the floating-point representa-
tion. They correct for changes in byte order among various IEEE 754 implemen-
tations. They also tolerate a few similar formats, such as the PDP-11/VAX-11
floating-point format:

/* _Dtest function -- IEEE 754 version */
#include "xmath.h"

/* categorize *px */

short _Dtest(double *px)
{
unsigned short *ps = (unsigned short *)px;
short xchar = (ps[_D0] & _DMASK) >> _DOFF;

if (xchar == _DMAX) /* NaN or INF */
return (ps[_D0] & _DFRAC || ps[_D1]

|| ps[_D2] || ps[_D3] ? NAN : INF);
else if (0 < xchar || ps[_D0] & _DFRAC

|| ps[_D1] || ps[_D2] || ps[_D3])
return (FINITE); /* finite */

else
return (0); /* zero */

}

If you want to handle signaling NaNs (which I chose not to do), here is the
place to do so. You call Dtest only when you intend to muck with a floating-
point value. Hence, this function can raise a floating-point exception for you.
It would then return NAN only for quiet NaNs.
I also found it convenient to introduce the macro DSIGN. It tests the sign

bit of a floating-point value seminumerically. Thus, it can safely field NaN and
Inf codes. It can also correctly distinguish plus and minus zero, a distinction
otherwise difficult to make with C comparison operators.

Primitives Revisited

The other math primitives follow the model established by Dtest. All are
tolerant of the various IEEE 754 exception codes. All attempt to do something
sensible with these various codes. All return a category code to guide the caller
in its subsequent actions. Thus, it is necessary to call Dtest only when none
of the other common primitives are needed.
Here, for example, is a more robust substitute for frexp. The function

Dunscale unpacks an operand only if it is finite. Otherwise, it returns the
appropriate category code:
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#include "xmath.h"

/* separate *px to 1/2 <= |frac| < 1 and 2^*pex */

short _Dunscale(short *pex, double *px)
{
unsigned short *ps = (unsigned short *)px;
short xchar = (ps[_D0] & _DMASK) >> _DOFF;

if (xchar == _DMAX)
{ /* NaN or INF */
*pex = 0;
return (ps[_D0] & _DFRAC || ps[_D1]

|| ps[_D2] || ps[_D3] ? NAN : INF);
}

else if (0 < xchar || (xchar = _Dnorm(ps)) != 0)
{ /* finite, reduce to [1/2, 1) */
ps[_D0] = ps[_D0] & ~_DMASK | _DBIAS << _DOFF;
*pex = xchar - _DBIAS;
return (FINITE);
}

else
{ /* zero */
*pex = 0;
return (0);
}

}

This function must also deal with another added complexity of IEEE 754
arithmetic. A value with very small magnitude can be denormalized. That
provides a form of gradual underflow that has desirable properties in a few cases.
It also mucks up some functions that would be otherwise fairly straightforward.

Dunscale calls the function Dnorm to deal with denormalized values. The
latter function produces a normalized fraction, if possible. It also returns a
corrected power-of-two exponent for a finite denormalized operand:

#include "xmath.h"

/* normalize double fraction */

short _Dnorm(unsigned short *ps)
{
short xchar;
unsigned short sign = ps[_D0] & _DSIGN;
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xchar = 0;
if ((ps[_D0] &= _DFRAC) != 0 || ps[_D1]

|| ps[_D2] || ps[_D3])
{ /* nonzero, scale */
for (; ps[_D0] == 0; xchar -= 16)

{ /* shift left by 16 */
ps[_D0] = ps[_D1], ps[_D1] = ps[_D2];
ps[_D2] = ps[_D3], ps[_D3] = 0;
}

for (; ps[_D0] < 1<<_DOFF; --xchar)
{ /* shift left by 1 */
ps[_D0] = ps[_D0] << 1 | ps[_D1] >> 15;
ps[_D1] = ps[_D1] << 1 | ps[_D2] >> 15;
ps[_D2] = ps[_D2] << 1 | ps[_D3] >> 15;
ps[_D3] <<= 1;
}

for (; 1<<_DOFF+1 <= ps[_D0]; ++xchar)
{ /* shift right by 1 */
ps[_D3] = ps[_D3] >> 1 | ps[_D2] << 15;
ps[_D2] = ps[_D2] >> 1 | ps[_D1] << 15;
ps[_D1] = ps[_D1] >> 1 | ps[_D0] << 15;
ps[_D0] >>= 1;
}

ps[_D0] &= _DFRAC;
}

ps[_D0] |= sign;
return (xchar);
}

The analog of ldexp is even messier. Dscale must test for all the usual
exception codes in its argument *px. It must also generate infinities and de-
normalized values. The code that follows is safe against intermediate integer
overflow so long as short has a smaller representation than long:

#include "xmath.h"

/* scale *px by 2^xexp with checking */

short _Dscale(double *px, short xexp)
{
long lexp;
unsigned short *ps = (unsigned short *)px;
short xchar = (ps[_D0] & _DMASK) >> _DOFF;
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if (xchar == _DMAX) /* NaN or INF */
return (ps[_D0] & _DFRAC || ps[_D1]

|| ps[_D2] || ps[_D3] ? NAN : INF);
else if (0 < xchar)

; /* finite */
else if ((xchar = _Dnorm(ps)) == 0)

return (0); /* zero */

lexp = (long)xexp + xchar;
if (_DMAX <= lexp)

{ /* overflow, return +/-INF */
*px = ps[_D0] & _DSIGN ? -_Inf._D : _Inf._D;
return (INF);
}

else if (0 < lexp)
{ /* finite result, repack */
ps[_D0] = ps[_D0] & ~_DMASK | (short)lexp << _DOFF;
return (FINITE);
}

else
{ /* denormalized, scale */
unsigned short sign = ps[_D0] & _DSIGN;

ps[_D0] = 1 << _DOFF | ps[_D0] & _DFRAC;
if (lexp < -(48+_DOFF+1))

xexp = -1; /* certain underflow */
else

{ /* might not underflow */
for (xexp = lexp; xexp <= -16; xexp += 16)

{ /* scale by words */
ps[_D3] = ps[_D2], ps[_D2] = ps[_D1];
ps[_D1] = ps[_D0], ps[_D0] = 0;
}

if ((xexp = -xexp) != 0)
{ /* scale by bits */
ps[_D3] = ps[_D3] >> xexp

| ps[_D2] << 16 - xexp;
ps[_D2] = ps[_D2] >> xexp

| ps[_D1] << 16 - xexp;
ps[_D1] = ps[_D1] >> xexp

| ps[_D0] << 16 - xexp;
ps[_D0] >>= xexp;
}

}
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if (0 <= xexp && (ps[_D0] || ps[_D1]
|| ps[_D2] || ps[_D3]))

{ /* denormalized */
ps[_D0] |= sign;
return (FINITE);
}

else
{ /* underflow, return +/-0 */
ps[_D0] = sign, ps[_D1] = 0;
ps[_D2] = 0, ps[_D3] = 0;
return (0);
}

}
}

The final primitive is the analog of modf. I found it useful to make Dint
somewhat more general. Some math functions have occasion to preserve one
or more fraction bits while dropping the rest. Thus, negative values of the
argument xexp specify how many bits to keep to the right of the binary point.
Less-significant fraction bits are cleared. Note that this function returns the
proper category code for the fraction that is discarded, not for the integer that
is retained. As dizzying as that may appear, it proves to be the best behavior
for the function:

#include "xmath.h"

/* test and drop (scaled) fraction bits */

short _Dint(double *px, short xexp)
{
unsigned short *ps = (unsigned short *)px;
unsigned short frac = ps[_D0] & _DFRAC

|| ps[_D1] || ps[_D2] || ps[_D3];
short xchar = (ps[_D0] & _DMASK) >> _DOFF;

if (xchar == 0 && !frac)
return (0); /* zero */

else if (xchar != _DMAX)
; /* finite */

else if (!frac)
return (INF);

else
{ /* NaN */
errno = EDOM;
return (NAN);
}



Floating-Point Primitives – Plauger 99

xchar = (_DBIAS+48+_DOFF+1) - xchar - xexp;
if (xchar <= 0)

return (0); /* no frac bits to drop */
else if ((48+_DOFF) < xchar)

{ /* all frac bits */
ps[_D0] = 0, ps[_D1] = 0;
ps[_D2] = 0, ps[_D3] = 0;
return (FINITE);
}

else
{ /* strip out frac bits */
static const unsigned short mask[] = {

0x0000, 0x0001, 0x0003, 0x0007,
0x000f, 0x001f, 0x003f, 0x007f,
0x00ff, 0x01ff, 0x03ff, 0x07ff,
0x0fff, 0x1fff, 0x3fff, 0x7fff};

static const size_t sub[] = {
_D3, _D2, _D1, _D0};

frac = mask[xchar & 0xf];
xchar >>= 4;
frac &= ps[sub[xchar]];
ps[sub[xchar]] ^= frac;

switch (xchar)
{ /* cascade through! */

case 3:
frac |= ps[_D1], ps[_D1] = 0;

case 2:
frac |= ps[_D2], ps[_D2] = 0;

case 1:
frac |= ps[_D3], ps[_D3] = 0;
}

return (frac ? FINITE : 0);
}

}

Conclusion

I have used these primitives to write all the math functions presented in The
Standard C Library (Prentice Hall, 1992). That should serve as an existence
proof. The functions are demonstrably portable and arguably efficient and easy
to read. I have found the primitives to be useful in knocking together other
math functions as well.
More interesting to me are the implications for extending the C language
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proper. Dtest seems to capture much of what you often need to know about an
arbitrary floating-point value. I find it much more useful than, say, a comparison
operator that tolerates NaNs. Perhaps what we need to institutionalize is a
standard mapping from floating-point values to category codes.
I hesitate to suggest that C needs another operator. I hesitate almost

as much to suggest that we further overload existing operators. With those
caveats, I tentatively make two observations:

1. The logical operators &, |, ^, and ~ are undefined for floating-point
operands. Replacing a floating-point value with a bit mask that catego-
rizes it could permit expressions that are both readable and optimizable.

2. The shift operators >> and << are undefined for a floating-point left
operand. Both have fairly obvious meanings in terms of the functions
ldexp (or Dscale).

Both observations are probably rash, but they might stimulate some creative
thought.

P.J. Plauger serves as secretary of X3J11, convenor of the ISO C working
group WG14, and Technical Editor of The Journal of C Language Translation.
He is currently a Visiting Fellow at the University of New South Wales in
Sydney, Australia. His latest book, The Standard C Library, is available from
Prentice-Hall. He can be reached at uunet!plauger!pjp.
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11. Reusable Incremental Scanning

W.M. McKeeman and Shota Aki
Digital Equipment Corporation

110 Spitbrook Road
Nashua, NH 03062

Abstract

The design of a scanner for standard C that is independently reusable and
incremental is presented. It is is claimed that similar designs are possible
for other compiler components and other programming languages. This
scanner uses reusable components for source line management and string
management. The lexing algorithm itself is not the main issue—it can be
conventional. Reusability is achieved by separation of function, simple
and consistent interfaces, and provision of component-level testing. In-
cremental capability is achieved by saving lists of tokens corresponding
to blocks of source lines and, when the source is unchanged, reusing the
tokens instead of rescanning.

Introduction

This paper presents the design of a scanner that is reusable, and can be line-
at-a-time incremental.
There are two reasons to do incremental scanning. First, assuming that

changes are much smaller than the whole size of the file, incremental scanning
is faster—the time to update the token representation of the source is pro-
portional to the size of the change made to the source. Second, incremental
scanning enables the consumer of tokens downstream to perform its processing
incrementally and therefore faster as well.
The advent of very fast central processesors provides processing power that

could make the performance gains of incremental computation irrelevant, al-
though experience indicates that there is no limit on how many processor cycles
we can use. Another perhaps more durable efficiency issue is minimization of
file I/O. In a large memory environment, this scanner needs only infrequent
access to files.
The reasons to promote reuse in general are obvious. It is not so obvious

how to achieve it. Reuse depends on a delicate tradeoff between generality
and specificity. Progress in reuse comes when one discovers a generalization
(widely applicable component) which does not significantly degrade any one

101
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use (efficiently applicable component). Components can be made reusable by
paying attention to separation of function and to interface design. Reuse also
depends on reducing the engineering effort to understand and incorporate an
already implemented component into a larger whole. For this the designer can
provide consistency between similar interfaces in both form and interpretation
as well as amenities such as documentation and a demonstration.
This paper provides the signature and semantics for the interface of a

reusable scanner. The demonstration of implementation adequacy assumes the
existence of a driver program (or standalone test jig, in our parlance) which ex-
ercises all of the scanner functions. It turns out that there is synergy between
making a component reusable and making the same component incremental.
Both attributes require clear and narrow interfaces. Our approach is consistent
in that it not only provides a reusable scanner interface but also assumes the
availability of reusable components for handling strings and input text.
This scanner is usable in a compiler front end and also available for other

uses such as pretty printers. The treatment here is for scanning standard C but
the solution is generally applicable to popular programming languages with a
few language-specific adjustments [2]. Ironically, K&R C is one exception to the
general rule—with K&R, scanning is not easily separated from preprocessing.
The definition of a programming language usually includes a lexical grammar

which specifies the transformation from character-stream source text into a
token-stream needed for the next stage of processing. Even though there are
tools for automating scanner construction based on a lexical grammar, most
scanners are written by hand. It is easy to do and compiler writers perceive
that generated scanners are less efficient [7, 8]. It is also true that most uses
require some ad hoc tweaks to the scanner. Scanner generators may supply
workarounds for the known needs to tweak, but cannot guarantee workarounds
for future needs. The developer is therefore uncertain about whether a scanner
generator will be up to the next task. For the work reported here, the next tweak
was incremental processing. No generator provided the capability. This line of
reasoning led us to use a lexical grammar for documentation while implementing
the corresponding scanner by hand [2, §2.1.1.2, §A.1].
The paper is organized in the following sections:

• The scanner interfaces.
• The internals of the scanner.
• Example: a non-incremental consumer.
• Example: an incremental consumer.
• Performance.

The literature on incremental and parallel language processing overlaps be-
cause both kinds of processing use similar kinds of incremental structures. The
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reader is referred to two comprehensive surveys of the literature for more infor-
mation [3, 6]. One case study combines scanning and preprocessing, enabling
either K&R-style or Standard C-style scanning to be chosen by the user [4].
Another prototype defines an editor interface that gives single character gran-
ularity for a simple language [1]. This paper presumes the reader has access to
a description of Standard C [2, 5].
Much of the detail in the paper is taken from our implementation of an in-

cremental scanner for C. Where we felt the presentation would be improved, or
in retrospect we could have done a better job on the scanner, we have presented
the view of how it should be, rather than how it is. This paper does not say
much about parts of the scanner that are conventional since that information
is available in any standard text.

Scanner Interfaces

The scanner interfaces are presented as a set of reusable abstractions. The form
of, relation between, and naming conventions for these abstractions are part of
the content of this paper. Each abstraction is organized about a principal
data structure. The name of that data structure also names the abstraction
and prefixes functions defined in the abstraction. These conventions are used
throughout without further mention. (See Token, below, for example.)
We also use a convention which we call struct-wrapped handles to enhance

the reusability of our abstractions. The use of struct-wrapped handles allows
an implementation of an abstraction some freedom in laying out the handles
without affecting clients. The actual encoding of any handle (for tokens or
other things mentioned below) is private to the implementing component. In
fact the representation of the handle is often a struct-wrapped index into an
array managed inside the abstraction. This scheme allows position-independent
pointers to various kinds of objects, hides the details of the implementation of
our memory manager from its clients, enables C compilers to strongly type-
check handles, and avoids inadvertent unsafe modifications of these handle val-
ues. The use of wrappers should not degrade performance.

Token Abstraction

The token abstraction is implemented (in C) in module token.c with public
interface token.h.1 The abstraction supplies primitive functions for stepping
forward and backward in the source input stream one token at a time, and for
examining various attributes of a given token. The user of this abstraction will
want to jacket these primitives with a use-specific function, as is demonstrated
in the examples later.

1In actual use, component source file names are prefixed with the processor name, as in
cc token.c.
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The principal data type produced by the scanner is Token. All uses of type
Token except for declarations, assignments, and parameter passing are private
to the scanner. The values of type Token are referred to as token handles.
Used in a C translator, the token output of this abstraction is input to the

preprocessor.

typedef struct {private layout} Token

– iterator functions
t = TokenFirst() – start at head of current file
t = TokenNext(t) – step to next token
t = TokenPrev(t) – step back to previous token

– attribute functions
c = TokenClass(t) – small integer classifying token t
s = TokenString(t) – textual form of token t
s = TokenStringRaw(t) – as above, preserving backslash and trigraphs
s = TokenWhite(t) – white space preceding token t
s = TokenWhiteRaw(t) – as above, preserving backslash and trigraphs
h = TokenLoc(t) – source file location of token t

There is a significant implementation cost implied by the full generality of
this interface. For us the cost has been acceptable. The cost can be reduced
somewhat for simple uses. The iterator functions (above) imply the existence
of forward and backward pointers. If one limits the arguments to the iterator
functions to a window of the previous n unique argument values for some small
n, the pointers do not have to be permanently recorded, therefore permitting
the implementation to save the corresponding storage. For Standard C, it
is sufficient to enable TokenPrev(t) only during the scanning of #include
directives. The attribute functions, on the other hand, must always be callable
with any valid token handle.
Function TokenFirst() returns the first token in the input stream. Given

any token, its successor and predecessor are returned by TokenNext() and
TokenPrev() respectively. There is a special token class represented by end-of-
file (eofTOKEN). This token is returned by TokenFirst() if the input stream
is empty, and by TokenNext(t) if it is called with the last token in the in-
put stream. There is another token class for not-a-token (ntTOKEN). This to-
ken is returned when TokenNext() is called with the end-of-file token and by
TokenPrev(TokenFirst()).
The small integer value representing the token class is implemented with an

enum in the interface. The enum-valued function TokenClass(t) is used a lot
and must therefore be especially efficient. There are about 40 distinct values
corresponding to the preprocessor input symbols in the C grammar [2, §A.1].
For example there is a class for operator ++, one class for all identifiers, one
class for all preprocessing numbers, and so on. In addition, there are exactly
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a dozen identifiers that are keywords immediately following #, but not other-
wise reserved in the preprocessor. Finally, there is defined which is reserved
following #if and #elif, and new-line which is treated as a token in a pre-
processing directive and otherwise as white space. There are about 80 distinct
post-preprocessing values including reserved words [2, §A.2].
One solution to all this detail is for the scanner to give a unique class to

every different symbol including key and reserved identifiers, and then provide
mappings to the codes appropriate to the situation. For example, if has a
unique class. Its various mappings and the mapping functions are shown below.

Preprocessing keyword context
(immediately following a # that starts a line)
if (TokenClass(t) == ifTOKEN)...

Preprocessor expression context (following #if, #elif)
if (InPpExpr(TokenClass(t)) == identifierTOKEN)...

All other preprocessing contexts
if (InPpBody(TokenClass(t)) == identifierTOKEN)...

During parsing
if (InParse(TokenClass(t)) == ifTOKEN)...

Only the mapping InPpExpr() exposes the special preprocessor arithmetic
operator defined to be the token class definedTOKEN during preprocessor ex-
pression context.
Another solution is to use different token-class values after preprocessing,

constructing the tokens anew at the end of phase 4 [2, §2.1].
Functions TokenString(t) and TokenWhite(t) each return values of type

String, which is presented next. The value of TokenString(t) is text of the
token itself. The value of TokenWhite(t) is the text of the white space preced-
ing the token2. The preceding white space is needed during macro definition
and expansion in a preprocessor for Standard C. Any backslash-newline pairs
and trigraphs that occurred in the source file do not appear in the values of
these functions. The two other versions (suffixed with Raw) provide the exact
textual form. Printing the Raw form of the strings for all the tokens in a file, in
order, reproduces the source text.
Function TokenLoc(t) returns a value of type Locator which is a further

abstraction providing access to token starting and ending column positions,
file name and line, and other kinds of information associating token to source-
text position. Function TokenLoc(t) is used in compilers principally to place
diagnostics relative to the source text. What TokenLoc(t) locates is precisely
TokenStringRaw(t) since that is what is in the source file. Further details
about locators are not essential to this presentation.

2The term white space has a technical meaning [2, §3.1]. It is not affected by the inter-
pretation of the token stream as preprocessing directives.
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Token Increment Abstraction

The token increment abstraction is implemented (in C) in module tokinc.c
with public interface tokinc.h. It supplies an interface similar to the token
abstraction except that it operates on token increments.
A token increment is represented by type TokInc. Values of type TokInc are

called tokinc handles or just tokincs. Objects of type TokInc can be declared,
assigned, and passed as parameters.
A token increment is an abstraction for managing tokens. The scanner

maintains an image of the source file as a list of logical source lines (also known
as the tokinc sequence). Usually a real source line corresponds one-to-one with
a logical source line in C. However, multiple real source lines turn into a single
logical source line when real lines are glued together by a terminating backslash
(\) character or by multi-line comments. A tokinc also records the creation-
history of the tokens that are associated with it, using a time stamp.
Token increments enable incremental scanning. The granularity of the in-

cremental update is the tokinc. When source changes, the scanner only needs
to rebuild the tokincs that correspond to the changed lines in the source.

typedef struct {private layout} TokInc

– iterator functions
w = TokIncFirst() – start at head of current file
w = TokIncNext(w) – step to next increment
w = TokIncPrev(w) – step back to previous increment

– list manipulation functions
TokIncLineDelete(j) – line j has been deleted
TokIncLineInsert(j, a) – line j inserted ahead of line a

– attribute functions
t = TokInc2Token(w) – first token in tokinc w
w = TokIncOfToken(t) – token increment associated with token t
k = TokIncMade(w) – time of construction of tokinc w

The tokinc iterators behave in the same manner as the token iterators.
When the start or end of the tokinc sequence is exceeded, a special handle
value of ntTOKINC is returned by the iterators.
Functions TokIncLineDelete() and TokIncLineInsert() are the list ma-

nipulation functions to modify the tokinc sequence as the line structure of the
source changes (e.g. old lines deleted, new lines inserted). Tokincs are hashed
by line handles (see the Line abstraction below) to facilitate fast deletion and
insertion operations.
The tokinc abstraction provides two attribute functions. TokInc2Token()

returns the leading token of its associated logical source line. Thus the following
invariant is always maintained:

TokenFirst() == TokInc2Token(TokIncFirst())
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The function TokIncOfToken() is used in the incremental mechanisms.
Given a token, it will return the containing token increment. More details
on token increments are given in the next section.
Time stamps, represented by a type TimeStamp, are discussed in general in

a later section. Function TokIncMade() returns the time stamp of the specified
token increment. In this case the time stamp indicates the age of the tokens in
the tokinc as well. Individual time stamps for each token could have been used
but since a new list of tokens is created each time a change to a logical source
line occurs, a single time stamp assigned to a tokinc is sufficient.

Line Abstraction

The line abstraction is implemented (in C) in module line.c with public in-
terface line.h. It supplies an interface similar to the previously described
abstractions except that it operates on source lines.
A line is represented by a type Line. Values of type Line are called line

handles. Items of type Line can be declared, assigned, and passed as parame-
ters.
The line abstraction provides access to the text of a source file. It is the

main input abstraction for the scanner. The actual origin of the text is hidden
behind this interface, i.e. it could be from disk or from an editor. There must
be a mechanism for selecting the file; the specifics are not important for this
paper.
The following public interface to source text is sufficient for scanning.

typedef struct {private layout} Line

– iterator functions
j = LineFirst() – start at head of current file
j = LineNext(j) – step to next line
j = LinePrev(j) – step back to previous line

– attribute functions
c = Line2Cstring(j) – text of j, null-terminated
h = LineLoc(j) – source file location of line j
k = LineMade(j) – time of construction of line j
LineCleanSet(j) – set line to status clean
b = LineCleanGet(j) – TRUE means line is clean

The line iterators behave in the same manner as all the other iterators.
When the start or end of the line sequence is exceeded, a special handle value
ntLINE is returned by the iterators.
Function Line2Cstring(j) provides a read-only null-terminated C string

for line j. Function LineLoc() returns a value of type Locator (discussed
earlier under tokens).
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The function LineMade(j) is useful for incremental scanning. It returns a
value of type TimeStamp. Alternatively, one may use the pair LineCleanSet(j)
and LineCleanGet(j) if the line abstraction supplies a clean/dirty bit instead
of a time stamp.
The typical use of source information is to start at the beginning and step

through the whole input, one line at a time. On occasion it is necessary to
look ahead in the input before processing the current line. For compilers, it is
acceptable to restrict all the functions to some small window containing just the
last few accessed lines. This is a reasonable compromise with the full generality
of the functions.
In Fortran, for example, the lookahead line must be examined for a contin-

uation mark before the current line can be scanned. In C, the scanner cannot
process #include directives in one pass—there are three possibilities, the third
of which applies only when the other two fail. This backup situation is confined
to a logical source line, but that may cross many physical source lines because
of comments and backslash suppressing line breaks. Because our incremental
scanner works on a granularity of physical source lines, resetting to try the third
possibility can therefore require stepping back many lines3.

String Abstraction

The string abstraction is implemented (in C) in module string.c with public
interface string.h.
The type String is an abstraction of C char* data. It is closely related

to the standard library functions [2, §A4.11]. Variables of type String can be
declared, assigned, and passed as parameters. Values of type String are called
string handles.
The string abstraction is used by the scanner to manage the storage of all

text. For example, the text-attribute functions for the token abstraction return
values of type String.
The string abstraction has a collection of functions and holds a collection

of strings. Text c is registered in the abstraction via one of the function
calls Cstring2String(c) or Chars2String(c,n). The first form expects a
null-terminated C string. The second form expects at least n non-null char-
acters. The first function is just an abbreviated form of the second. That
is Cstring2String(c) is equivalent to Chars2String(c, strlen(c)) so long as c is
null-terminated.
The value String2Cstring(TokenString(t)) is a null-terminated char *

text of the token t. Similarly, String2Cstring(TokenWhite(t)) provides a
(perhaps empty) null-terminated sequence of comments, blanks, tabs, and new-
lines immediately preceding the token.
The principal data type is String.

3Because of the 509 character limit for logical source line, there is a limit to the number
of lines of backup, but it is too large to be interesting.
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typedef struct {private layout} String

s = Cstring2String(c) – tabulate null-terminated string
s = Chars2String(c, n) – tabulate n characters
c = String2Cstring(s) – null-terminated char* representation
n = StringEql(s1, s2) – like strcmp() == 0
n = StringLen(s) – like strlen()

The characteristics of the package are that StringEql(s1, s2) is fast and
that all variable-length storage is automatically managed, thus relieving the
compiler writer (or other users) of that task. Outside the string package, vari-
ables can be declared and values can be assigned and passed around with low
overhead. Values of type String are only created inside the string package. Be-
cause source program input is repetitive (use an identifier once, use it a dozen
times...) and only one unique copy of each string need be tabulated, the size of
the internal tables grows more slowly than the total size of source input.
The actual package which motivates this writeup has other functions, for

context switching, catenation, hashing, testing, and so on. Further details are
omitted here.

Scanner Internals

This section presents the technology behind the scanner interfaces. The presen-
tation includes a discussion of time stamps, how lexical analysis is implemented,
and a description of how coherency is maintained between the tokinc sequence
and the line structure of the source.
Figure 1 illustrates the relationship between the main abstractions described

in the previous section. The incremental nature of the scanner is revealed as
well.
The input to the scanner is the sequence of lines. The scanner builds an

image of the input as a sequence of logical lines (type TokInc). Parallel to the
tokinc sequence is the sequence of tokens. Each tokinc provides direct access
to the token that starts its logical line.
The consumer of the tokens can traverse the length of the token stream to

obtain the token-representation of the source. The scanner can incrementally
update portions of the token sequence by rebuilding only the tokincs and tokens
associated with the modified lines.
The token increments and associated tokens can be saved, even written to a

file. The token-producing interface could be driven directly from the filed infor-
mation without reference to the source. This allows scanning to be separated
in time from the use of the tokens, effectively turning the token increments
into an intermediate language. An important consequence shows up later in
#include directive processing, where rescanning can be avoided by reusing the
token increments left over from a previous inclusion of the same file.
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line0: x = 1;

line1: y = a\

line2: b + 2;

line3: z = 3;

❄

❄

❄

tokinc0:

tokinc1:

tokinc2:

❄

❄

x = 1 ;

y = ab +

2 ;

z = 3 ;

=⇒

=⇒

=⇒

=⇒

=⇒

=⇒

✲ ✲ ✲

❄
✲ ✲ ✲

✲
❄

✲ ✲ ✲
❄

...

...

...

...

...

...

Figure 1: Relationship between Lines, Tokincs and Tokens

Clean, Dirty, Time Stamps

In incremental computation, the dependencies between the components form
the basis for reprocessing. If something older depends on data that is newer,
the older must be replaced with a recomputed newer value. It must therefore
be possible to compare times of creation for all of the atomic increments (e.g.,
types TokInc, Token, and Line). Dirty bits or time stamps provide the essential
information—they are associated with increments of various kinds.
A dirty bit for an increment is set to TRUE by the producer whenever the

value is changed. The dirty bit is set to FALSE by the consumer when the
value of the increment has been read and assimilated. Write-access to the dirty
bit must be given to both the producer and consumer.4

A time stamp may be associated with increments. The order of time stamps
is the same as the order of time-of-creation for the increments. Typically a time
stamp is an int value and the time stamp generator just keeps adding one for
each new value. With a 32-bit int, one need not fear of running out of values.
A stale increment will have an older (smaller) time stamp than something it de-
pends upon. The clean/dirty information is derived by comparing time stamps.
With this solution only the producer needs write-access to the increment. Fur-
thermore, several consumers can share an increment from a single producer. In
C, for example, lines in header files are shared by all the modules that include
them.
It is necessary that time stamps be correlated across all of the various incre-

mental constructs. For example, the time stamps of lines must be comparable
4This simple device breaks down when there is more than one consumer—each consumer

must have a way of separately setting FALSE.
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with the time stamps of tokens. Whenever a token is stale with respect to the
line it comes from, the old token must be discarded and a new token created in
its place with time stamp value at least as young as the new line from which it
is taken.
If incremental constructs are cascaded (for example, across editing, scan-

ning, preprocessing, parsing, etc.), it may be convenient for an increment to
have two kinds of time stamps, one comparable to its input and one compara-
ble to its output. The two kinds of time stamps need not be comparable with
each other. This permits each abstraction to own its own time-stamp generator
without any need to coordinate with those in other abstractions.

Lexical Analysis

Scanners have three principal responsibilities: lexically separating the input,
associating the pieces with the token classes needed by the next stage of pro-
cessing, and diagnosing a few kinds of input errors. Scanners may also be
responsible for detecting and responding to the context in which the tokens are
found. For example, in C the text of a string for a header name follows differ-
ent rules than the text of string literals. Other languages have more complex
context dependencies.
Having provided interfaces for the input and output of the scanner, we now

show how to isolate lexemes and make tokens. There are many ways to do it.
Most readers will have already done it more than one way. We divide the tokens
into groups detectable by their first character and switch inside the scanner to
cases, one for each group. For C, we use a dozen unique switch values. They
are represented by an enumeration local to the scanner:

typedef enum {
STARTNOTHING, /* most control characters */
STARTSHARP, /* # and ## */
STARTSINGLE, /* , ( @ ... */
STARTMULTIPLE, /* + = * ... */
STARTID, /* ids, wide char & string */
STARTPPNUM, /* 0 1 ... dot ellipsis */
STARTCHAR, /* ’ */
STARTSTRING, /* " (string or header name)*/
STARTCOMMENT, /* /* / /= */
STARTHEADER, /* <stdio.h> < <= << <<= */
STARTWHITE, /* blank tab ... */
STARTENDOFLINE /* null (from Line2Cstring) */

} LexemeGroup;

In each switch case the details of constructing the token are filled in. Within
the case for STARTMULTIPLE, for example, there is a nested switch on the leading
character, and within these cases there are switches on the next character, and
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so on. The following code fragment illustrates the structure for lexing the
four C symbols !, =, !=, and ==. The function CharGet() is a local function
extracting characters from the current line of source input.

...
case STARTMULTIPLE:

switch (c) { /* c is leading character */
case ’!’:

c = CharGet(); /* discard ‘!’ */
switch (c) {
case ’=’: /* ‘!=’ */

c = CharGet(); /* discard the ‘=’ */
class = NEQ; /* token class for ‘!=’ */
break;

default: /* ‘!’ */
class = NOT; /* token class for ‘!’ */
break;

}
break;

case ’=’:
c = CharGet(); /* discard ‘=’ */
switch (c) {
case ’=’: /* ‘==’ */

c = CharGet(); /* discard the second ‘=’ */
class = EQL; /* token class for ‘==’ */
break;

default: /* ‘=’ */
class = ASG; /* token class for ‘=’ */
break;

}
break;

case ... /* other multiples... */
}
break;

The case on STARTID handles wide string and character literals as well as
ordinary identifiers and reserved words. The case on STARTPPNUM handles the
dot operator and ellipsis as well as preprocessing-number.
The collecting of the type String values for the tokens as well as the

processing of backslash at the end of a line and trigraphs is hidden inside
function CharGet(). The suppressed new-line characters never appear outside
CharGet(). Trigraphs are translated into their equivalents. In the infrequent
case that the Raw version of the text differs from the normal value, special
construction is required. This is also implemented inside CharGet(). The line
abstraction produces null-terminated C strings for lines, so the new-line char-
acter has to be rematerialized for some white space values.
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Once the token class has been determined, and all the other information
recorded (such as locating line and column), the token is assembled. There is
no implication that the data is all packed into a token—the data can be held in
internal tables. The Token abstraction provides a scanner-private routine for
assembling a token given its class, text, raw-text, whitespace, raw-whitespace,
and locator.
This design leads to a module that is big but easy to build and maintain. The

design also gives convenient hooks for the language-specific context-dependent
situations. Note also that the lexical analyzer is isolated from the rest of the
scanner module since its only external interfaces are CharGet() (with calls to
Line routines) for input and the Token construction routine for output.

Token Increment Construction

In a traditional scanner, the assembled token is returned and used immediately.
As a consequence, the scanner holds a partially processed source line between
calls.
An incremental scanner will save each token by appending it to a local queue.

This queue may be of arbitrary length, which allows the scanner to process text
and produce tokens until a natural stopping point is reached (usually the end
of a line). This queue-centered design simplifies (at little cost to efficiency) the
between-call state-saving of the scanner since there are no partially processed
lines of text hanging around. More significantly, the queue-centered design
also enables incremental scanning. Each queue-full corresponds to the tokens
generated by scanning a logical line (tokinc). The token iterators manipulate
these queues to traverse the token stream.
By the nature of the constructing mechanism, each token increment is

aligned with the line structure of the source input text so that if the source
text is unchanged then so also is the token increment—a clean line leaves a
clean token increment. If the source text is changed, then the scanner will
create a new queue-full of tokens and a new tokinc, which is inserted in the
appropriate location in the tokinc sequence to mirror the new line structure of
the source.
The first time the source is scanned, source lines can be processed sequen-

tially from front-to-back. Token increments are produced in the order the lines
are scanned, and the resulting tokens are associated with tokincs. After a
source file has been scanned, a correspondence between source lines and the
token increments is established (as in Figure 1). For C the correspondence is
many-one—more than one source line may be needed to make a complete token
increment (because of backslash and multi-line comments).
During edit, source lines may remain unmodified, be inserted, or be deleted.

All other kinds of edit activity can be expressed as a combination of these. After
some edit activity, the previous correspondence between saved increments and
source lines is broken—there will be token increments that no longer have a
source (deleted source), and source lines that have no token increment (inserted
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source). The difference can be expressed as a sequence of deletes and inserts.
The sequence is not unique. Two sufficient sequences are the real-time sequence
as recorded by the editor and the front-to-back sequence produced by a file
differencing algorithm. Either sequence can be used to drive the functions:

TokIncLineDelete(deleted);
TokIncLineInsert(inserted, before);

When a line is deleted, the scanner must free the corresponding token in-
crement, perhaps construct another to replace it, and reestablish the sequence
between the remaining token increments. All of this requires that the scanner
find the token increment corresponding to the deleted source line. An efficient
solution is to provide a hash table taking the source line handle deleted into
the corresponding tokinc handle. The hash table is maintained by the token
increment abstraction. The inverse operation, finding the source lines from the
token increment, requires that the token increment contain the handle of at
least one of the source lines it represents.
If the deleted line is part of a multi-line increment, the neighboring lines

must be included in the rescanning. For C, if the deleted line is the last line in
a multi-line increment, rescanning may swallow the following token increment
also. When all of this is done, the correspondence is reestablished.
Suppose, on the other hand, that a line has been inserted—it is new and

therefore will be marked dirty. The hashing mechanism cannot look up a new
line. The hash is used instead to find the increment containing the information
from the source line now following the inserted source line. If the source line
following the inserted source line has been newly inserted as well, then a tem-
porarily disjoint tokinc sequence is created. This sequence grows until a source
line that corresponds to a tokinc in the main sequence is provided, at which
point the entire disjoint sequence is inserted before this tokinc in the main se-
quence. The previously stated considerations about rescanning and swallowing
the following increment and reestablishing the correspondence apply. In addi-
tion, inserting a line may cause a multi-line increment to be broken into two
separate increments.
The delete/insert notifications can be applied immediately, or queued for

later application either all at once or in small batches. Likewise, an editor can
delay making the notifications, sending them a batch at a time. This trick
allows an editor to locally optimize the queue contents, canceling insert/delete
pairs. What is required is that the actions are applied, in order, prior to using
the tokens.
If the source lines have no independently assigned time stamps, time stamps

can be “invented” by the scanner as the insert notifications arrive. The cor-
respondence between line handles and time stamps is then maintained in a
separate data structure in the scanner rather than by the editor.
If the editor provides time stamps or clean/dirty bits for lines, the incre-

mental problem reduces to creating a valid insert/delete sequence from the old
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token increments, the new source text, and the change information. The source
lines in the editor may be examined in file order. The change information for
each source line handle is examined, and perhaps compared with the corre-
sponding record of it in the token increment. If the line is dirty, it must be
rescanned—effectively treated as a delete/insert pair.
A disagreement between the new sequence of line handles and the old record

of line handles in the token increments means either a line was deleted, or was
inserted, or both. Since there is a fast way to go from the source line handle to
the corresponding token increment, the correspondence can be checked in that
direction. If the offending source line handle is found in a token increment,
one may deduce that all lines corresponding to the token increment sequence
from the point of disagreement to the found line have been deleted. This re-
sults in a sequence of deletes until the handle agreement is reestablished and
the correspondence is lengthened one step—therefore insuring that progress is
made.
If the source line handle is not found in any tokinc, this source line has been

inserted. The line is scanned and its token increment inserted into the token
increment sequence, which again insures that progress is made.
The use of change information gives a delete/insert sequence (nearly) iden-

tical to the sequence one would get from file differencing.

Example 1: Non-incremental Consumer

The use of tokens can be as varied as the number of users. So long as the
reusable primitives supply enough information, any special interface can be
built by the user in terms of the primitives.
A sample non-incremental consumer is described below. This consumer uses

the scanner interface in a non-incremental fashion, i.e., tokens from the scanner
are processed from start to finish without making any use of its history.
Function Init() must be called once to initialize access to this module. It

sets a private variable called NextToken to the first token in the source input
stream. Function Scan() may then be called to process tokens in input stream
order. Function LookAhead() may also be called to examine one token ahead
in the input stream without affecting the input stream order used by Scan().
The private variable CurrToken is used to track the most recent token re-

turned by Scan(). Its use will be described in the next section.
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#include "token.h"

static Token NextToken;
static Token CurrToken;

void
Init(void) {

NextToken = TokenFirst();
}

Token
Scan(void) {

CurrToken = NextToken;
NextToken = TokenNext(NextToken);
return CurrToken;

}

Token
LookAhead(void) {

return NextToken;
}

A non-incremental consumer may use these routines to display all the tokens
from the source input. Function Scan() is used to get each token. The con-
sumer terminates processing when eofTOKEN is returned by Scan(). Function
LookAhead() may be used to control formatting of the current token based on
what follows it. This example is contrived but it does illustrate how the scanner
interface may be reused in a simple situation.
One final point, even though the consumer is non-incremental, the scanner

is managing its token-representation of the source incrementally. Thus, the
consumer gains some efficiency in performance since the scanner does not have
to work as hard.

Example 2: Incremental Consumer

The previous example is extended in this section to describe an incremental
consumer. This consumer uses the creation-history of the tokens from the
source input stream. That is, if a section of the input stream has not changed
since the last time it was processed, then the consumer may skip over it.
The interface and associated semantics used by the non-incremental con-

sumer may be reused by the incremental consumer. That is, Scan() and
LookAhead() are used as previously described to process each token in the
input stream the very first time. They are also used to process sections of the
input stream that have changed.
Two new routines are introduced. Boolean function CleanInput() returns

TRUE to indicate that the consumer may skip over the current section of the
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input stream (since it has not changed) and reuse the corresponding output
rather than producing it over again. A return value of FALSE indicates a change
has occurred and that new output will needed. Function SkipInput() is the
incremental analogue of Scan(); it returns the first token that immediately
follows the skippable section of the input stream. It should be called only if
CleanInput() returns TRUE.
The unit of skipping is the token increment. Recall that a token increment

describes a logical source line and therefore a contiguous sequence of lines within
the input stream. More than one token increment may be needed to form an in-
crement for the consumer. The routines CleanInput() and SkipInput() allow
the consumer to process and skip-process over the input stream in multiples of
token increments.
The routine TokIncOfToken(t)may be used to track the sequence of token

increments associated with the tokens returned by Scan() and SkipInput().

#include "tokinc.h"

... reuse Non-incremental Consumer code ...

int
CleanInput(int skipSize, TimeStamp maxTS, TokInc ess) {

TokInc ti;

ti = TokIncOfToken(CurrToken); /* get container */
for (;;) {

if (ti == ntTOKINC) break; /* off end of sequence*/
if (TokIncMade(ti)>maxTS) break; /* out of date */
if (--skipSize == 0) break;/* end of subsequence */
ti = TokIncNext(ti); /* OK, move ahead */

}
return (skipSize==0) && (ti==ess); /* reached end? */

}
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Token
SkipInput(TokInc ess) {

TokInc ti;

ti = TokIncNext(ess); /* skip past this */
if (ti == ntTOKINC) { /* off end, find eof */

CurrToken = TokInc2Token(ess);
for(;;) {

if (TokenClass(CurrToken) == eofTOKEN) break;
CurrToken = TokenNext(CurrToken);

}
} else { /* normal tokinc */

CurrToken = TokInc2Token(ti); /* first token */
NextToken = TokenNext(CurrToken);/*prep lookahead*/

}
return CurrToken; /* start next tokinc */

}

When CleanInput() returns FALSE, the scanner is called to process the
section of the input stream that has changed. When new output is produced,
the consumer must record the following attributes of the section of the input
stream that created it:

• skipSize specifies the length of the token increment subsequence pro-
cessed to produce the output (1 or greater).

• maxTS specifies the maximum time stamp from the token increment sub-
sequence.

• sss specifies the token increment that starts the subsequence. Function
CleanInput() uses CurrToken to infer sss.

• ess specifies the token increment that terminates the subsequence.

When the same section of the input stream is revisited by the consumer
the next time around, the attributes are passed to CleanInput() to determine
if it can be skipped. The consumer must remember the token that starts the
section so that the next time around it will know when to call CleanInput().
The code for CleanInput() detects the insertion, modification, and deletion of
logical lines to the section of the input stream described by the attributes.
The consumer is responsible for skipping over and managing its output data

structures.

Performance

The reusable interface without the incremental capability is competitive in
speed with traditional scanners. Used incrementally, the scanner is much faster.
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The cost for this efficiency is space to manage all of the data structures in mem-
ory. There are three main consumers of memory in the scanner: the String,
TokInc, and Token abstractions. The amount of memory consumed is propor-
tional to the size of the source being scanned.
We have developed a scanner for Standard C along the lines outlined in this

paper. The scanner has not seen hard use and is therefore not a very good
source of performance data. On the other hand, it is the only source of data
we have. With that disclaimer in mind, we state that our incremental scanning
is about 14 times faster than our first-time scanning. The cost is roughly the
ratio of checking clean/dirty information (via a call to the editor) to the cost
of checking plus rescanning dirty text. The memory use, taken from a single
data point (scanning the implementation of the lexical analyzer itself) is given
below.

source size 50,688 bytes
string table 6,545 bytes
token increments 45,942 bytes
token table 200,606 bytes

One can make tradeoffs in space versus speed by adjusting the granularity
(size) of the increments. The finer the increment, the more memory is con-
sumed. The coarser the increment, the less incremental the scanner. However,
coarser increments can provide larger skips for the consumer of the scanner.

Conclusions

It is feasible to separate the scanner out of a compiler so that it can be used
for other purposes. A scanner can be made incremental at approximately the
granularity of source lines. The combination of these two capabilities provides
a useful and flexible component for an organization dealing with processing of
programming languages.
From the viewpoint of the traditional consumer of scanner output, and aside

from efficiency, it does not matter whether the scanner saves and reuses tokens
or recreates them from the source text. The scanner is therefore at liberty to
implement any incremental mechanism consistent with its interface.
The speedup provided by incremental scanning is real, but not likely to be

significant relative to the other costs such as preprocessing, parsing, symbol
analysis, and so on. On the other hand, having done line-granularity incr-
Standardscanning, we have also gathered the time-stamp information enabling
incremental processing for following passes. We expect the speedup ratio for a
whole system to be better than 14. Our preliminary C preprocessor and parser
data support this expectation. Details will follow in a later paper.
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12. Electronic Survey Number 9

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an E-mail report on the results.)
The following questions were posed to about 100 people, with 28 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

Passing Narrow Arguments

Given the following program fragment, does your translator pass all narrow
types as such, widen them all, or widen only some of them?

void x(char, short, float);

char c;
short s;
float f;

x(c, s, f);

• 11 – All kept narrow.
• 5 – All widened.
• 6 – char and short widened but not float.

• 1 – User selectable.
• Comments:

1. Our machine is 64-bit word addressed, so all types are de facto
widened so they can be stored without shifting and masking. How-
ever, we have the unfortunate habit of storing a char left-justified
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in a 64-bit word instead of right-justified, so there is a gratuitous
incompatibility between prototyped and nonprototyped functions.

2. Passes all types as narrow. [Ed. While the argument itself is not
widened, more bytes might be passed than are occupied by the argu-
ment.] This can be more efficient. For example, you can push 32
bits of memory starting at the location of c for the first argument.
You might get 3 bytes of trash but you don’t care, since the receiving
function doesn’t care. Pushing 32 bits from memory (1 instruction)
might be faster than loading a byte and pushing the entire register
it’s contained in (2 instructions).

3. The narrow form is passed with padding. Keeping the stack longword
aligned generally yields better performance on processors such as the
68020, 030, and 040.

4. Only float is kept narrow. The real savings for float is the elimi-
nation of the two format conversions, not stack space.

5. This is a machine-specific option for the integer types. However,
floats are never widened.

Returning Narrow-Typed Values

If a function returns a value having type char, short, or float, do you pass it
back in its narrow or wide form? (This is an interesting issue in that Standard
C does NOT state the type of the result produced by the function-call operator.)
What would your reaction be if X3J11 made an interpretation requiring the
opposite behavior to what you have?

• 14 – All kept narrow.
• 6 – All widened.
• 4 – char and short widened but not float.

• Comments:

1. Because our return value lives in a 64-bit register, all returned types
are widened that far. Contrary to our handling of chars as argu-
ments, a returned char is right-justified in the word. An X3J11
mandate that types be left in their small form would probably be a
no-op, since we could satisfy that requirement via the as-if rule.

2. The return value is in the narrow form, except for some UNIX ma-
chines where to be cc-compatible we must widen it. X3J11 can’t
make a “do it this way, not that way” interpretation at this point;
there’s too much water under the bridge. cc definitely does it one
way and lots of DOS compilers definitely do it the other way.
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3. If an interpretation required a change, that would then be in conflict
with the 88open binary standards. I suppose we could ignore such a
change, and maybe implement a switch if the validation suite tested
it. (Such an option would likely never be used otherwise!)

4. I don’t think there is any support for such an interpretation in the
standard, nor is it supported by prior implementations. (As far as I
know there are lots that do it the way we do it.) As for my reaction,
I don’t suppose there would be a lot I could do about it, but I’d
probably try.

5. It has little impact on us but we wouldn’t like a change anyway.

6. I would be very surprised if ANSI required widening.

7. I believe keeping them narrow is the correct behavior. To distin-
guish float and double functions at declaration time and not at
invocation time seems absurdly inconsistent.

8. For prototyped floating-point functions I return the declared type
without conversion. Most programmers I know these days either do
their floating point in one of float or double format but not both
and when they do it using float they generally want everything to
be in float without any invisible conversions done by the compiler.
Besides, the original reasoning behind the float conversion was that
float operations would be faster than double operations, not really
something that it makes sense to build into a compiler spec when it
destroys the symmetry of the language, and in any case is no longer
a valid point.
If X3J11 made an interpretation contrary to my own implementation,
I might consider changing the float aspect.

9. Nothing is widened upon return. I would object to changing this, as
it would make our compiler incompatible with other C/C++ com-
pilers and Fortran compilers. Also, it would slow things down, and
people using float want speed.

10. Mainly for compatibility, a narrow object is returned only when safe.
In all cases, nothing narrower than int is returned. For float
returns, only if the function is defined/declared with a prototype
that includes at least one float argument will the return be single-
precision. This turns out to be a reasonable compromise: function
calls that benefit from a single-precision return almost always have
at least one float-typed argument.

11. The type should be exactly that specified by the declaration of the
function.

12. I wouldn’t see a problem with an opposite ruling under the assump-
tion that one could dummy up sizeof(f()) but otherwise the as-if
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rules would make it difficult to tell in what manner it was imple-
mented. If the changed ruling required a change to the code gen-
erated (moving a widening operation from function call to function
return), then I would have strong concerns about this causing an in-
compatible break in object file formats (particularly in case of float
to double conversions).

13. I would be very unhappy if widening of floats were required. The
integer types don’t seem very important since it is cheap to widen
them anyway.

14. We would oppose any interpretation by X3J11 to mandate widening.

Fixed versus Variable Argument List

If a function expecting a variable number of arguments is called without having
a prototype containing an ellipses in scope, will the call still work? That is, do
you take advantage of a different/more efficient call mechanism in the case of
(assumed or actual) fixed length argument lists?

• 19 – Will still work.
• 3 – Will not work.
• Comments:

1. With optimization switched on parameters are passed in registers.
We demand prototypes for this feature.

2. If the programmer specifies no special options to the compiler the
call will still work, even if prototyped incorrectly. However, if the
programmer specifies special optimization options to the compiler,
such as registered-args, and does not properly prototype a var-args
function, the program will not work.

3. We emit a warning for the user, but still allow this to work.

4. We are considering changing to a scheme where the presence of a
prototype won’t affect the way variable arguments are passed.

5. No, we don’t take advantage of any such mechanism. Even if we
did, we would try to find a way to make it work for the case you
described.

Packed-Decimal Arithmetic Support

Do you provide any support for packed-decimal arithmetic? If not, have more
than a few of your customers ever requested it? What is your reaction to adding
packed-decimal support to the C language rather than via a library?



Electronic Survey Number 9 – Jaeschke 125

• 2 – Support requested/desired.
• 25 – No support.
• 1 – Support in Library.
• 0 – Support in Language.
• Comments:

1. No. So far, Standard C has avoided specifying the methods of storing
and computing numbers in favor of specifying the desired results
wherever possible. This is a good thing.

2. I’d rather see it as a C++ class rather than part of a language that
isn’t easily extensible.

3. Support for packed-decimal and zoned-decimal arithmetic has shown
up several times on the DEC Users Society (DECUS) wish list of
enhancements to the C compilers from Digital. The requests have
most often asked for library support rather than native language
support. Personally I think that any such extensions should only be
considered via library mechanisms.

4. I think that would be contrary to the spirit of C.

5. Definitely no!

6. If provided, it should be in a library; definitely not in the language.

7. I would not support such an extension.

8. I haven’t thought about it enough to consider many ramifications,
but I’d prefer it in the language.

9. I do not plan to add any packed-decimal support. Frankly, there
are hundreds of numeric and other formats out there and trying to
implement them all as hardwired constructs within the compiler will
never work, nor satisfy enough people. This is more a job for object-
oriented languages rather than something one should hack into C.

10. Our C and C++ compilers do not support packed-decimal arith-
metic. We have received some small number of requests for it. We
are considering adding support for it in our C++ compiler product,
perhaps as a class library implemented using direct language support
for a packed-decimal type. If packed-decimal support is added to the
C language, I think it should be specified as an optional extension
to the language; i.e., I don’t think it should become an official part
of Standard C standard unless perhaps it is supported only in the
library.

11. We have had no requests for it although we do have COBOL cus-
tomers.
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12. I’d prefer it via a library, but I can see how it would be efficient
to have a BCD type and transparent overloading of the arithmetic
operators, so I can’t say I’d oppose a method of implementing it that
was transparent to portable programs.

13. The topic comes up from time to time but so far we have had no
requests for it. If we were going to do it, we would add it as an
“almost conforming” extension (i.e., break no conforming programs
unless they made other use of whatever we chose as a keyword.)
Without major inlining, using a library would seem painfully slow—
we would oppose any attempt to standardize it that way.

Integration of Preprocessor

Is your preprocessor integrated into your translator? Why did you chose your
particular approach?

• 16 – Integrated.
• 10 – Separate.
• Comments:

1. It is much faster to pass a token than a second character stream. We
still offer the option of spitting out preprocessed text when that is
needed.

2. Integrating it dispenses with an I/O step as well as doing low-level
parsing and symbol lookup only once. Also, you can share parsing
and evaluation for #if. Furthermore, errors are detected and re-
ported in direct sequence rather than hopping around depending on
what pass you’re in, and a simple preprocessor error doesn’t prevent
reporting of post-processing errors.

3. It is a separate product which is exploited in many other products.

4. The integrated format allows us to pass detailed source position in-
formation on each token to support our X-windows based optimized
code debugger.

5. Our non-ANSI preprocessor is integrated. The compile-time benefits
of diminished file I/O seem obvious. You can also share expression-
parsing code and some scanning code. For our ANSI preprocessor
we use a modified external cpp.

6. My preprocessor is not integrated into the translator. It makes little
sense to do so especially on an Amiga which has the ability to pre-
load executables at the user’s discretion and with near zero overhead
running such executables from the front-end.
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Apart from that, having looked at two other commercial compilers
available for the Amiga I have found no advantage in speed to in-
tegrating the preprocessor. Integration only creates headaches and
hard-to-find bugs.

7. Yes, our preprocessor is integrated. This was chosen for possibly
improved performance, and it seemed a more natural approach with
the token-based preprocessing (as opposed to character-based pre-
processing) required for ANSI C. It can also easily be made into a
separated preprocessor if we wanted to.

8. The preprocessor is not integrated. We did this because it was the
easiest to do and the anticipated compilation speed disaster never
showed up (even after trigraphs). We still have some cpp problems
re ANSI which makes us wish we had taken a stab at integration but
we need to do other things as well.

9. There is one problem however. The C preprocessor gets called by
other language processors (C++, Fortran, etc.). Do you keep an-
other preprocessor lying around for these guys? (Dual maintenance
headaches.) Or do you have these other guys call the new integrated
front-end with the -P option? (Slower and some unexpected results).

10. Integrated. Measurements determined that the fastest separate pre-
processor took approximately 5–10% of the source-to-object transla-
tion time. Surprisingly (to me at least), integrating the preprocessing
in as the tokenization for the compiler reduced the above source-to-
object time by an additional 5% or so! Thus, an inverted adage: the
result is less than the difference of its parts. Also, the token-oriented
behavior required by the C standard makes a separate (presumably
character-oriented) preprocessor’s job harder.

11. It is not integrated so we have the flexibility to call a different cpp
if necessary.

12. Our preprocessor is a completely separate pass and handles prepro-
cessing directives and parses a source into binary encoded C tokens.
We localized all of text processing in a single pass because we wanted
to support ASCII, EBCDIC, and other encodings with few modifi-
cations and to make the size of each pass small.

Details of Backend

Do you generate intermediate code for a language-independent optimizer and/or
code generator or do you have a C-specific backend? Any comments on the
tradeoffs involved either way?

• 2 – C-specific.
• 22 – (Mostly) language-independent.
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• 1 – Emit assembler.
• Comments:

1. We generate intermediate code for a backend that was supposed to
be language-independent. However, the people who designed the
backend only understood Fortran, so our implementation is full of
kludges to get around that. In general, if you can get someone who
understands all the languages involved to build your backend, a com-
mon backend will cut way down on maintenance and porting time.

2. The back end must know some things peculiar to C and some things
peculiar to the other languages. For example, there are IL ops that
are just for C and IL ops just for for other languages.

3. We generate intermediate code for a back-end common to all sup-
ported languages. This allows us to quickly implement new opti-
mizations for all languages. The overall cost is considerably less,
but the common back end becomes quite complex, and at times one
language interferes with the other.

4. A base intermediate language is used by several frontends, but each
language has its own additions to that base. Same for backends (all
from shared base but customized for the language). We were not
willing to give up customization for each language, but needed to
share as much of the technology as possible.

5. We generate an IL that is shared with Pascal, Fortran, Ada, and
Modula2 compilers. From the company’s point of view, the benefits
of a single optimizer and code generator are obvious—less expense
and all languages benefit from the concentrated performance exper-
tise in the optimizer and code generator. Once you re-target the code
generator, all languages port to the architecture. This also forces the
IL to be general and rich enough so that we support debugging of
optimized code.

6. We generate intermediate code and have a machine-independent op-
timizer pass that is optional that works on the intermediate code.
Currently, we have three code generators (8088, 80386, 68000) and
two front ends (C, C++) so we think the concept has proved itself.

7. Sooner or later, a serious product needs language-specific backends
and frontends. I figure you can want three things to be true: fast
compilation speeds, excellent generated code, and commonality. But
you can actually only achieve two of the three and even that will be
difficult.

8. A language-independent optimizer is used for Fortran, C, and Pascal.
A lot of things are done for Fortran only. Inspection of the code shows
that Fortran optimization is more aggressive. Also, history shows
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that optimizations like loop unrolling are first done for Fortran and
then later an attempt is made to make it work for C (like find out how
to determine when a C loop is like a Fortran DO loop.) Pascal, C,
and Fortran programs can be compiled to the common intermediate
code and then that code can be optimized across all of the programs
(meaning interprocedural optimizations, inlining, etc.). Some work
done on a Fortran-only optimizer shows that better generated code
is possible but the compilation rate takes a hit.

9. There are few parts of the optimizations where the choice of in-
put language would make any difference. One is in the handling of
aliasing. Perhaps we will make ways for the parser to give language-
specific hints about aliases to the back end. This surely can’t be as
hard as writing another back end for each language.

∞



13. C/C++ Compatibility

Paul Kohlmiller
Control Data Corporation

Abstract

Most ANSI C programs can be compiled with a C++ compiler. This
paper identifies those cases where this is not true. Each case has a com-
pilable code segment that should illustrate the problem better than a text
description. Also, each case is documented with section numbers from the
ANSI C Standard and the Annotated C++ Reference Manual.

Last issue I gave a quick overview of the compatibility problems between
C and C++. I identified three scenarios where compatibility issues arise. In
this paper I will go into some detail on the first scenario, namely C code that
compiles and executes correctly with an ANSI C implementation but does some-
thing different in C++. For each such problem I will specify the sections of the
ANSI C Standard (X3.159-1989) and the Annotated C++ Reference Manual
(aka the ARM, aka the ANSI C++ Base Document) that disagree. I also will
give a purely personal opinion about the likelihood that the final ANSI C++
standard will eliminate the incompatible behavior.
For most of the compatibility problems listed below I have supplied some

source code. This code will compile without error with an ANSI C implemen-
tation (unless otherwise noted). If main is defined then it will also execute
correctly. The code will produce a fatal compile-time diagnostic or potentially
produce different run-time results when a C++ implementation is used (I used
AT&T’s cfront version 2.0).

1. Everyone tries this sort of program as a first attempt with a new language.

main()
{

printf("Hello, World\n");
}

This will work on every C compiler I know of although the missing
#include <stdio.h> must be considered bad form5. The natural temp-
tation is to try this on a C++ compiler. It will fail because printf was
used without a declaration. At this point the programmer will mumble

5See Fixed versus Variable Argument List on page 124 for a discussion of this issue.
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something about C++ being over restrictive and may try to solve the
problem without including stdio.h. So the next attempt might be:

extern printf();

main()
{

printf("Hello, World\n");
}

This will still fail to compile because C++ will not accept the “old-style”
declarations—an empty argument list implies a void argument list. The
programmer will then notice what seems to be an easy solution—tell the
compiler that printf is not a C++ function but, rather, a C function:

extern "C" printf();

main()
{

printf("Hello, World\n");
}

Unfortunately this still won’t work because C++ will still check the num-
ber of arguments. Not only that but now your program won’t compile
back on your C compiler. The correct code is:

#include <stdio.h>

main()
{

printf("Hello, World\n");
}

This works because the C++ implementation has its own set of headers
that contain the correct function declarations. In general, programs that
try to declare library functions themselves instead of using the standard
headers will probably be in trouble.

Of course, the same kinds of trouble can occur with user-written functions.
The user must use function prototypes for all declarations. In the above
example the correct code (if not using the header) would be:
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extern "C" printf(const char *, ...);

main()
{

printf("Hello, World\n");
}

Relevant standards references: ANSI C §3.5.4.3, Function Declarators,
and ARM §8.2.5, Functions.
There is no chance that ANSI C++ will resolve this. The problem cases
noted above all represent code that ANSI C already labels as ‘Obsoles-
cent.’

2. The following code may appear to be innocent:

i = sizeof(’x’);

This code compiles and executes correctly under both C and C++, but
gives different answers for i. The problem is that in C, ’x’ has type int
while C++ says its type is char.

Relevant standards references: ANSI C §3.1.3.4, Character Constants,
and ARM §2.5.2, Character Constants.
There is no chance that ANSI C++ will resolve this. C++ code often
performs I/O without format effectors as in:

cout << ’x’

If ANSI C++ changed to match ANSI C then this line of code would have
to emit an integer value and not the character ’x’.

3. The following code looks suspicious almost immediately:

char aa[3] = "abc";

Doesn’t the string "abc" require 4 characters, one for the zero-byte termi-
nator? Not in ANSI C. In this case, ANSI C will store the three characters
and let the user worry about the fact that a zero-byte terminator is miss-
ing. C++ still requires the space for the zero-byte terminator so this line
of code results in a compile-time diagnostic.

Relevant standards references: ANSI C §3.5.7, Initialization, and ARM
§8.4.2, Character Arrays.
There is a chance that ANSI C++ will resolve this. The restriction ap-
pears to be unnecessary except to protect the programmer.
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4. Now let’s look at the first of several problems that occur when structures
are involved. The following code compiles just fine with ANSI C:

struct X {
enum {k = 1} foo;
int k;

};

However, C++ will not accept this code because k is used as a constant
and as a variable within the same structure declaration. There are other
variations on this theme in the ARM.

Relevant standards references: ANSI C §3.1.2.1, Scopes of Identifiers
§3.1.2.3 and Name Spaces of Identifiers, and ARM §9.9, Local Type
Names.

It is very unlikely that ANSI C++ will resolve this. Allowing the above
code to work eventually would cause the C++ compiler to accept some
rather unbelievable constructs. See the discussion on page 190 of the
ARM.

5. Bizarre structure definitions:

int foo(struct Z{int y, yy;} X)
{

return X.y;
}

C will allow the user to define a type in the function prototype scope. A
good implementation will warn the user that a type has been created and
then immediately goes “out of scope.” Going out of scope is somewhat
benign in C because a structurally similar type (in a different source file)
could be passed to this function and it would work. In C++, a type
that immediately goes out of scope means that there is no chance for a
program to call this function. Therefore, C++ will generate a diagnostic.

Relevant standards references: ANSI C §3.5.4, Declarators, and ARM
§8.2.5, Functions.
There is no chance that ANSI C++ will resolve this. The function would
be uncallable in C++.

6. In the above example we saw that function arguments cannot contain
their own definitions. The same is true for function return types.
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struct X {int y, yy;} foo()
{

struct X Z;

Z.y = 1;
return Z;

}

This is valid in ANSI C but invalid in C++. The reason is similar to that
in the previous example. The definition of the structure is out of scope
anywhere outside the function itself so it cannot be called. The error that
I get from my copy of C++ is that X is undefined at the line that is trying
to define it.

Relevant standards references: ANSI C §3.5, Declarations, and ARM
§8.2.5, Functions.
There is no chance that ANSI C++ will resolve this. The function would
be uncallable in C++.

7. A major problem for code written in C and ported to C++ is that the
name space rules are different. For example:

struct X {int x, y;} rec;
typedef int X;

This is valid in ANSI C but C++ complains because structure tag names
occupy the same name space as ‘ordinary’ names (which includes typedef
names). In this example, C++ thinks X is being redefined.

Relevant standards references: ANSI C §3.1.2.3, Name Spaces of Identi-
fiers, and ARM §7.1.3, The typedef specifier.
There is no chance that ANSI C++ will resolve this. Remember that
C++ needs to differentiate types in order to perform type-safe linking
between functions. If tag names and typedef names are allowed to be
spelled the same, then disambiguating the two types becomes harder due
to the current way in which these names are mangled.

8. Is the following code valid?:

int gg = 1;
int gg; /* ? */

It is in C. The first line is a definition of gg because it has an initializer
and it requires storage. The second line is merely a declaration of gg so
there is no conflict. C++ says that any declaration is also a definition
unless it has a storage specifier of extern and it has no initializers.
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Relevant standards references: ANSI C §3.5, Declarations, and ARM
§7.1.1, Storage Class Specifiers.
There is no chance that ANSI C++ will resolve this. C++ treats builtin
types (such as int) the same way that it treats user-defined types. Con-
sider what would happen with a user defined type:

myint gg = 1;
myint gg;

The first declaration of gg calls a constructor. What can the second dec-
laration do? It must also call a constructor but now the first declaration
is lost—it is not even possible to call its destructor. (This problem occurs
again in item 14 below.)

9. In C++ a structure defines a scope. In C a structure has the same scope
as the block that contains it. For example:

struct x {
enum E1 {i = 1, j = 2, k = 3} fld1;
int fld2;

} y;

enum E1 name1;

int name2 = k; /* error */

main()
{

name1 = 300; /* error */
}

The first error arises in C++ because the enum E1 definition is no longer
in scope. Note that the definition of name1 is OK, however, because the
tag name is still available. The second error arises since in C++, it is not
permitted to assign an int to an enum. This is deemed a type mismatch.

Relevant standards references: ANSI C §3.5.2.2, Enumeration Specifiers,
and ARM §7.2, Enumeration Declarations.
There is no chance that ANSI C++ will resolve this. The notion that a
structure (or class) establishes a scope is a part of the C++ fabric.

10. The following keywords are reserved in C++ but not in ANSI C: asm,
catch, class, delete, friend, inline, new, operator, private, public,
protected, template, this, throw, try, and virtual. Older versions of
C++ also may use overload as a keyword. Certainly, a C program that
uses any of these keywords as an identifier will not work with C++.
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Relevant standards references: ANSI C §3.1.1, Keywords, and ARM §2.4,
Keywords.

There is no chance that ANSI C++ will resolve this, except that asm may
be dropped. The keyword overload is not defined in the ARM. Note that
catch, template, throw, and try are new keywords. Some new keywords
may also be adopted during future X3J16/WG21 deliberations.

11. C++ lacks certain support for incomplete types. For example, the follow-
ing will not work:

char a[];
void *b = a;
char a[10];

ANSI C will accept this use of an incomplete type.

Relevant standards references: ANSI C §3.2.2.3, Pointers, and ARM §4.6,
Pointer Conversions.

There is no chance that ANSI C++ will resolve this. In this example,
char a[]; is a definition of an array without a size—that is an error.
The type completion at char a[10]; is a redefinition so that is also an
error.

12. C++ is none too supportive about C’s use of void * in many instances.
It will flag assignment expressions that use pointer to void as the right
hand side of an assignment statement. For example:

char a[10];
void *b = a;

void foo()
{

char *c = b;
}

ANSI C will accept this usage of pointer to void being assigned to a
pointer of another type. C++ will not.

Relevant standards references: ANSI C §3.2.2.3, Pointers, and ARM §4.6,
Pointer Conversions.

There is no chance that ANSI C++ will resolve this. C++ is a more
strongly typed language than C and this is an example of that strong
typing. The example could be made to work with explicit casts.
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13. A const item at file scope has external linkage in ANSI C. That means
that:

const int j;

is valid in ANSI C because j might be defined in another translation unit.
In C++ such items have internal linkage. As a result, C++ will detect
this as an error. Without an extern specifier this code is a definition in
C++ and it doesn’t make sense to define a constant to have an undefined
value. In general C++ programs use const instead of #define to declare
constants.

Relevant standards references: ANSI C §3.1.2.2, Linkages of Identifiers,
and ARM §3.3, Program and Linkage.
There is no chance that ANSI C++ will resolve this. The C++ commu-
nity appears to be heading toward a consensus that the C preprocessor
is not needed. The internal linkage of const is considered an aid toward
that goal. If a const item has an internal linkage and therefore has to
be defined when it is declared, then the compiler can make all of the
optimizing decisions it could have made if a #define was used.

If a program is changed to use const instead of #define to define a
constant, the object must also be made static so multiple definition
errors won’t result when it is compiled with a C compiler.

14. The goto statement. What value is printed for i?

#include <stdio.h>

main()
{

int i = 2;

goto label1;
{

int i = 3;

label1: printf("i is %d\n", i);
}

}

The value printed is undefined—a conforming ANSI C implementation
might print 3 or any other number. C++ disallows jumping past initial-
izers and not just because of the undefined results. In C++ a declara-
tion invokes a constructor that at some level may do something like call
malloc. When the block containing the constructor is exited, a destructor
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is invoked automatically. This destructor may do something like call free.
This means that free can be called without there being a corresponding
malloc.

Relevant standards references: ANSI C §3.6.6.1, The goto Statement,
and ARM §6.7, Declaration Statement.
There is no chance that ANSI C++ will resolve this. The reasoning above
does not apply to this example because there is no destructor to worry
about. However, the problem is that C++ wants to treat builtin types
the same way it treats user-defined types.

15. Trigraphs. The ARM defines only 6 trigraphs but the ANSI C standard
defines 9. Those missing are ??< for {, ??> for }, and ??- for ~. It turns
out that this was simply an error that crept into the final printed copy of
the ARM. There is no intended difference here.

Relevant standards references: ANSI C §2.2.1.1, Trigraph Sequences, and
ARM §16.2, Trigraph Sequences.
This oversight is corrected in the working draft of the C++ standard.

16. There are preprocessor problems caused by the fact that some C++ imple-
mentations use an ANSI C preprocessor while others use an older “Classic
C” preprocessor. Most ANSI C preprocessors work on tokens instead of
character strings. This can be a problem for some C++ programs but
won’t affect ANSI C programs because C++ has some unique tokens.
The problem for C programs is illustrated below.

#include <stdio.h>

main()
{

printf("%d\n", __STDC__);
}

An ANSI C implementation will cause this program to print the value 1.
What happens on C++ is anyone’s guess. Most likely it will fail to compile
with STDC undefined. The problem is significant for code that uses
STDC to include or exclude code.

Relevant standards references: ANSI C §3.8.8, Predefined Macro Names,
and ARM §16.10, Predefined Names.
It is doubtful this will be changed by ANSI C++. There is some senti-
ment for not forcing an ANSI C++ implementation to use an ANSI C
preprocessor.
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17. Ideally, the preprocessor will handle C++-style comments (//) correctly.

#include <stdio.h>

main()
{

int a = 4, b = 2;

printf("%d\n", a//*comment*/b);
}

If the // is taken as the beginning of a comment then this program will
have a compilation error. Many C compilers will have difficulty with this
code because allowing C++-style comments is a common extension.

Relevant standards references: ANSI C §3.1.9, Comments, and ARM §2.2,
Comments.

There is no chance that ANSI C++ will resolve this. More likely, the
C++-style comments will be presented to the committee that looks at
ANSI C revisions.

Paul Kohlmiller is a consultant at Control Data Corporation. He is a mem-
ber of both X3J11 and X3J16 and can be reached at paul@svl.cdc.com.
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Abstract

There is interest in adding a bit type to C because it allows values to be
stored in a packed format. Although a macro solution is available for a
limited bit implementation, it is neither general nor easily extensible. An
exploratory proposal is presented that extends bit-fields to allow decla-
rations of both arrays of bit-fields and pointers to bit-fields. Finally, an
extension is discussed that allows bit-fields to be declared with a range of
values exceeding that of the long and unsigned long types. This exten-
sion is presented as an alternative approach to some current extensions
like long long int that increase the integer range.

Introduction

There have been several proposals made to NCEG to add more support for bit
types to the C standard. Most of these proposals are part of some data-parallel
extension like array syntax. For example, the C* language is a data-parallel
language that runs on the Connection Machine and supports the type bool,
an unsigned single-bit data type. Committee X3J3 entertained the notion of
adding a bit type to the emerging Fortran-90 standard, but dropped it later on
as a way of simplifying the language, and to eliminate some portability con-
cerns. Here at Cray Research we have received some inquiries from customers
about ways to improve bit manipulation in our supported languages. Adding
a consistently defined and generally usable bit type to C would be welcomed
by many programmers because it allows certain algorithms to use less mem-
ory while retaining familiar programming techniques. There are several levels
of support that can be provided for a new bit type. Some provide minimal
support but have no effect on the current language definition. Others provide
extensive support but also raise questions about the size of the language and
the implementation cost.

140
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Motivation

The primary motivation for wanting additional support for bit types is to be
able to represent many results while consuming less space. There is some sup-
port for bit manipulation already in the language through the use of bit-fields
and bitwise operators. Unfortunately this support is not general enough. Nei-
ther arrays of bit-fields nor taking the address of a bit-field is allowed by the
C Standard. The bitwise operators are limited to operating on the number of
bits present in the standard integral types. The C Standard permits declara-
tions of an array of structures with a bit-field member as follows:

struct {
int bf:1;

} abf[100];

but this does not conserve memory because structures are padded out to a byte
or word boundary. It is possible to declare a sequence of bit-fields but varia-
tions in the different implementations make portability and efficiency difficult
to achieve. Bit-fields, as they exist in Standard C today, are not general enough
for many of the applications that could benefit from them.
The current set of general integral types are:

signed char unsigned char
signed short unsigned short
signed int unsigned int
signed long unsigned long

Except that they waste space, these can be used quite effectively in place of a
bit type. A new bit type would just be another integral type that happens to
also conserve memory.
One use for a bit type is to define a logical vector that indicates a relationship

between two other arrays. The following example shows how a character array
can be used to represent a set of logical values.

int i;
unsigned char flags[100];
double x[100], y[100];

for (i = 0; i < 100; i++)
flags[i] = x[i] < y[i];

Each element of flags indicates a relationship between corresponding el-
ements of x and y. Since the proposed bit type is often associated with an
array-syntax proposal, the previous example looks something like the following
when a bit type is used:
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int i;
bit flags[100];
double x[100], y[100];

flags[:] = x[:] < y[:];

This set of logical values can be stored in tightly packed storage, thus con-
suming approximately one-eighth the memory of most character-array imple-
mentations. The logical values can be used later to control references to corre-
sponding array elements.
Another potential use of a bit type is to represent the location of a shape

in a particular geometry. For example, a two-dimensional bit array could be
defined such that 0 represents the background and 1 represents a shape. An
n × m rectangle that rests on the horizontal axis with its left side on the
vertical axis is created with the following simple function:

bit screen[ROWS][COLS];

void horiz_rect(int n, int m) {
int i, j;

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)

screen[i][j] = 1;
}

Functions could be defined to create other geometric shapes such as circles,
squares, and curves, all represented in a tightly packed bit map. Since bit maps
are often used to represent large arrays, a compact representation is desirable.
For instance, a 1024 × 1024 screen is represented by over 106 bits.

Macro Solution

It is possible to define a macro package that references individual bits inside an
integer array. The idea is to declare an array of elements, where each element
has type unsigned long. Masks and bitwise operators are used to reference the
individual bits of each element. This means the bit index used to reference an
individual bit contains two pieces of information: an index into the array, and
a bit offset into the array element. First, the bit-offset portion of the index is
shifted off before indexing into the array. Next, the bit-offset portion is masked
off and used to shift a 1 into the corresponding bit position to mark the bit
location within the array element. A bit is set by ORing the shifted 1 into
the array element, cleared by ANDing the complement of the shifted 1 into the
element, and tested by simply ANDing with the shifted 1. The next example
shows an implementation that works on the Cray-YMP system.



Adding a Bit Type to C – MacDonald 143

#include <stdio.h>

#define bpw 64UL /* bits per word */
#define b_off 6UL /*bitsize of bitoffset into word*/
#define b_mask (~0UL>>bpw-b_off) /* bitoffset mask*/

#define N 1024UL /* numb of elems in array */
#define nbits (N*bpw) /* numb of individual bits */

#define ELEM(A,I) (A[(I)>>b_off]) /* ref element */
#define BIT(I) (1UL<<((I)&b_mask)) /*mark bit loc */
#define SET(A,I) (ELEM(A,I) |= BIT(I)) /* set bit */
#define CLR(A,I) (ELEM(A,I) &= ~BIT(I)) /*clr bit */
#define TST(A,I) (ELEM(A,I) & BIT(I)) /* test bit */

unsigned long bits[N];

main () {
unsigned long i; /* used as a bit index */

for (i = 0; i < nbits; i += 2)
SET(bits, i); /* set every other bit */

for (i = 0; i < nbits; i += 2) {
if (TST(bits, i) == 0)

printf("ERROR - bits[%lu] is clear\n", i);
CLR(bits, i); /* clear the bit */

}

for (i = 0; i < nbits; i++)
if (TST(bits, i))

printf("ERROR - bits[%lu] is set\n", i);

printf("All Done!\n");
}

It is easy to modify this macro package to work on most 32-bit implemen-
tations by simply changing the values of bpw to 32 and b off to 5.
Although this macro package simulates a simple vector of bits nicely, it is not

directly extensible to more complicated problems. For instance, there is no way
to take the address of a particular bit. Both the underlying array address and
the bit index into the array are required to represent the address. This makes
more complicated, operations such as manipulating a subsection of a simulated
bit array or passing bit subsections as arguments to functions. There is no direct
analogy to multi-dimensional arrays, such as those required for geometric shapes
identified above. The multidimensional macro packages are more complicated
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and a unique package is required for each array rank that is needed. Finally,
the macro package would have to be changed to support simulated arrays of
2-bit elements, or 3-bit elements, or arbitrary n-bit elements.

Multi-Bit Elements

Arrays of n-bit elements are useful when the application permits more than two
values for each element. For instance, consider the geometric shape example
again. The application might be defined to allow geometric shapes of different
colors. If the goal is to allow patterns such as a red triangle, green circle, blue
square, yellow triangle, with a black background and a white border, to reside
on the same screen, then a natural representation is to declare a two dimensional
array for the screen, and have each element be a 3-bit integer. This allows each
element to represent eight different colors depending upon its value. Cycling
through the colors is accomplished by incrementing the elements of a particular
shape. Thus, integer arithmetic on bit elements is an important operation.
Again, the primary motivation for the bit-type is to use less memory, but it is
equally important to define all integer operations for bit operands in order to
have a more general and useful feature.

An Exploratory Proposal

Before a general bit type can be added to C many key issues need to be ad-
dressed. Implementors may want to implement a subset of what is defined here,
or they may decide the implementation costs outweigh any benefits gained from
adding a bit-type. The intent is to make it easier to decide what is really needed
and what is too complicated. A complete bit-type feature does permeate the
entire language. And since I have not explored the impact on every corner of
the language, further work may be needed to reach linguistic closure.
The essence of this proposal is to allow bit-field declarations outside of struc-

ture declarations. This part of the proposal allows any bit-field declaration that
currently is permitted inside structure and union declarations to also be declared
outside of structure and union declarations. Later on additional extensions will
be considered. The following declaration:

unsigned ub4:4;

declares variable ub4 to have 4 bits of precision and a range of values [0,15].
However, the amount of storage that ub4 occupies can be larger than 4 bits—
there might be padding. That is, ub4 behaves very much like a standard bit-
field. Similarly, the following:

signed sb4:4;
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has four bits of precision and a range of values [-8,7], assuming a twos-comp
representation. Again, there is a direct analogy to standard bit-fields. Since
Standard C states that it is implementation defined whether the high order bit
of a bit-field declared with type int is a sign bit or not, it seems reasonable to
grant implementors the same latitude here. The integral promotions, as defined
in the C Standard, state that bit-fields can be used in expressions wherever an
int or unsigned int can be used, and that they are converted to type int if it
can represent all the possible values, otherwise bit fields are converted to type
unsigned int. Again, it seems reasonable to to apply the same rule to this
proposed extension to bit-fields.
One issue is defining the best syntax for declaring arrays of bit fields. Since

arrays of bit-fields do not exist in Standard C, new syntax has to be invented.
I have found in the past that issues surrounding new syntax stir unbridled
emotions in many people. This tends to cloud the exploration of new concepts.
There are bigger issues to dwell on at this stage of the proposal. For now the
following use of a typedef will suffice:

typedef unsigned UB4:4

UB4 a4[N]; /* array of bit-fields */
UB4 *pa4; /* pointer to bit-field */
UB4 f(); /* function returning bit-field */

The need for bit constants that begin with 0B or 0b such as:

0B110011001100

also needs examination if binary is going to be at the same level as octal,
decimal, and hexadecimal. [Ed: Such constants would be useful outside of this
propoasl as well.] Similarly there might be a desire to support bit strings such
as:

B"111000110010"

to place bit arrays at the same level as character strings and wide-character
strings.

Pointers to Bit-Fields

As soon as arrays of bit-fields are introduced, then pointers to bit fields must
also exist, because expressions designating arrays are converted to pointers to
their first elements for most operations. The representation of a pointer to a
bit-field may not be straightforward for some implementations. Since the Cray-
YMP has 64-bit words but word addresses require only 32-bits, there is plenty
of room to store the 6 bits needed for the bit-offset into the Cray word pointer.
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Many 32-bit byte-addressable implementations do not have an extra three bits
to spare in their pointer representation, to represent the bit-offset into the byte.
An initial thought might be to limit arrays of bit-fields to 29 bits of byte address,
thereby leaving 3 bits for the bit-offset into the byte. However, this can cause
problems with dynamic memory allocators such as malloc that do not know
the type of the object being allocated. A virtual-address implementation can
easily consume more than 29 bits of address space. For these implementations
I see no other solution than to use at least an additional contiguous byte to
represent the bit-offset. Some implementations might have to use an entire
additional word. This is unfortunate because most of the bits of the additional
word are not used. However, the savings in space that is possible with arrays of
packed bit-fields still creates an overall savings for all but the smallest arrays.
Additional issues with pointers to bit fields are examined later.

Bit-Field Alignment

Another issue with tightly packed bit-fields arises when a single element crosses
a storage boundary. On some implementations this is a byte boundary, and on
other implementations it is a word boundary. Consider the following example:

typedef unsigned UB3:3;

UB3 a3[100];

Assume a 32-bit byte-addressable architecture. If every element is tightly
packed then some elements will cross both byte and word storage boundaries.
This may cause problems for efficient code generation. It is for this very reason
that the C Standard allows an implementation to pad out to the next address-
able storage unit when a bit-field does not fit into the remaining space of the
current addressable unit. A similar technique can be used for arrays of bit-fields.
A brief side issue must be explored to explain this idea.
The header <limits.h> defines expressions that represent the minimum

and maximum values for the integral types. It is a common misconception that
an examination of these values gives information about the amount of storage
required to store variables declared with corresponding types. In Volume 1,
number 4 of The Journal, I wrote an article, Cray C: C in a 64-bit World
that describes several aspects of the Cray Research C implementation that are
unique. One of these involves the range and size of the short type. Essentially,
the Cray Research implementation exploits the fact that the C Standard allows
arithmetic types to occupy more storage than is needed for the precision of
the type. The Cray architecture has two different sizes of scalar registers (64-
bits and 32-bits), but one memory word size (64-bits). Since all loads and
stores involving short objects go through the 32-bit registers, the amount of
memory used to store short objects is greater than number of bits of precision.
Specifically, both of the following expressions evaluate to true on a Cray-YMP:
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sizeof(short) == 8 && SHRT_MAX == (1 << 31) - 1
sizeof(short) == sizeof(long) && SHRT_MAX < LONG_MAX

This technique of allowing the actual storage to have more bits than the
precision can be used to prevent bit-field elements from crossing a storage allo-
cation boundary. For instance the following declaration:

typedef unsigned UB3:3;

UB3 a3[100];

could be implemented such that each bit-field element of a3 occupies 4 bits of
memory (or even 8 bits) but only yields 3 bits of precision. Since 4 bits pack
tightly into 8-bit, 32-bit, and 64-bit boundaries, no elements cross an address-
able boundary. As a more complete illustration of this concept the following
mappings for bit fields would make sense for the Cray Research implementation:

Declaration Precision Storage
int i:1 1 1
int i:2 2 2
int i:3 3 4
int i:4 4 4
int i:5 5 8
int i:6 6 8
int i:7 7 8
int i:8 8 8
int i:9 9 16
int i:15 15 16
int i:16 16 16
int i:17 17 32
int i:31 31 32
int i:32 32 32
int i:33 33 64
int i:63 63 64
int i:64 64 64

Of course 32-bit architectures may not want to support bit-field sizes greater
than 32. Allowing this padding means that structures with consecutive 3-bit
bit-fields may not lay out in memory the same way as an array of 3-bit bit-fields.
However, the C Standard does not guarantee that several consecutive structure
members with identical types lay out in memory the same as an array of that
type.
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More on Pointers to Bit-Fields

The relationship that pointers to bit-fields will have with the generic pointer,
void *, needs to be investigated. Currently, Standard C requires generic point-
ers to have the same representation as a character pointer. Since Standard C
identifies objects with character types as objects that have the least strict align-
ment requirement, and that can have their address taken, this one-to-one cor-
respondence is consistent. The introduction of a generalized bit-type feature
forces examination of the problems introduced by changing the representation
of void * to the representation of a bit pointer. That is, define the least strict
alignment requirement to be bit alignment. Such a change does introduce prob-
lems with library functions such as memset, because a pointer argument is ex-
pected that, at a maximum, points to a char-aligned object. If a function
argument can be passed that points into the middle of a char, then the imple-
mentation and specification of memset is more difficult. For this reason it does
not seem like a good idea to change the current specification of void *. There
are several obvious choices for new library functions like bitset and bitcmp
that accept a bit pointer. Something similar to the following can be used to
define a generic bit-pointer type, bit t:

typedef unsigned UB1:1;
typedef UB1 *bit_t;

The maximum size of a bit array might not be limited by the amount of
addressable memory, but rather by the value of ULONG MAX. This is because the
number of bits available might be greater than the value of ULONG MAX. This
issue can also affect the range of elements that can be accurately represented
by the type prtdiff t when two bit pointers are subtracted. That is, it might
be possible to have more bit-field elements in an array than can be represented
by the ptrdiff t type. [Ed: ptrdiff t already is not guaranteed to cover the
difference between two arbitrary character pointers.]
A new keyword like bitsizeof is needed to adequately handle dynamic

memory allocation of arrays of bit-fields, and to portably compute the number
of elements in an array. One issue concerns the type size t that represents
the type of the value computed by the sizeof operator. If size t is also used
for the new bitsizeof operator, then there is a limit to how many elements
can be present in an array of bit-fields. This raises a slightly more complicated
issue with trying to use malloc to dynamically allocate arrays of bit-fields.
Currently malloc returns a void * pointer that might not be compatible with
the bit pointer being assigned to. Similarly, malloc expects an argument with
type size t that specifies the number of characters in the array. One possibility
is to define a macro that converts bit sizes to byte sizes for this purpose. The
idea is to round up to the nearest byte length. For example:

#define BITS_TO_BYTES(X) ((X) + 7U >> 3)
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works if the value of CHAR BIT is 8 (the macro CHAR BIT is defined in the
limits.h header). Another possibility is to define assignment compatibility
such that pointers to objects that are not bit pointers can be assigned to bit
pointers, but not the other way around. This is somewhat like the rules for
pointer to const int and pointer to int. It is permissible to assign in one
direction but not the other.

typedef unsigned UB1:1;
UB1 *pb;
const int *cp;
int *p;

cp = p; pb = p; /* OK */
p = cp; p = pb; /* ERROR */

If this rule is introduced then the aliasing implications need closer exami-
nation. It is always possible to define a new library function for dynamically
allocating bit arrays, but that should be a last resort.

Optimizations

There are additional optimization possibilities with arrays of bit fields. For
example, performing a bitwise-AND operation on two arrays of bit-fields can
often times be done on multiple elements at a time with a single hardware
instruction. Assume a 32-bit, two’s complement, byte-addressable architecture
with 32-bit registers R1, R2, and R3. Given the following example:

typedef unsigned UB1:1;
UB1 A[32], B[32], C[32];
unsigned long i;

for (i = 0; i < 32; i++)
A[i] = B[i] & C[i];

then, assuming A, B, and C are properly aligned, it is possible to generate code
similar to the following sequence:

1) Load R1 with 32 contiguous bits from B

2) Load R2 with 32 contiguous bits from C

3) R3 = R1 & R2

4) Store R3 into A

This effectively treats the registers as vectors of 32 elements. Since there are
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only 32 elements in each array the entire loop is computed in a single iteration.
Strip mining techniques can be used on loops with longer trip counts to get
performance gains. Another example that can be optimized is the following:

typedef unsigned UB4:4;
UB4 A[8], B[8];
unsigned long i;

for (i = 0; i < 8; i++)
A[i] = B[i] << 1;

In this case the 32-bit registers can be used as vectors of 8 4-bit elements
each.

1) Load R1 with eight contiguous elements from B

2) R1 contains some bit pattern
R1 = XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

3) Load R2 with the following bit pattern:
R2 = 0111 0111 0111 0111 0111 0111 0111 0111

4) R3 = R1 & R2:
R3 = 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX

5) Shift R3 left one bit:
R3 = XXX0 XXX0 XXX0 XXX0 XXX0 XXX0 XXX0 XXX0

6) Store R3 into A

A final optimization example is:

typedef unsigned UB3:3
UB3 A[8];
unsigned long i;

for (i = 0; i < 8; i++)
--A[i];

Assuming the 3-bit elements are padded out to 4 bits, the 32-bit registers
can be used as 8 element vectors as follows:
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1) Load R1 with eight contiguous elements from B
R1 = ?XXX ?XXX ?XXX ?XXX ?XXX ?XXX ?XXX ?XXX

2) Load R2 with the following bit pattern:
R2 = 0111 0111 0111 0111 0111 0111 0111 0111

3) R3 = R1 & R2 ; clear pad
R3 = 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX

4) R3 = R3 + R2 ; decrement

5) Store R3 into A

Depending upon the available instruction set, optimizations can be per-
formed for bitwise operations, addition, subtraction, and comparisons by using
the 32-bit register as a vector of elements. Better performance results are pos-
sible with 64-bit registers.

Extended Integer Range

There are some implementations that support a long long type. The NCEG
committee recently created a new subcommittee to examine the impact of ex-
tended integer ranges. The primary motivation for adding the new long long
type is to support at least 64-bit integral types. One obvious question that has
come up about this proposal is the long-term effect on the language. Is the
next step a long long long type, with constants such as 3LLL and 3ULLL or
3LULL?
Another possibility is to extend my bit-field proposal to include bit lengths

that exceed the range of types long and unsigned long. These bit-fields are
called extended bit fields. Each implementation has to define a maximum bit
length and corresponding types such as:

#define BIT_MAX 64

typedef unsigned maxuint_t:BIT_MAX
typedef signed maxint_t:BIT_MAX

that place upper limits on the maximum precision supported for extended bit-
fields. This idea seems upward compatible but there are many linguistic hurdles
that have to be overcome before it becomes workable.
Declaring constants with an extended range is no longer straightforward. It

is certainly consistent to define constants that cannot be represented as type
unsigned long as having the type of the nearest extended bit-field type that
can represent the value. However, it is sometimes necessary to represent smaller
constants in an extended precision also. For instance, there should be some way
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of defining a mask that is BIT MAX bits long. Again syntax needs to be invented
that is acceptable. One possible syntax is to use a new suffix, say M, that can be
used to specify integer constants with an extended bit-field type. For example:

3M /* maxint_t by default */
3UM /* maxuint_t by default */
3M.37 /* 37 bits of precision */

specifies the integer 3 is an extended bit-field. A mask of 42 ones is created
with the following expression:

~0UM.42

by using this approach. No doubt a more elegant syntax could be invented.
The usual arithmetic conversions have to be changed to produce a common

type when one of the operands is an extended bit-field. The most straightfor-
ward approach is to state that the result of the type is the type of the operand
with the greatest precision. If both operands have the same precision and one
of the operands is unsigned then the result is also unsigned.
Passing extended bit-fields as arguments to functions has the biggest impact

on C. Although user defined functions can use function prototypes to convert
an argument to an extended bit-field with greater precision, variable number of
argument functions such as printf do not support the concept of an extended
bit-field. New print-specifier syntax is needed along the lines of:

%~43d

to print a 43-bit extended bit-field in decimal format. A %b print-specifier
that prints binary format is also needed for completeness anyway. The overall
impact on the formatted I/O functions is substantial. There is a similar impact
on the conversion functions strtol and strtoul. New conversion functions
are probably needed that return values with types maxint t and maxuint t
respectively. These new functions must also understand the new syntax for
extended range constants. Other library issues are defining functions that are
analogous to the abs, labs, div, and ldiv functions for the maxint t type.

Conclusions

The total impact of adding a bit-type to C depends upon the extent to which
it is defined. There are several levels at which a bit-type can be implemented.
The first level is to define a macro package that is quite limited but still usable
for many needs. This requires no additional language features. The second level
is to define a new bit keyword that allows declarations of a single-bit integer
(probably unsigned). Arrays of bits and pointers to bits are also permitted. The
introduction of a bit pointer, however, is a non-trivial addition to the language,
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because it introduces an alignment that is less strict than character alignment.
Additional linguistic features such as bitsizeof are needed to support these
less strict alignments. The third level is to permit bit-fields to be declared
outside of structures and unions. Once a bit pointer exists, this level is a
straightforward and general extension. The final level is to implement extended
bit-fields as an alternative to extensions like the long long type. Although this
level provides a path to general extensions of integer ranges, it also introduces
the greatest impact on the language, especially in the area of argument passing
to standard library functions.
Extensions always have an effect on programming languages. More research

is needed to determine which level provides the greatest benefit when factors
such as language size, linguistic complexity, and extensibility of the language
are considered.

Tom MacDonald is the Numerical Editor of The Journal of C Language
Translation. He is the Cray Research Inc representative to X3J11 and a major
contributor to the floating-point enhancements made by the ANSI C standard.
He specializes in the areas of floating-point, vector, array, and parallel process-
ing with C language and can be reached at (612) 683-5818, tam@cray.com, or
uunet!cray!tam.
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15. Pragmania

Rex Jaeschke

Borland C/C++ V2.0

Registering Startup and Termination Functions

Standard C provides the atexit library function to allow specified functions to
be called at normal program termination. Borland has augmented this mecha-
nism via two pragmas which have the following syntax:

#pragma startup function-name [ priority ]
#pragma exit function-name [ priority ]

Functions registered using startup are called before main gets control.
Functions registered using exit are called after any functions registered us-
ing atexit. As with atexit, all functions registered via these pragmas must
have a void argument list and void return type.
The optional priority allows the programmer to control the order in which

registered functions are executed. The valid range of priorities is 0–255 with 0
being the highest. Priorities 0–63 are reserved for use by library routines. The
default priority is 100. At startup, functions are called in decreasing order of
priority while at shutdown, they are called in increasing order.
As far as I could ascertain by experiment, for a set of functions having

the same priority, they are invoked in the reverse order of their registration,
provided they were all registered in the same translation unit. For registrations
at the same priority in different translation units, the execution order seems to
be affected by the order in which the object modules are linked.
A feature that might be useful, but which is not provided, would be the

ability to override the default priority via a command-line option.

Miscellaneous Pragmas

By default, the compiler warns if any formal parameters in a function definition
go unreferenced in that definition. Such warnings can, however, be suppressed
using the following pragma:

#pragma argsused
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This directive must be used outside of a function definition. It suppresses
the warning for the next function definition only.
Borland C/C++ programs may contain embedded assembly code. When

assembler instructions are encountered, the compiler restarts itself in a different
mode. To avoid the need for this restart, a pragma can be used to indicate this
need. Obviously, this pragma is best placed at the start of the translation unit.
Its syntax is:

#pragma inline

Various command-line compiler options can be embedded in source via an
options pragma. It has the general syntax

#pragma option [ options ... ]

In certain DOS-specific functions (called huge functions), it is desirable to
ensure that the values of all registers go unchanged when such functions are
called. This is achieved via the following pragma:

#pragma saveregs

which should be placed immediately before the corresponding function defini-
tion. It applies to that function only.
A number of warning messages can be enabled and disabled via command-

line options. This can also be achieved via the warn pragma. The directives

#pragma warn +aaa
#pragma warn -bbb
#pragma warn .ccc

enable warning aaa, disable warning bbb, and restore warning ccc to its compile-
time default value, respectively. aaa, bbb, and ccc are three-character abbrevi-
ations. For example, ‘cln’ corresponds to the warning ‘Constant is long.’

∞



16. C Standards Update

Jim Brodie
Motorola, Inc.
Tempe, Arizona

Abstract

An effort is underway to coordinate the development, review, and adop-
tion of future changes to the ISO and ANSI C language standards. To
help facilitate this, X3J11 is faced with the decision on whether to rec-
ommend that the United States withdraw its current standard and adopt
the ISO standard in its place. In this article, we will look at the issues
surrounding this decision.

X3J11 recently held a letter ballot to decide whether to recommend to X3
(X3J11’s parent standards body) to simultaneously withdraw the current Amer-
ican National Standard for C, X3/159-1989, and replace it with the recently
adopted International Standards Organization (ISO) standard for C, document
ISO 9899:1990. The result of this letter ballot was 27 votes in favor and 3 op-
posed (with 4 more Yes ballots arriving after the voting deadline had past).
This result was a clear 2/3 majority vote supporting the change to the ISO
standard document. However, according to X3 rules, the 3 negative ballots
must be addressed and a committee position taken on how to respond to them.
Assuming that a consensus forms around the appropriate responses to the neg-
ative ballots, the next step would be a formal X3 ballot on this proposal.

Why Make the Change?

The obvious question, given all the years of struggle to produce an American
National Standards Institute (ANSI) standard for C, is why would X3J11 make
this request in the first place?
First, it is important to understand that the ANSI and ISO standards are

technically identical. The documents, however, were prepared using different
document-preparation style conventions. The ANSI C standard was formatted
according to the then current ANSI document style rules. The ISO document
was formatted, not surprisingly, according to the international standard style
rules.
Foreseeing this situation, the document editor for the ANSI C standard had

made several attempts to get permission to use the international style rules for
the ANSI C standard. However, at that time ANSI was unwilling to accept the
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document in that format because it did not meet their document standards.
(If there is one organization that is bound and determined to follow their own
standards, it’s ANSI!) It is interesting to note that ANSI has since adopted (or
at least allows) the ISO style conventions in its documents.
One of the unfortunate results of these differing style rules is that additional

sections were introduced in the front material of the ISO document. This means
that the numbering of document sections is different for the ISO and ANSI
standards. This complicates discussions between the U.S. and ISO communities,
particularly when discussing issues such as interpretations where specific section
references are frequently used.
The common standard document issue, however, is broader than simply

trying to work together with documents that have differing section numbers.
From the creation of X3J11, one of the stated goals of the committee has

been to have identical ISO and ANSI standards. There have been repeated
votes and actions by X3J11 that have supported this position. In fact, the
ANSI standard was delayed between one and two years as attempts were made
to incorporate support for the international community. The committee and,
we believe, the C community in general still support this position.
In an effort to ensure the on-going cooperation and coordination between the

ANSI work and ISO work, several X3J11 members have been actively involved
in the ISO standards committee that is addressing the C language. (The com-
mittee is known as SC22 Working Group 14 or WG14 for short). P.J. Plauger,
the X3J11 Secretary, is serving as the Convenor of WG14. Rex Jaeschke is the
International Representative from X3J11 to WG14 and Tom Plum, Vice Chair
of X3J11, has regularly attended the WG14 meetings. X3J11 itself has served
as the U.S. Technical Advisory Group (TAG) that reviews all technical issues
raised by WG14 and votes to establish the U.S. position on technical questions.
This cooperative work paid its initial dividends when the ISO C language

standard, which is technically equivalent to the ANSI standard, was adopted.
This cooperative work is currently focused on the Normative Addendum that
will extend the current standard. (In previous articles we have discussed some
of the issues being addressed by the Normative Addendum. See C Standard
Update in The Journal Volume 1, number 4 and Extended Multibyte Support in
Volume 2, number 2.)
Every effort is being made to ensure that, now that we have close synchro-

nization of the ISO and ANSI C standards, we don’t lose this coordination when
the Normative Addendum is adopted by WG14.
If the ISO and ANSI efforts are not appropriately synchronized we could

end up in a position where the ISO standard is changed by the Normative
Addendum, but the ANSI standard does not include these changes. If we then
go through a process to revise the ANSI standard to be consistent with the ISO
standard, any public review comments which cause changes in the content of the
Normative Addendum would force the ANSI standard to remain inconsistent
with the ISO standard. We could get stuck in an almost endless cycle of changes
in an attempt to match the “other” standard.
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The best way to proceed is to establish a close synchronization between the
review and adoption of the Normative Addendum for inclusion in the ANSI and
ISO standards.
To coordinate this work fully and to ensure that appropriate public reviews

and comment period are held in the United States prior to the ISO acceptance
of the Normative Addendum, a special kind of coordinating project must be
established within X3. This project is called an “I” project, (which stands
for International Development—concurrent National/International approval).
There is one catch. Since the current ISO effort is an update to the existing ISO
standard, the U.S. can only form an “I” project to consider the simultaneous
adoption of the updates if the existing ANSI and ISO standards are completely
identical, not “merely” technically equivalent.
This then leads us to the proposal to adopt the ISO standard document as

the ANSI standard. The common standard allows us to have a synchronization
project which in turn is the best way to ensure that the ISO and ANSI standards
don’t diverge.

The Concerns

Despite these reasons for forming an “I” project, and the corresponding accep-
tance of the change in standards documents from X3/159-1989 to ISO 9899:1990,
there were still reservations by several members of X3J11 about moving to the
new document.
The major points raised in the negative ballots on this proposal were:

1. Other standards currently reference X3/159-1989 and changing the stan-
dard will mean that all of these references will need to be updated.

2. There was a concern that the decision relinquishes too much control. The
concern is that by taking this step the committee will be pressured to
accept the future ISO changes to the current standard (in particular the
Normative Addendum) even if they are not in the best interest of the U.S.
C community.

3. There were concerns over who will take over control of the interpretations
process for the standard document. Will the ISO committee assume full
control over the interpretations? The underlying question is whether the
ISO committee is in a position to make high-quality interpretations of the
document.

4. There are concerns for the on-going changes in the standard. There is a
sense that stability is needed more than further improvements.

As of the writing of this article, X3J11 had not completed its process of
deciding how to respond to these issues. However, the following points address
some of these issues.



C Standards Update – Brodie 159

The adoption of a new standard document has the same impact that any
new revision of the standard would have. The old references remain valid; they
would simply reference the previous C standard document. At this point, since
the documents are technically equivalent, this should not be a major issue. If
the Normative Addendum is accepted as part of the ANSI and ISO standards
then the related standards bodies will need to decide whether they wish to
reference the old standard or the new standard. As new editions of these related
standards are published they will need to update the references appropriately.
It is true that there is considerable pressure to adopt international standards.

There are signed international treaties that strongly encourage us to move in
the direction of common international standards. (Common standards reduce
the effective trade barriers between countries.) Despite this, the U.S. is not
forced to adopt the ISO standard or any future changes, such as the Normative
Addendum. We can accept all, part of, or none of the future changes WG14
makes to the C standard.
However, as a very active member of the ISO community, if the United

States, and X3J11 in particular, feels that the ISO C standard is moving in
directions counter to the best interests of the C language then we have a re-
sponsibility to make our concerns understood. In fact, this is exactly what has
happened in the area of the proposed trigraph alternatives proposed by the
Danish delegation to WG14. The U.S. has steadfastly opposed changes which
were felt to be technically flawed. This may have, at times, made us look like
“ugly Americans,” but the committee genuinely felt that significant problems
would arise if the original proposals were adopted. After several rounds of pro-
posals and discussions, the U.S. outlined what it felt should be the guidelines
for future proposals in this arena. The latest Danish proposal is consistent with
these guidelines and will probably be supported and accepted by all member
nations, including the U.S. The bottom line is that we are all better served
by actively participating and ensuring that the Normative Addendum and the
changes it recommends are acceptable to us rather than stepping back and re-
jecting whatever is produced because it does not meet the needs of the U.S.
community.
The area of interpretations remains one of the least clear areas. It is in all

of our best interests to have common ISO and ANSI responses to requests for
interpretations. This avoids a divergence of the standards based on differing
opinions of what the standards mean. The rest of the international community,
on its own, probably does not have the resources or the history with the variety
of technical issues which frequently surround many request for interpretation to
do all of the interpretations. Some preliminary discussions between X3J11 and
WG14 suggest that one way to meet all of the requirements would be to have
X3J11 draft the responses for the interpretation requests and then have WG14
review and provide the approval of the interpretations for the ISO standard.
If there are differences between the X3J11 recommendation and the response
that WG14 can support, these would be worked out prior to the adoption of
either an ANSI or ISO response. This proposal has not been adopted, but it
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does seem to have considerable support, and it does make a lot of sense.
Even if this arrangement is worked out, the current understanding is that

X3J11 remains responsible for interpretations of the ANSI standard. It remains
a possibility, even if it is not a desired situation, to have the ANSI interpretation
different from the ISO interpretation. Just as is the case with the on-going work
on the Normative Addendum, it is up to X3J11 and its representatives on the
ISO committee to ensure that WG14 clearly understands the rationale behind
the U.S. positions prior to making any decisions on interpretations.
The question of stability is an area where there is no clear-cut answer. There

is clearly a real advantage in having a stable environment so that implementors
and programmers have a non-moving target to shoot at. The other side to this
issue, however, is that we are just gaining the experience is several areas, most
notably the support for programming in a multibyte character environment, to
establish widely useful standards.
The changes that are being proposed in the Normative Addendum are al-

most entirely “bolt on” additions to the existing standard. They should not
change the way the typical U.S. programmer writes code for the U.S. market-
place. On the other hand, if programmers are trying to serve the international
community, then they would probably have to be concerned with the ISO stan-
dard, independent of what the ANSI standard requires. In addition, a com-
mon ANSI and ISO standard will allow U.S. compiler, interpreter, and other
language-related product suppliers who are trying to sell in both the United
States and around the world to offer a single product.
In the end, there are many issues that must be considered when trying to

determine the most effective route to a C standard that serves the needs and
interests of both the international and U.S. communities. These range from
trying to ensure that the basic procedures are in place to ensure coordination
and synchronization to issues of whether a common standard with the rest of
the world is the best answer for a particular group. At this point the strong
leaning is towards finding a way to make sure that the ISO and ANSI standards
remain in sync as changes are made.

Other Standards News

There have been many requests over the past year for some formal publication of
all of the interpretation requests and their responses. In response to this need,
X3J11 requested that a project be authorized to produce a Technical Bulletin
containing this information. The Project Proposal for a bulletin was approved
in May of this year by a ballot of 35 in favor, 0 against, and one abstention.
There will be certain challenges in putting together this bulletin, particularly

if the new ANSI standard document is adopted. For example, this will mean
that all of the references to sections in the current standard will have to be
supplemented with references in the new document.
X3J11 has not set a deadline for production of this bulletin, however. Given
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the fact that the next meeting is not scheduled until December in Milan, Italy,
it is probable that the publication date will be some time in 1992.

[Ed: The result of the X3J11 letter ballot regarding the responses to the No
votes, was 23 in favor and one opposed. The wheels will now be set in motion
for X3 to vote on this issue and, assuming they vote in the affirmative, for the
ISO document to be adopted as the ANSI standard.]

Jim Brodie is the convenor and Chair of the ANSI C standards committee,
X3J11. He is a Software Engineering Process Manager for the Semiconductor
Products Sector of Motorola, Inc., in Tempe, Arizona. He has coauthored
books with P.J. Plauger and Tom Plum and is the Standards Editor for The
Journal of C Language Translation. Jim can be reached at (602) 897-4390 or
brodie@ssdt-tempe.sps.mot.com.
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17. Miscellanea

compiled by Rex Jaeschke

Precompiled Headers

Early in 1991, Borland International released V2.0 of their popular C++ com-
piler which also incorporated an ANSI C compiler. One of the new features
added was precompiled headers. The idea is that if the compiler could save
a symbol table for a header, the header’s source need not be reprocessed on
subsequent #includes of that header.
The primary motivation for this feature appears to be to handle one very

large header, windows.h. This header provides support for programming for
Microsoft’s Windows software. As supplied by Borland, this header contains
approximately 120,000 bytes and spans nearly 3,500 source lines. As such, it
takes far longer to process than do all the other headers combined. And if this
header is processed multiple times in the same compilation, the time savings
may be significant.
By default, precompiled headers are all stored in one big file. Then, when

a program is compiled that contains #include directives for an already pre-
compiled header, the compiler gets the corresponding symbol table information
from the symbol-table file instead of reprocessing the header source. A number
of compiler options and pragmas are provided to support this capability. There
are also some restrictions placed on code so that the compiler can, in fact, take
advantage of header precompilation.

Compiler Options

A number of command-line options are provided to handle precompilation.
They are:

-H Instructs the compiler to generate and use precompiled headers.

-H- Turns off generation and use of precompiled headers. (This is the default.)

-Hu Instructs the compiler to use existing, but not generate new, precompiled
headers.

-H=filename Specifies the name of the file to hold precompiled headers. (By
default, the compiler uses TCDEF.SYM which is located in the same di-
rectory as the compiler executable.) This option subsumes the option -H.
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Pragmas

Two pragmas are provided: hdrfile and hdrstop. The first has the following
syntax:

#pragma hdrfile "filename.SYM"

It allows a symbol-table file to be explicitly named so the default can be over-
ridden. This might come in handy where each project finds it useful to have
their own symbol table independent of other projects on the same system.
The other pragma can be used to select some precompiled headers and some

non-precompiled headers. Its syntax is:

#pragma hdrstop

Given a source fragment such as the following:

#include <stdio.h>
#include <stdlib.h>
#pragma hdrstop
#include <assert.h>

the compiler sees it should use precompiled versions of the first two headers but
not those following the pragma. Perhaps the user is alternately defining and
not defining NDEBUG during compilations and therefore needs to reprocess the
source of assert.h each time to get the intended effect.

Restrictions

According to Borland’s documentation, each file that intends to use precompiled
headers must adhere to the following rules:

• It must have the same set of headers included and in the same order.

• It must have the same macros defined and to identical values.
• It must be written in the same source language (i.e., either one of C or
C++, but not both).

• It must have actual header files with identical time stamps. (A header
with the same name but with a different time stamp will be assumed to
have changed and therefore need reprocessing from source.)

• In the case of several compiler options, all subsequent compiles must have
identical settings for these options. These include the handling of spelling
of external names, length of significance of identifiers, object alignment
(particularly relevant for structure member offsets), and the signedness of
plain chars.

To be accepted for precompilation in the first place, a header is not permitted
to contain code except inside macros.
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Some Comments

It is not clear to me that the actual savings are worth the effort. Borland
claims that “Directly loading the symbol table from disk is over ten times
faster than parsing the text of the header files.” This may be true but if your
total compilation time drops from 30 seconds to 5–10, that is not necessarily
significant unless you are recompiling on a very regular basis. And with very
large source files, the header processing phase will likely pale against the time
spent on other compilation tasks.
Since windows.h is 5–10 times larger than the other headers provided, what-

ever savings are possible will come mostly when processing this header. How-
ever, to do serious programming for Windows you need an Intel 80386 processor
which will probably have a clock speed of at least 16 MHz, if not 20. As such, the
machine is quite fast anyway. However, if you were doing Windows program-
ming on a smaller/slower machine or even non-Windows programming on an
80286 or 8088 system, savings on other headers may become more appreciable.
As for me, I come from the old school of designing and planning, when

you had plenty of time to do so between once-a-day batch compilations. As
such, I don’t see the need to spend too much time worrying about compilation
time. I’m much more concerned about execution speed. However, integrated
and interactive development environments such as that provided with Borland
C/C++ certainly encourage “try it and see” development with frequent recom-
pilation.

Calendar of Events

• September 24–27, 1991 Numerical C Extensions Group (NCEG)
Meeting – Location: At an Apple facility in Cupertino, California (Sili-
con Valley area). Note that this will not be a joint meeting with X3J11.
As such, NCEG will meet more than the usual two days. For more in-
formation about NCEG, contact the Convenor Rex Jaeschke at (703)
860-0091 or rex@aussie.com, or Tom MacDonald at (612) 683-5818 or
tam@cray.com.

• November 10–15, 1991 Joint ISO C SC22/WG21 and X3J16 C++
Meeting – Location: Dallas, Texas. For more information, contact the
X3J16 Vice-Chair William M. (Mike) Miller, P.O. Box 366, Sudbury, MA
01776-0003, (508) 443-7433 or wmmiller@hplabs.HP.com.

• November 14–16, 1991 Supercomputing Debugging Workshop ’91
– Location: Albuquerque, New Mexico. This workshop will be held in
conjunction with Supercomputing ’91. For information, contact one of
the following: Jeffrey S. Brown, (505) 665-4655 or jxyb@lanl.gov; Peter
Rigsbee, par@cray.com; or Ben Young bby@craycos.com.
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• December 1–5, 1991 Third IEEE Symposium on Parallel and Dis-
tributed Processing – Location: Dallas, Texas. For more information
contact Vijaya Ramachandran, (512) 471-9548 or spdp@cs.utexas.edu; or
Greg Pfister, (512)823-1589 or pfister@austin.iinus1.ibm.com.

• December 3–6, 1991 X3H5: Parallel Model and Language Bind-
ings – Location: Livermore, California. For information, contact the
Vice-Chair Walter G. Rudd at (503) 737-5553, Fax: (503) 737-3014, or
rudd@cs.orst.edu.

• December 11–13, 1991 Joint ISO C SC22/WG14 and X3J11 Meet-
ing – Location: Milan, Italy. WG14: Contact the US International Rep.
Rex Jaeschke at (703) 860-0091, or rex@aussie.com, or the Convenor
P.J. Plauger at pjp@plauger.com for information. X3J11: Address cor-
respondence or enquiries to the Vice Chair, Tom Plum, at (609) 927-3770
or uunet!plumhall!plum.

• January 6–10, 1992Numerical C Extensions Group (NCEG) Meet-
ing – Location: In the Dallas, Texas area, hosted by Convex. Note that
this will not be a joint meeting with X3J11.

• January 7–10, 1992 Workshop on Parallel Programming Tools –
Location: Kauai, Hawaii. This event is the Hawaii International Confer-
ence on System Sciences – 25 (HICSS-25). For information, contact Dr.
Hesham El-Rewini at (402) 554-2852 or rewini@unocss.unomaha.edu.

• January 19–22, 1992 Principles of Programming Languages – Loca-
tion: Albuquerque, NewMexico. This is the 19th Annual ACM SIGPLAN-
SIGACT symposium. For information, contact Andrew Appel at (609)
258-4627 or appel@princeton.edu.

• March 2–4, 1992 X3H5: Parallel Model and Language Bindings –
Location: New Jersey.

• March 8–13, 1992 ISO C SC22/WG21 C++ Meeting – Location:
London, England.

• April 29–May 2, 1992Workshop on Parallel Compilation – Location:
Kingston, Ontario Canada. Researchers are invited to submit an extended
abstract of about 2,000 words by January 13th 1992. Invitations will be
made by February 15th, 1992, and final versions of papers will be required
by March 15th, 1992. Workshop Chair: David Skillicorn (613) 545 6050,
Fax: (613) 545 6453, or skill@qucis.queensu.ca.

• May 11–12, 1992Numerical C Extensions Group (NCEG) Meeting
– Location: Salt Lake City, Utah.

• May 13–15, 1992 Joint ISO C SC22/WG14 and X3J11 Meeting –
Location: Salt Lake City, Utah.
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• May 24–26, 1992 X3H5: Parallel Model and Language Bindings –
Location: Ithaca, New York.

News, Products, and Services

• Clarification: The previous issue of The Journal stated on page 87,
“Sun has announced V1.1 of their Sun C compiler which is now standard-
compliant.”

In actual fact, Sun C version 1.1 contains two compilers: cc – K&R C
with Sun extensions, and acc – ANSI C.

Sun ANSI C fully implements the ANSI C language definition as described
in the ANSI X3.159-1989 document as well as the ISO 9899 document.
There are, however, some incompatabilities with the portions of the stan-
dard which define the operating environment because SunOS 4.x isn’t
compliant with ANSI C (e.g., headers, libraries). These differences are
documented in Chapter 9 of the Sun C Programmers Guide.

• WATCOM is shipping a Windows version of their C/386 compiler. Con-
tact (519) 886-3700.

• ACE of Amsterdam have announced an MC68040 code generator for their
language compilers inclusing C. Fax: (31) 20 750389.

• Softools, Inc. of Ellicott City, Maryland is shipping a family of cross-
compilers for the HD64180, Z80, Z280, and 8075 systems. (301) 750-3733.

• QTC has announced two numerical libraries for DOS- and Mac-based
C compilers. Contact them at (503) 626-3081.

• sml2c is a Standard ML to C compiler. It compiles an extended version
of SML to portable C. The extensions include first-class continuations,
asynchronous signal handling, separate compilation and a facility to freeze
and restart programs. It is based on the Standard ML of New Jersey
(SML/NJ) implementation (version 0.67) and shares its front-end and
most of the runtime system.

sml2c has been developed at the School of Computer Science, Carnegie
Mellon University as a part of research into portable implementations
of properly tail-recursive languages with first-class continuations. The
design of sml2c has been described in the technical report No Assembly
Required: Compiling Standard ML to C David Tarditi, Anurag Acharya,
and Peter Lee, School of Computer Science, Carngie Mellon University.
CMU-CS-90-187. For information contact david.tarditi@cs.cmu.edu.

∞


