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18. Character Sets and C

P.J. Plauger

Abstract

One of the great strengths of C is its ability to manipulate characters
flexibly and efficiently. A well-constructed C program can do so with no
presumptions about the actual codes used to represent individual char-
acters. Nevertheless, C has always imposed certain constraints on how it
represents characters internally.

There has been a recent upsurge in standardization efforts for large
“universal” character sets. That activity has instigated a certain amount
of criticism of the constraints expressed in the C Standard.

This paper addresses that criticism. It explains the historic origins of
each of the constraints imposed by C on character encoding. It justifies
their continued presence. And it shows ways in which the proposed large
character sets can coexist happily with C programs.

Introduction

Turf wars among standards organizations are inevitable. Where one standard
meets another, you have an interface. A standard itself is an interface between
producers and consumers—it defines the “treaty point” that both can agree
on. Hence, each organization is in the habit of devising interfaces to resolve
conflicts. It doesn’t like to be told by another authority how to do so.
Programming language standards must coexist with character set standards.

For one thing, you write a program source file in some character set. For
another, the programs you run manipulate character sets. The C Standard is
more ecumenical than many others in this regard:

• Unlike Ada, it doesn’t mandate ASCII or any other particular character
set for its definition.

• Unlike almost all other languages, it clearly separates source and execution
character sets.

Nevertheless, the C Standard has struck sparks off other standards com-
mittees more than once over character sets. At issue is what a programming
language can say about the character sets it manipulates. Languages are the
province of SC22 within ISO. Character sets are the province of SC2. That
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elevates many discussions to SC22, at least. That committee is the father of
WG14 within ISO and a sort of step-father to X3J11 within ANSI. In some
cases, the squabbles have attracted the attention of JTC1, the grandfather of
international technical committees.
At the March 1991 meeting of WG14 in Tokyo, we reviewed the conflicts

that have arisen between the C Standard and character set standards. That
exercise was to help formulate a response to a gripe from the group developing
the ISO 10646 standard. Since then, that gripe has become largely irrelevant.
But at the September 1991 SC22 plenary in Vienna, a new set of issues arose.
In some ways, these new issues are a more fundamental challenge to the way C
does business.
I think it appropriate, therefore, to review what C has to say about character

sets. Of particular interest is where others have challenged our right to impose
constraints. In the coming months, I believe that as many people as possible
should be educated on the underlying principles behind the issues at hand.
The constraints that follow appear in roughly chronological order. The first

appeared earliest in C. The last was the latest concept to be clarified within
X3J11.

Older Constraints

1) A text line is terminated internally with a new-line character ’\n’,
regardless of the external representation of line terminators.

The convention of terminating text lines with a new-line character is, of course,
an early UNIX-ism. That operating system pioneered the notion that text
within a computer should take a standard form. Handlers for different devices
could and should map between this standard form and the peculiar requirements
of the device.
UNIX actually uses the ASCII line feed character for ’\n’. That character

positions to the next line without returning the carriage to the start of the line.
(The ASCII carriage return character ’\r’ is supposed to handle the latter
operation.) New-line combines these two operations. EBCDIC has a specific
new-line character but ASCII does not.
UNIX appeared, in the early 1970s, at a time of great confusion among

terminal and printer manufacturers. To say that there was no standard text
format is an understatement. Rather, there was active competition among dif-
ferent vendors to evolve the most flexible forms. UNIX found a useful common
denominator with its new-line-terminated text lines. That went a long way
toward making software tools work together on common files and in pipelines.
Those of us who moved C to other operating systems generally honored this

convention. We often had to translate new-lines within the I/O library instead
of out in device handlers. The effort was worthwhile. It let us continue to use a
uniform notation that had proved useful under UNIX. It also greatly simplified
moving code among systems. An early concern was moving code from UNIX.
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But later, we found the uniform convention equally useful in making C code
portable across diverse systems.
Somewhere along the way, however, the character-set curators had a change

of heart. They decided that the ambiguous use of the ASCII line feed character
should stop. People who made terminals and printers were put on notice. It
was no longer considered acceptable to treat line feed as a synonym for new-
line. X3J11 got a similar communique. We were told that our use of ’\n’ as a
combined line feed and carriage return was no longer acceptable.
We replied that our use of ’\n’ isn’t under their jurisdiction. What happens

outside a C program is their domain. Implementors of C compilers have long
recognized the need to match external conventions for terminating lines. Gen-
erating or reading an ASCII sequence of characters is just one such convention
that we gladly honor. But what happens inside a C program is our business.
And we can point to decades of usage to justify our particular internal conven-
tion for terminating lines.
I assume the complainants bought this argument. I don’t recall any further

communication on the subject.

2) Code value zero is reserved for the null character ’\0’.

In the older six-bit codes, a common meaning for code value zero was the
digit ’0’. Another common meaning was the space ’ ’. With only 64 codes,
one couldn’t afford to be generous. I don’t know of any eight-bit codes, however,
that use code value zero as other than the null character.
The C Standard introduced the formal notion of a “basic C character set.”

This set contains all the characters you need to write a C program. Throw in the
null character and you have all the characters guaranteed to be representable
in the execution character set. That null character has to be distinguishable
from any of the others in the basic C character set.
It is no surprise that ASCII is closely related to the basic C character set.

That was the character set used for the first few implementations of C. ASCII
includes a few additional printing characters and a slew of control characters.
None of these has code value zero. Not even EBCDIC has committed this
particular sin against C.
Nobody has complained about this particular constraint simply because

nobody’s ox has been gored. If an important eight-bit character set exists that
gives some serious meaning to code value zero, I don’t know about it.

3) A binary file may have any number of null characters appended
to it.

The very first version of getchar returned zero to signal end-of-file. Null char-
acters seldom, if ever, occur in text files. It seemed like a reasonable thing to
do. What people soon found, however, was that many programs could process
more than text. They worked just as well for binary files—streams of arbitrary
text.
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It was unfortunate that getchar was almost transparent, but not quite.
Before very long, the end-of-file code became −1 and getchar grew up. It was
then easier to write utilities that process arbitrary text. The null character was
just another character.
UNIX programmers take it for granted, in fact, that an arbitrary file is

binary transparent. Whatever you write to a file you get back when you read it.
No more, no less. True, an occasional exception exists. Certain “block physical”
files exist only in multiples of 512 bytes. Write one byte to a magnetic tape,
for example, and you could read back that byte followed by 511 null characters.
But then, only specialized programs typically muck with such files.
On systems other than UNIX, this exceptional behavior is often the rule.

Many systems expose the underlying block structure of files to every program.
For a text file, the system usually superimposes some structure. It knows when
you’ve read the last written line, even if rubbish follows it in the underlying file.
The C runtime library can use this information to read back (almost) exactly
the same text that was written to the file.
But for a binary file, it’s harder to impose any sort of structure and still

retain a desirable degree of transparency. Your typical C runtime library wants
to muck with an arbitrary binary file—that’s the very spirit of C. That means
it’s hard to hide the padding that files often contain. About all the runtime can
do is ensure that the padding is null characters (bytes with code value zero),
not arbitrary garbage.
The C Standard simply acknowledges the obvious and unavoidable. It weak-

ens the UNIX I/O model inherited by C. A portable C program must assume
that any binary file can acquire one or more null characters at the end. The
wise programmer learns to skip such nulls. Even better, the wise programmer
learns to mark the end of a binary file unambiguously for later readers.
X3J11 received a mild rebuke about this new wording. It seems that “NUL

padding” is a concept in text transmission with a specific connotation. Syn-
chronous channels can send ASCII NUL characters as place holders in lieu of
actual characters. We had no business dictating how and when a NUL should
appear outside a C program.
We sidestepped the problem, as I recall, by a slight change of wording. We

rewrote any reference that might be construed as a reference to ASCII NUL.
Instead, we talked about “null characters,” a term with a language-specific
meaning in the C Standard. Another small turf war fought to a draw.

4) ’0’ + 9 == ’9’ for any character set.

X3J11 saw fit to add one final pronouncement about conventional (typically
eight-bit) character sets. It constrains the code values assigned to the ten
decimal digits. The C Standard requires that the digits from ’0’ to ’9’ be
assigned sequential code values in any character set.
You can well imagine why a typical programmer would want this constraint

to apply. Converting between printable text and encoded integers is simpler
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and faster if you can write code such as:

sum = sum * 10 + digit - ’0’;

You don’t want to have to write the more cautious:

static const char digits[] = "0123456789";
int val = (const char *)strchr(digits, digit) - digits;

sum = sum * 10 + val;

At issue is whether the language should promise such a constraint. After
all, many programmers write code that assumes:

• ’a’ through ’z’ and’A’ through’Z’ each form contiguous intervals (true
in ASCII but not EBCDIC)

• ’A’-’a’ equals ’X’-’x’ – the cases are a fixed distance apart for all letter
pairs (true in both ASCII and EBCDIC)

The C Standard does not promise that either of these constraints applies.
The wise programmer knows to use functions such as isalpha, toupper, and
tolower in a portable program.
Still, X3J11 felt that the digits were a special case. Speeding numeric con-

versions was deemed an important goal. And nobody could conjure up a char-
acter set where the constraint failed to hold. Thus, the committee endorsed an
age-old shortcut.
As far as I know, no complaints have arisen on this subject. I’m sure that’s

once again due to a dearth of gored oxes. The constraint holds for both ASCII
and EBCDIC.

Newer Constraints

X3J11 added support for large character sets such as Kanji, Chinese, Korean,
and Arabic. A character set occurs in two forms:

• multibyte characters, each consisting of a sequence of one or more con-
ventional (one-byte) codes

• wide characters, each consisting of a distinct code value of some integer
type

The committee made a point of not mandating ASCII or any other con-
ventional code set. We weren’t about to mandate a specific encoding of, say,
Kanji—a subject that most of us knew precious little about. Still, we had to
impose some constraints on the large character sets that C must manipulate.
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5) Code value zero is reserved for the null wide character L’\0’.

C has had considerable success with null-terminated text strings. It is a safe
bet that wide-character strings will achieve comparable importance in programs
that manipulate large character sets. The obvious thing to do is reserve code
value zero for a null wide-character terminator as well.
The C Standard currently includes only the bare minimum support for large

character sets. Five functions inspect these encodings and convert between the
two forms. Yet almost every one of these five is influenced by the presump-
tion that L’\0’ terminates wide-character strings. The Japanese delegation to
WG14 has proposed a much richer assortment of functions to manipulate wide
characters. Naturally enough, they too rely on this presumption.
None of the wide-character encodings that I know of has trouble setting aside

code value zero this way. That is hardly a surprise. Much of the experimentation
that led to large-character support was performed in C. You can be sure that
the experimenters were aware of the uses for null-terminated string. I expect
no conflicts in this particular area.

6) L’x’ == ’x’ where x is any member of the basic C character set.

It seems only sensible to provide a simple mapping for all the members of
the basic C character set. Each must be representable as a single-character
multibyte sequence (at least in the initial shift state). Each must also have a
representation as a wide character. What better code value for a wide character
than its value as a single character?
Of course, reason and standards often maintain only a loose acquaintance.

It helps that the principle Kanji wide-character encodings obey this rule. But
it also turns out that the constraint is rather necessary at the moment.
When I implemented the Standard C library1 last year, I faced a problem.

I could see no clear way to scan the format strings for the print and scan
functions, such as printf and scanf. The C Standard requires that a format
string be a multibyte string. The string begins and ends in the initial shift state
(if shift states matter). It can contain embedded conversion specifications, each
beginning with a per cent character ’%’.
Obviously, you must use mbtowc or mbstowcs to parse the format string.

Either of those functions gives you the sequence of wide characters correspond-
ing to the multibyte string. How do you know when you encounter a per cent?
Just compare each wide character against L’%’. That part is easy.
Scan formats give special meaning to sequences of white space, however.

That means you must be able to spot a white space character in its wide char-
acter form. Any character for which isspace returns nonzero in the current
locale is a legitimate white space character. But, you cannot contrive a corre-
sponding list of wide-character constants ahead of time.
The solution I arrived at is to test each format wide character wc, as in:

1The Standard C Library, Prentice Hall, 1992, by P.J. Plauger.
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if (wc <= UCHAR_MAX && isspace(wc))
/* must be white space */

For this code to be portable across all locales requires an even stronger
statement than the one I made above. The constraint L’x’ == ’x’ must apply
for any single-character multibyte sequence. That is a superset of the basic
C character set. X3J11 may have failed to say this explicitly, but I believe that
is what we meant. I also believe it is what we have to say.
Unfortunately, others disagree. I alluded earlier to a clash between the

C Standard and the proposed ISO 10646 code set. Seems that ISO 10646 can
represent all characters as four-byte sequences. The proposed way to represent,
say, the letter ’a’ is with three spaces followed by the code for ’a’. That is in
conflict with the C Standard in two different ways:

• In any multibyte code, ’a’ should be represented as a single character,
at least in the initial shift state.

• In any wide-character code, L’a’ should have the same value as ’a’.

Those proposing various codes for large character sets haven’t been clear
about how they are to be used, or so I believe. The distinction between multi-
byte codes and wide-character codes is better appreciated among C program-
mers. Even the possibility of various shift states in multibyte codes is not widely
appreciated.
Hence, it is not always clear how X3J11 should respond to a claimed conflict.

We could argue various ways:

• Three spaces followed by ’a’ is a fine way to represent ’a’ as a multibyte
sequence not in the initial shift state. C simply requires another way to
write ’a’ in the initial shift state (simply as ’a’).

• A wide-character code is an internal matter to a C program. Try to write
multibyte integers with one program and read them with another and you
encounter all sorts of byte ordering problems. Thus, it is inappropriate
to complain that L’a’ doesn’t fit this code scheme.

I depend heavily on this second argument in The Standard C Library. The
functions that map between multibyte sequences and wide characters can handle
only a limited degree of mapping. They must have license to define the internal
codes for wide characters.
We discussed a response to this conflict with the proposed ISO 10646 code

at the March 1991 meeting of WG14 in Tokyo. The response is now largely
academic, however. In the interim, that proposal has been voted down within
SC22. Taking its place is UNICODE, a large character set with the active
backing of many in industry.
And that brings us to the last constraint.
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7) The null character can appear only as the first and only character
in a multibyte character sequence.

If you like null-terminated strings in C, you have to like this constraint. Ba-
sically, it promises that multibyte strings can also be treated simply as null-
terminated strings for many purposes. You need not parse the string into
separate multibyte sequences. The first null you encounter is the null character
that terminates the entire string. Thus, you can use many existing functions,
and techniques, for manipulating multibyte strings much of the time.
Unfortunately, UNICODE violates this rule—when used as a multibyte code,

that is. The code for letter ’a’, for example, is three null characters followed
by the code for ’a’. That makes it a wonderful candidate for a wide-character
code. Sadly, that’s not how its proponents seem to be promoting it. The issue
came up before the SC22 plenary in Vienna in October 1991. Tom Plum and
Keld Simonsen represented WG14 at that meeting. Both the C and POSIX
folk urged that the current structure of UNICODE be reconsidered if it is to
be used as a multibyte code.
I am told that the reception was not cordial. The prevailing attitude seems

to be that C is just one language, and a rather old one at that. C programmers
should learn new techniques for manipulating text strings. That’s better than
altering a universal character set for just one peculiar pattern of usage. I believe
differently. From my perspective, the C community has much to teach the rest
of the world about manipulating text. We certainly pioneered a new and very
powerful approach to the subject. We deserve to be heard on a subject that we
have handled so well.

Conclusion

None of the clashes between C and character set standards is a life or death
issue. In the past, we have solved them by drawing clearer boundaries between
jurisdictions. Our job for the present and immediate future is to draw additional
boundaries. It is also to participate in the formation of standards that are still
malleable. An important part of this participation is to share what we know
about manipulating encoded text. We have done a lot with very few constraints.
We can all learn to live with embedded nulls. When we manipulate arbitrary

binary data, we already do. But we also know how convenient it can be to use
null terminators when it is safe to do so. It would be a shame if we were to lose
a useful programming practice simply because we failed to educate others.

P.J. Plauger serves as secretary of X3J11, convenor of the ISO C working
group WG14, and Technical Editor of The Journal of C Language Translation.
His latest book, The Standard C Library, is available from Prentice-Hall. He
can be reached at uunet!plauger!pjp.
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19. Parasol: A C-Based Systems Programming
Language, Part I

Bob Jervis
17645 Via Sereno

Monte Sereno, CA 95030

Abstract

This paper discusses a new systems programming language called Parasol
that is derived from C. New features are described including support
for incremental compilation, object-oriented programming, and parallel
programming. Each feature is compared with C, and a description is
given as to why that feature was adopted.

Introduction

Parasol (Parallel Systems Object Language) is a new systems programming
language designed to keep much of the original flavor of C while incorporating
parallel and object-oriented features and some changed syntax. This article
describes the syntax changes, why they were made, and the implications for
clarity, compatibility, and compilation techniques.
I began the design of Parasol in 1989 with three goals in mind: add simple

object-oriented extensions, make incremental compilation easier and preserve
the efficiency of generated code. You might have seen information about this
language under the name of OPAL, but as that name was already being used
for another language, my language has been renamed Parasol. Earlier this year
I reviewed the project and concluded that for Parasol to be successful, it must
anticipate the needs of future hardware. As a result I added a fourth goal of
including simple parallel programming constructs.
I have implemented a compiler targeted to generate 32-bit Intel 80386 code.

Using this compiler I have created a network operating system, called ALYS,
and over thirty application programs written in Parasol. Altogether over 60,000
lines of code have been written using Parasol. I am now finishing a new version
of the compiler that incorporates the latest parallel additions to the language.
Upward-compatibility with existing C code was never a strong considera-

tion. This was intended at first to be a research project, so I was free to make
whatever changes were needed to simplify my work. Many of the changes I
made were also motivated by the desire to combine some of the best features of

177
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other languages that have emerged in the last twenty years. Even though pre-
serving code was not important, I did take into consideration how programmers
might feel about a change or feature. I do want Parasol to find an audience
and, with luck, a user community.
One of my original thoughts was to use Parasol to learn how to do a powerful

incremental C development environment. If Parasol drifted too far from C, then
any lessons I learned would have no value when I transferred them back to C.
For example, I toyed with the idea of doing a bytecode interpreter for Parasol.
I ruled that out because I wanted an incremental environment that (like a
C compiler) generated production quality code.
As time has gone by Parasol has drifted from C. As I worked more and

more on the problems of object-oriented programming, and as I recognized the
coming importance of parallel programming, it became clear to me that C was
not the best base to work from. Parasol is now a language that is addressing a
very different hardware environment than C was intended to use.
Like C, Parasol is still primarily a systems programming language. I can

see that there is real potential for making Parasol a good scientific language
as well, but that is a secondary concern. A programming language cannot be
everything to everyone. While I have made some changes that improve the ease
of writing scientific programs in Parasol, I must leave to someone else most of
the problems of creating high quality math libraries or adding extensions such
as complex arithmetic.

Incremental Compilation

Incremental compilation is an easy technique to describe. An incremental com-
piler stores intermediate results of a compile session to avoid work in future
compiles. Traditional compilers use incremental techniques. Object files are a
good example of intermediate information that helps avoid work. Only those
sources that were actually changed (or that included headers that were changed)
need to be recompiled. Almost all C compilers therefore use some incremental
compilation techniques.
The term incremental compilation is usually reserved, however, to describe

a compiler that keeps enough information around to be able to detect changes
to a fine degree of granularity. Instant C2 is an example of a compiler capable of
detecting changes to individual functions and rebuilding only what is necessary.
I believe that incremental compilation techniques can be used in a very

efficient programming language. To guide my work, I have used a goal of one
second turn-around after changing the body of a function before the program is
rebuilt. So far, I have been able to build a test compiler that rebuilds a sizable
program in a few seconds.
I have been extremely surprised at how difficult it has proved to produce a

stable incremental compiler. The information contained in a Parasol program,
2Instant C, from Rational Systems, is a C development system for DOS-based PCs.
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like that in a C program, is quite extensive. What makes it so difficult is
the important role that type plays. Since the type of an object can change
independently of the code that uses the object, changes in a declaration must
be propagated to all affected code. In an incremental compiler, you want to be
sure that you minimize the amount of unaffected code that gets rebuilt as well.
Devising a procedure that is correct, fast, and doesn’t waste large amounts of
memory is very difficult.
C was designed to be compiled module by module. Languages like Pascal

or Algol that had no provision for modules were intrinsically limited. Para-
sol incorporates a number of changes that were intended to make incremental
compilation easier.

The C Preprocessor and Parasol

I decided, almost from the beginning, that Parasol would not have a prepro-
cessor. I felt that implementing one would have a significant impact on the
complexity of the compiler. Having written a preprocessor that was integrated
into a C compiler, I thought an incremental preprocessor would be extremely
difficult to implement in full generality.
Used in a limited and well-structured way, the preprocessor is not a crushing

problem. However, a compiler must support any valid use of the preprocessor,
and valid uses of macros and even headers allow for all sorts of constructions
that obscure the true structure of a C program.
I decided that if I ever wanted to do a full incremental C compiler, I could

tackle the preprocessor after I understood all the other problems of incremental
compilation.
Inline functions, enumerators, and compile-time constant objects in Parasol

replace many of the “legitimate” uses of the preprocessor. There remain at least
two reasonable uses that I have not replaced: short-hand macros for complicated
static initializers (e.g., for large reference tables), and conditional compilation.
The use of macros in initializers can sometimes be replaced with runtime

initialization using function calls, but that somehow seems inefficient. Below I
will discuss the issue of initializers in more depth.
Conditional compilation within a function body can be expressed (though

with some loss in flexibility) by the use of if statements with constant test
expressions. Of course, it may be difficult to detect whether the test is intended
to be a constant or not. If you accidentally code a test that is always true (like
comparing a character variable with a large constant), the compiler should
warn you about it. But, if you intend to conditionalize some code, the warning
shouldn’t be given. How do you tell the cases apart in general?
A significant use of conditional compilation is in removing unneeded mem-

bers from structures or in configuring the types of variables depending on en-
vironmental considerations, and if statements can’t help these cases.
In production shops, code becomes progressively more conditionalized as

maintenance continues. Clearly, if Parasol is to be used in such environments,
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conditional compilation must be reintroduced. Whatever syntax is used, there
are certain semantic issues that must be addressed. The C preprocessor avoids
certain problems by simply mandating that conditionalized code is processed
from top to bottom. The order that you compile modules doesn’t affect how
each module is conditionalized.
In Parasol the constants used to conditionalize code are embedded in the

same code that is being conditionalized. The order in which code is compiled
may affect the results. Let us look at an example in C:

/* Header A */

#ifdef X
#define Z 0
#endif
#define Y

/* Header B */

#ifdef Y
#define Z 1
#endif
#define X

The value of Z is different depending on which header is included first. Para-
sol doesn’t have headers, but public constants allow for an equivalent situation
to be constructed. In C, you control the order of headers, but in Parasol the
order of units is deliberately left unspecified.

Parasol Program Source Entry

One of the early decisions taken in the design of Parasol related to the issue
of incremental compilation. I had to decide whether Parasol programs were to
be written in the form of text files or whether some sort of structured program
entry was to be used. If you want to do incremental compilation, a structured
approach makes many operations easy. For example, detecting where changes
have been made within a large program becomes much easier.
When you want to rearrange the order of declarations in a source file, add

a new declaration, delete an old one, or change the name, type, or initializer
of a declaration the compiler can in a structured environment demand that
you specify exactly which operation you are performing. With text files, the
compiler must guess what happened.
On the other hand, by using text files rather than a structured environment,

there would be a better chance that a more traditional Parasol compiler could
be constructed. Using text files also would allow programmers to use their
favorite text editor to prepare a program.
There was also a bootstrapping problem. Since I wanted to have the Parasol
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compiler written in Parasol, I needed some version of the language available
as quickly as possible. This first compiler would have to be written in C. I
decided that it would be easier if I built a conventional compiler structured
like a C compiler (which I understood very well), but with a Parasol parser.
In fact, the first Parasol compiler used a C runtime library with only slight
modifications and linked using a conventional linker.

Units

Parasol programs are divided into units . Each unit is equivalent to a C module,
with a single source file acting as the equivalent of a .c file. Parasol incorpo-
rates an include statement that is approximately equivalent to C’s #include
directive.
Parasol units differ from C modules in a few respects. In C, the programmer

creates headers separate from the C source files. Typically, declarations of
structures and manifest constants are placed in the headers while functions
are placed in the main source files. In programs written using Standard C,
prototypes for functions are placed in headers to provide compile-time checking
of function calls. If a function returns an int in C, and the programmer doesn’t
care about argument type checking, a function doesn’t need any declaration at
all.
In Parasol, structure, constant, and function declarations are all placed in

the unit source file. Any symbols declared to be public in one unit will be
available to any unit that explicitly includes it.
In C, there is no fixed relation between a header file and the various modules

of a program. It is possible to combine the function prototypes for several
modules into a single header, or even to include explicit extern declarations
in a module source file itself. C compilers almost always use a separate linker
(which is used to link assembly languagemodules as well). Any extern reference
can be resolved by a public symbol defined in any module.
The separate link phase means that extern references can be generated to

non-existent (or misspelled) functions and objects. These linkers typically do
not check that the types of the references and definitions match. Of course,
C++ uses name mangling as a way to avoid this sort of error, but C compilers
usually don’t mangle names. As a result, link-time errors are a significant source
of problems in C programs. The addition of prototypes in Standard C has gone
a long way towards locating such problems.
Parasol simply does not have link-time errors. As a Parasol unit is compiled,

the actual declarations of public symbols are used to check the validity of ref-
erences. Separate function prototypes do not exist in Parasol—the information
is derived directly from the function definition itself.
Other languages that use units, like Modula-2, distinguish between the in-

terface part and the implementation part of a unit. This allows a Modula-2
compiler simply to scan the first half of a module source to locate the interface
definitions. Parasol units, on the other hand, are not so divided. A programmer
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simply writes the object, type, constant, and function definitions for a unit in
whatever order seems logical. The Parasol compiler then scans the entire source
to extract the interface information.
The unit structure of Parasol programs has a profound impact on how a

Parasol compiler must be constructed. I had decided that since memory was
cheap, I would compile a Parasol program entirely in core. As I designed how
units were to work, the desire to compile everything in core became transformed
into necessity. In pathological cases, it may be necessary to load the symbol
table for every unit in a program in order to finish compiling a single unit, even
if they all weren’t explicitly included.
Let me explain this last point a little more carefully. While it is mostly

true that public symbols are only available if they are included, there are ways
that information can migrate from units that were not explicitly included. This
state of affairs came about as the language and compiler evolved.
When I first implemented units in Parasol, the compiler didn’t build ev-

erything in memory and had to load unit symbol table files as needed. This
compiler only loaded symbol table information for units appearing in include
statements. This led to some interesting problems as I began converting the
Parasol compiler from C to Parasol.
The following (written using pseudo-C syntax so it will be easier to recognize

what is going on) occurred in the compiler source:

/* Unit a */

typedef struct {
char *name;

} symbol;

/* Unit b */

include a;

symbol *Function;

/* Unit c */

include b;
include a; // needed in the early compiler

f()
{

printf("%s\n", Function->name);
}

In unit c, the function f needs to refer to a member of the global variable
Function. Since the name member is defined in unit a, the early Parasol com-
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piler required that unit a be included to refer to it. While there might be some
justification for this example, it seems rather awkward. It also undermines the
encapsulation of Function. In order to use the variable Function, you need to
know not only where it is defined, but some detail about how it is defined. If
you were to change the location of the definition of the symbol type, you would
have to change the include statement in unit c.
When inheritance was added to the compiler, the problem of encapsulation

became even more acute. Suppose in the above example, the name member
was not defined with symbol at all, but inherited from some base type defined
elsewhere. Now, you would have to know intimate details of the type hierarchy.
Such a situation would be very inconvenient and would make documenting
interfaces fairly cumbersome. Changes to the type hierarchy might affect what
units you have to include, even though the changes are not directly related to
the code in unit c itself.
I changed the specification of Parasol so that when you refer to structures,

you only need to include the unit defining the object you are using. The
structure member definitions are extracted from whatever additional units are
needed.
Another aspect of the unit structure had to be changed as I gained ex-

perience with converting the Parasol compiler. The early versions of Parasol
prohibited units from mutually including each other. If you think of the units of
a Parasol program as forming a graph, with the units acting as nodes and each
include statement acting as an edge from the includer to the included unit, the
original language specification required that the unit graph be acyclic. This
meant that the compiler could systematically compile each unit completely,
before proceeding to the next unit. An acyclic graph guaranteed that a compi-
lation order could be found that built the program correctly.
This rule proved to be something of a limitation. For example, any compiler

has a very complex internal structure in its symbol table. I tried to divide the
code of the compiler so that one module dealt with symbol records, another with
type records, and so on. The problem was that these various records pointed
to each other in a tangled web of lists and back-pointers.
The only ways to write these definitions in Parasol interfered with a modular

decomposition of the compiler. Two structures within the same module could
point to one another because the compiler deferred resolving the first pointer
encountered until the whole module was parsed and the second structure was
found. Not so if the two structures were located in different units. One unit
must be compiled to completion before the other. The first unit to be compiled
could, of course, use a void pointer to store the link to the second structure,
but that is a very poor solution to the problem.
By combining the declarations of the various symbol table records into a

single unit, I was able to use typed pointers on all links. The modules that
were responsible for each separate record still existed and they simply included
the data structure unit. Unfortunately, this was not a very satisfactory solution
from the perspective of object-oriented programming. One design issue that I
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felt very strongly about was that methods should be defined within the body
of the type to which they belonged. Making the Parasol symbol table object-
oriented meant that the one data structure unit would have to be stuffed with
nearly two dozen types, each with multiple methods. Since I generally dislike
large source files, this was disappointing.
As I progressed in converting the compiler, I found still more problems.

The Parasol parser I had written was a recursive descent parser in C that
spanned several C modules. Just as in a C compiler, in Parasol there are
several places where the parser uses recursion, for example, to describe array
bounds expressions embedded in a declaration. The declaration itself could be
embedded in a cast expression.
Since these parsing modules were large already, I didn’t want to merge them

together into a mega-unit. Instead, I introduced a couple of function pointers
into some low-level units. At program start-up, these pointers were initialized
to point to the parser entry points that I couldn’t refer to directly. Again, this
solution seemed very bad. Recursion is a valuable concept to describe certain
kinds of problems (such as parsing) and it seemed that the unit structure was
getting in the way of the natural way to write the program.
As a result of these experiences, I have further relaxed the specification of

Parasol so that units can include each other in arbitrary ways. Cycles can
occur in the include graph and the compiler simply must cope with them. Of
course, there are cycles of references that are still disallowed. For example, the
following is invalid whether the definitions are in one unit or two:

struct a {
struct b b_member;

};

struct b {
struct a a_member;

};

These are invalid in C as well—it is impossible to determine a size for the
two structures.
The changes I have made in units as Parasol has evolved have been designed

to reinforce the primary role of units, while reducing unwanted side-effects.
Units exist lexically to encapsulate parts of a program. You should not be
constrained in how your program executes because of unit boundaries. Your
choice of data structures also should not significantly impact how you draw unit
boundaries.
In many discussions of object-oriented programming, modules and units do

not play a significant role. The type or class hierarchy is given center stage.
While that may serve some needs, I believe the use of modules remains an
effective tool in decomposing a large problem into manageable pieces and in
minimizing the hidden interactions among those pieces.
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Object-oriented languages like SmallTalk use the class as the encapsulation
boundary. All classes then exist within a single flat name space. In Parasol,
within a unit it is possible to define supporting types and static objects that
are invisible outside the unit.
You can define, for example, a queue type that consists of a queue head

and separate queue items as distinct structures. In Parasol, you can make the
queue head structure be the visible type, and all queue operations are executed
by calling methods in that structure. The queue item structure is known only
within the queue unit itself.

Lexical Differences

Parasol and C accept virtually the same set of tokens. Parasol defines some
new keywords, but otherwise there are few differences. Parasol does allow C++
style single-line comments.

Declarations

The most obvious difference between C and Parasol is in the syntax of decla-
rations. Unlike C, where storage class and type information can be intermixed,
in Parasol a declaration has a specific order to each of its elements. Parasol
declaration syntax is similar in some ways to Pascal. Let’s look at a simple
example:
In C:

int x;

In Parasol:

x: int;

In this example, x is declared to be an integer. In Parasol, the variable name
always occurs first followed by a colon. That much is like Pascal, although,
unlike Pascal, only one variable can be declared in each declaration.
A more complicated example will reveal the range of information in a Parasol

declaration. Let us assume that you wish to declare a global named type called
funcptr, of type “pointer to function returning pointer to int.” Assume the
function accepts one parameter of type double.
In C:

typedef int *(*funcptr)(double);

In Parasol:

funcptr: public type ref (double) ref int;
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Let us examine the Parasol declaration more closely. The name being de-
clared comes first and is set off from the rest of the declaration. Next is the
keyword public. In Parasol an identifier is local to its scope unless explicitly
declared to be public. The keyword type is a storage-class specifier that is
equivalent to typedef in C. The remainder of the declaration is the type. The
ref keyword declares a pointer type. This whole type is read as “pointer to
function accepting one double argument and returning a pointer to an int.”
Note that the ref keyword corresponds to the C asterisk (*) in declarations.

This was changed because of ambiguities in cast expressions. The current Para-
sol compiler will accept an asterisk as a synonym for ref in declarations where
the meaning is unambiguous. I have not tried implementing this syntax using
a parser generator, but I suspect it isn’t all that hard to get right.
You never need to use qualifying parentheses in Parasol type declarators be-

cause types are always read from left to right. This change profoundly simplified
the parser for Parasol, compared to a parser for C. Function declarations must
always declare their arguments, so empty parentheses mean a function that ac-
cepts no arguments. By not supporting old and new style function declarators
and using simple left-to-right grammar rules, parsing a Parasol declaration is
extremely straightforward.
It happens that searching for a declaration in Parasol source is fairly easy.

If you never put space between the identifier and the colon, you can search for
the identifier followed by a colon and find the declaration almost immediately.
Only one identifier can be defined in each declaration. This limitation turns

out to be less of a burden than it might at first appear. A style of programming
in C already is commonplace in which each variable or structure member is
declared on a separate line anyway, with an accompanying comment describing
the variable. However, as many C programmers declare local variables using
the notation int i, j, k; I may add a similar capability to Parasol.
I limited declarations to a single identifier in part because of an early ap-

proach I was taking to incremental compilation. The concept was that in parsing
a source file, each identifier would have a single contiguous stretch of source text
that uniquely described it. In that way, a smart editor could track changes as
they are made and report which identifiers were affected by an edit session. It
turned out that I didn’t, in fact, build such an editor. The cost of re-parsing a
source file and comparing the resulting declarations turned out to be less than I
initially anticipated. I may yet implement the editor tracking of source, because
in very large sources the re-parsing could become slow.

Scopes

One of the principles I wanted to establish in Parasol was that the order of
declarations in the source should never matter. I wanted this so that you
could reorder the declarations in a file without having to rebuild anything. As
a result, Parasol does not allow nor need forward declarations at all. Each
identifier within a scope is declared exactly once.
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The scope of a declaration always extends from the beginning of the scope
itself, not from the point of the declaration. It is just as valid to declare all
of your variables at the bottom of a block as at the top. The only issue to
remember is that an initializer for an automatic variable is executed at the
point of the declaration, even if the variable is referenced before that point in
the block. This remains consistent with the notion in C that an automatic
initializer is just short-hand for an assignment statement.
In order to keep processing of goto labels in line with other scope rules,

I adopted the rule that goto labels have block scope just like any other local
identifier. Since the compiler has to handle forward references to other identi-
fiers, this didn’t present much of a problem. One consequence of this new scope
rule is that goto’s cannot jump into an inner block.
An interesting point here for implementors is that the new scope rules did

more to change the large-scale structure of the Parasol compiler than all the
changes to the declaration syntax. Syntax changes affected only the front-end
parsing code and did not change how any of the later stages of processing were
done. By comparison, the new scope rules not only forced changes in the cast
expression syntax, they also affected how the compile process is divided into
phases.
In a C compiler it is possible to do full type attribution as expressions are

parsed. This is not possible in a Parasol compiler, since any identifier may
be a forward reference to a later declaration in the block. A C compiler can
be written to be a single pass compiler, emitting most code almost as each
expression is parsed. It is sufficient to read a single function definition at a
time to be able to generate extremely optimized C code.
In Parasol, code cannot be generated for a function until all the units of

a program have been parsed. Parasol compilers will have to make at least
two passes over the source. The first pass accumulates the public information
for export between units and the second pass generates code. Some private
declarations may be parsed and retained in the symbol tables for the second
pass. By recording where the function bodies are located, it is possible to avoid
rescanning the entire source during the second pass. By keeping the source in
core, the extra scanning is reasonably fast.

Casts

In C, a cast has the type enclosed in parentheses in front of its operand. This
means that when the compiler encounters any left parenthesis in an expression,
it must examine the next token to decide what to do. If the next token is a
type keyword, it is obvious that the parenthesis must begin a cast. When a
simple identifier appears, the compiler must check the meaning of the identifier
to see if it is a type name. In Parasol, the scope rules make it impossible to
determine what identifiers are type names until the entire source is parsed.
Since you get a very different result depending on whether a parenthesis

begins a cast or a subexpression, I had to change the cast syntax. In Parasol,
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casts are written like function calls (as they are in C++). For example:
In C:

y = (int)x; /* cast x to int type */

In Parasol:

y = int(x); // cast x to int type

The Parasol compiler defers deciding whether this statement is a call or a
cast until it can determine the type of int (in Parasol the standard types are
not keywords, but are type names like user defined type names).
To cast to a pointer, use the following syntax:

y = ref char(x);

This code casts x to pointer to char type. Here the compiler can determine
unambiguously that this is a cast (since ref is a keyword).

Visibility

For all scopes, each declared symbol has a visibility. Parasol defines three kinds
of visibility: public, visible, and private. Public symbols can be read and written
from any code that can reach the symbol. For example, a public function is
reachable by any unit that includes it. A public structure member is reachable
through any instance of the structure, using an arrow or dot operator.
Visible objects can be read, but not written outside the scope of definition.

Thus a visible static variable in some unit may be changed by functions in the
same unit, but not by functions outside the unit. Of course, you could return
a pointer to the object and use the pointer to modify the object. The compiler
will only check references that use the variable name itself.
A private object cannot be seen outside the scope of definition. For example,

all automatic variables are private (for practical as well as syntactic reasons).
Private declarations at unit scope are equivalent to C static functions and
objects.
In Parasol, all objects are private (even structure members) unless they are

explicitly declared otherwise. This is the opposite of C, where all structure
members are public and all functions are global unless declared static. I felt
that the default behavior of C was contrary to the principles of encapsulation.
The public interface to a unit or object should be consciously determined, rather
than simply arrived at by default.
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Name Spaces

Unlike C, Parasol has no notion of separate name spaces. Parasol has no struc-
ture or union tags and no preprocessor macros. Structure members are not
separated into their own name space. The only C name space that could be
maintained is the goto-label name space. I decided that goto labels were not
important enough to deserve a separate name space, so all identifiers must be
unique within their scope of definition.
And unlike C, structure members are not in a separate name space; they are

in a different scope. It is important to remember that with the object-oriented
extensions, functions can appear within a structure definition. Those functions
can use the structure member names as plain identifiers, as if they were simple
variables. The next section will describe how the compiler determines which
object’s members are being referred to.
Name spaces arose in C because there were several distinct syntactic contexts

that made it possible to distinguish which name space was needed, without
reference to scope. In Parasol, the structure tag and macro name spaces have
disappeared. The member name space in C originated in the days when you
could use simple integers or character pointers on the left side of a dot or
arrow operator. In those days, each member name had to be unique across all
structures. The only exception was made for members that had the same type
and offset.
When C converted to stricter rules of usage for member names and for the

arrow and dot operators, the member name space was no longer needed. The
context of the structure type appearing on the left hand side of the reference
operator determined the structure of which the member had to be a part. Mem-
ber names could not appear in any other way in an expression. The notion of
a member name space was retained as much as anything to remind one that
member names were a separate kind of identifier.
While it is conceivable that an algorithm could be written that exploits

C’s permissiveness about goto labels, the general response I’ve gotten when
people have heard this new rule for Parasol is that it is perfectly fine. goto’s
are such pariahs among C programmers anyway that restrictions on their use
aren’t terribly onerous.

Program Startup and Shutdown

C programs (in a hosted implementation) always begin execution at a function
called main. If third-party libraries need special initialization, a function must
be called at the beginning of main to accomplish this. The programmer must be
aware of the need for initialization and must add the call. If several subsystems
of the library are included, and each need initialization, the programmer must
again be aware of which initializations must be done and in what order.
Many C implementations use assembly language code to map the operating

system interface onto the interface for main. That assembly code often includes
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tricks to properly initialize elements of the standard library.
The standard C library supplies the atexit function to provide the con-

verse service of functions called to clean up libraries and programmer-supplied
modules.
In Parasol I decided to provide a formal mechanism for scheduling initializa-

tion and cleanup functions without the need for explicit calls. Parasol defines
two keywords entry and cleanup which act as storage-class modifiers on func-
tions. These functions have no restrictions on their names and they do not have
to be public.
Entry functions take no arguments and return no value. They are executed

in a specific sequence determined by the pattern of includes in the various units
of a program. The general rule is that the entry functions of a given unit are
executed after the entry functions of all units it includes. This way, library
units will execute their initialization code before the program units execute.
When building a program the programmer designates one of the units as the

project unit, which serves conceptually as the top level module of the program.
The top level project unit should contain an entry function that acts as the
equivalent of main in C programs.
Cleanup functions are called from within the exit function, much like the

atexit functions of C. Cleanup functions are called in the reverse order of the
entry functions, so that program units can clean up before the library units
they include. Since any entry function can lead to a call to exit, an early
abort cannot safely execute all the cleanup functions. The rule here is that
if a given entry function either directly or indirectly calls exit, all cleanup
functions in included units are executed. Only those cleanup functions in the
current unit that lexically precede the currently running entry function will be
executed. This is an exception to the rule that lexical order of declarations
does not matter. Practically speaking, this isn’t much of an issue because most
entry functions cannot lead to a call to exit and cleanup functions are not
commonplace.
Cleanup functions are unlike atexit functions in that they accept one inte-

ger argument and return an integer value. The argument and return value are
the exit code. This way, a cleanup function can choose, for example, to delete
output files when exit was called with a non-zero exit code. Cleanup functions
can also change the exit code, but such a practice should be followed with care
since the exact order of execution is not completely controllable. Some cleanup
functions will be called with the original exit code and others will not.
Cycles in the included units create a problem for scheduling of entry and

cleanup functions. Currently entry and cleanup functions can appear in cycles,
but the order of execution among the units in a cycle is unspecified. This is
not a very satisfactory state of affairs. My experience has been that subtle
changes in the layout of the program, adding a unit for example, can alter the
execution order and that dependencies between entry functions, and can cause
some pretty nasty bugs.
One Draconian solution would be to prohibit entry and cleanup functions
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within a cycle. In fact, as long as only one unit in the cycle contains entry
and cleanup functions there are no ordering problems. There is great value in
placing initialization code in entry functions lexically associated with what they
initialize. Since cycles are a necessary reality for large programs, it would be
nice to be able to reliably include initialization code there.
I am currently exploring a design that would schedule entry and cleanup code

based on the actual references in the functions themselves. That way, unless
the initialization code involved some nasty cycle of calls, the compiler could
resolve a satisfactory execution order. This becomes particularly important
if I add the ability to use non-constant initializers on static storage duration
objects. In effect, a non-constant initializer is a tiny entry function. Since a
casual inspection of source code would not reveal which initializers are constant,
it may be difficult for the programmer to know whether there is a potential
sequencing problem.

Object-oriented Extensions

Parasol includes a set of simple object-oriented extensions. In Parasol, object-
oriented extensions affect structures and unions. Structures in Parasol are
equivalent to a class in other object-oriented languages. In this regard Parasol
is similar to C++.
The following is a sample declaration of a structure in Parasol:

stream: public type {
public:
flags: flagValues;
bufferSize: unsigned;
buffer: ref unsignedChar;
ungetByte: unsignedChar;
curp: ref unsignedChar;
endp: ref unsignedChar;

};

This is modified slightly from the stream type in the file I/O unit of the
standard library. A Parasol stream object is equivalent to a C FILE object.
In this case, stream is defined as a public type symbol (a C typedef). Note
that the left brace is sufficient to declare the start of a structure. The several
members above are all public (because of the first line inside the body of the
structure). The flagValues type is another typedef used for specifying status
bits. The ref unsignedChar types are pointers.
Using the visibility specifier at the top of the structure makes this declaration

exactly equivalent to the following C declaration:
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typedef struct {
flagValues flags;
unsigned bufferSize;
unsigned char *buffer;
unsigned char ungetByte;
unsigned char *curp;
unsigned char *endp;

} stream;

Structures and unions in Parasol are very similar to those found in C. In
Parasol, in addition to normal structures there are also packed structures and
structures that inherit from some other type. For all structures, as in C, the
members are assigned to some contiguous set of locations. Padding of some
number of bits or bytes may be inserted at various places to make access to
members more efficient. Most modern computers take advantage of aligned
data objects.
In the above example of the stream structure object, a C compiler may

choose to force alignment for all objects so that padding would probably be
inserted after the flagsmember (assuming it is just a byte) and the ungetByte
member. Even more latitude is allowed in Parasol. A Parasol compiler is free to
rearrange the physical order of the members in order to minimize the padding
needed.
In Parasol, packed structures are used to specify externally defined data

layouts. By adding the keyword packed before {, the compiler is instructed to
maintain the order of the members as declared and also to supply the absolute
minimum packing deemed reasonable. In the existing Parasol compiler, packed
structures are never padded except for a few special cases involving bit fields.
This permission to add padding allows compilers, for example, not to have to
generate code to do shift and mask operations in orderto access floating-point
members.

Inheritance

Parasol supports single inheritance. When you define a structure you can desig-
nate that the structure inherits from some other, non-function type. The newly
derived structure is called a subtype. The type it immediately inherits from is
called its supertype. The types inherited from either directly or indirectly are
called base types . Since several subtypes can be derived from a common super-
type, the collection of related types form a tree. The tree of related types is
called a type hierarchy. The term class is sometimes used to mean a structure
type, with subclass and superclass used as well.
Parasol allows you to use any type as a supertype. In practice if there is

any type inherited it is usually another structure.
The default conversion rules of Parasol allow an rvalue to be converted from

structure type to a scalar base type if needed in an expression. For example, a
structure with a base type of int can appear as an operand of the + operator.
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However, you cannot assign an integer expression to such a structure, because
lvalues are not so converted. This capability is mostly used in the string object
type of the standard library which inherits from pointer to character type.
Parasol does not support multiple inheritance. (This is the capability to

define several direct supertypes for a single derived type.) Multiple inheritance
certainly makes the compiler more complicated and also introduces some code
overhead. I have yet to encounter a problem where the benefits of multiple
inheritance outweigh the costs.
Inheritance has been touted as a way to re-use code, but my experience has

indicated that code re-use is only a side-effect. The primary role that inheritance
plays in the standard libraries and in many of the Parasol programs that I have
written is as a mechanism for defining abstract data types. An abstract data
type defines a set of functions on the type, but those functions have trivial
implementations in that type. Usually, the implementation returns some error
or simple default value. The power of abstract data types comes when subtypes
are defined that inherit the interface of the base type. The collection of subtypes
use the same interface but introduce their own specialized behavior.
For example, in the standard library the viewer type is an abstract type

that defines generalized behavior for any interactive window in the display sub-
system. Editors, menus, and data entry forms are all subtypes of the general
viewer type. For another example, in the ALYS operating system device drivers
are subtypes of several basic device types. Network interfaces, disk drives, and
communications lines are each represented by an abstract data type. Each spe-
cific piece of hardware uses a driver that inherits one of the core driver types.
Code that must use a viewer or a device driver need only know the interface
for the base type. The details of internal implementation is left to the specific
subtype involved.
An important point about inheritance is that the power of abstract data

types can only be achieved through a capability called polymorphism. Poly-
morphism is the ability of an object to respond to generic interface functions
with behavior that is specific to the object itself.
In Standard C, the equivalent functionality that polymorphic objects supply

is frequently accomplished using switch statements. Where in Parasol you
write a simple call to a polymorphic function, in C you might write a switch
statement with each case being the body of one of the separate functions one
might find in the Parasol program. Occasionally, function pointers are used
in C code to provide similar functionality. Most of the time, though, function
pointers in C are used for simple call-back situations like qsort.
Especially when the function bodies are copied into a switch statement,

the C switch statement is usually faster than the indirect calls that Parasol
uses. The timing difference is fairly small, however. I have not seen a program
whose overall timing was noticeably affected by converting switch statements
to polypmorphic calls. Why then does Parasol promote using polymorphism
over the conventional approaches C programs have taken?
In a C program written with switches, one finds more or less the same
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switch statement in numerous places. The kinds of maintenance changes that
most often occur usually involve adding a new case. In a C program, each
switch statement must be examined and code must be added to some of them.
Complicating matters is the fact that sometimes the switch statement is con-
solidated into a simple if statement when the cases are simple enough. Just
finding all the places that are affected by adding a new case can be daunting.
In a Parasol program, each case is represented by a subtype. Adding a new

case involves adding a single new type definition with all of the code for each
of the places where C would have had a switch statement now written as a
function. Of course, in the situation where a change would have involved a new
switch statement in a C program, in the Parasol program one must add a new
function to each affected type. Where the switch statement was added at a
single place in the C program, the Parasol functions must be added in a number
of different places.
In any procedural language there will be changes that are expressible as a

single chunk of code and there are changes that must be written as distinct
chunks scattered around the program. How you write your program and what
features your language has will naturally influence exactly what changes are
easy and what are hard.
I certainly do not have statistical studies to back up any claims I might

make. So consider what I have to say as anecdotal evidence. My experience is
that polymorphic objects tend to have more coherent behavior and changes are
somewhat easier on balance than with conventional C approaches.
I will also say one more thing. Learning object-oriented programming after

knowing C is not a simple process. One of the things I wanted to do as part
of the project of designing Parasol was to learn object-oriented programming.
When I started, my objects rarely used polymorphism. My type hierarchies
were shallow and disconnected. Most of my structures still looked like C struc-
tures, with entirely public members and no methods.
As I have written more and more code, the type hierarchies have grown

deeper. As I have modified programs I wrote early on, types that were originally
separate have been gathered into ever more inclusive arrangements. Now, most
types I introduce use polymorphism at least to some extent.
For anyone wishing to learn about object-oriented programming, I would say

look first to polymorphism. Whatever language you use, find out how to make
polymorphic objects and learn how to exploit the capability. My personal feeling
about OOP is that without polymorphism there is nothing that we haven’t been
able to do just fine with C.

Pointers to Objects

In C, pointers that point to distinct non-void types can only be converted by
an explicit cast. Parasol allows conversion of pointers in limited circumstances.
When you are converting from a pointer to a subtype to a pointer to any of its
base types you do not need a cast in Parasol.
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By using pointers in Parasol you can treat an object as if it had the type of
any of its base types. This is exactly how polymorphism is accomplished. When
dynamically allocating objects belonging to a subtype, you would typically store
the address into a pointer to some base type. In this way, code can be written
that works for all types derived from that base type.

Methods

You can define functions (called methods) inside the body of a structure or
union declaration. While they use the syntax of normal functions, there are
some subtle differences. There are three kinds of methods supported by Parasol:
normal , dynamic, and factory methods. Normal and dynamic methods operate
on an existing instance of the structure including the method while factory
methods are intended to create new instances of the structure.
For example:

inFile: ref stream; // declare a stream pointer
status: int;
buf: [80] char;

status = inFile read(&buf, sizeof buf);

In this code, the inFile object is being used. The read method is being
called to read data into a buffer. Notice that no punctuation occurs between
the inFile and read identifiers. I decided that using either a period or an
arrow might mislead the reader. With no punctuation it is a method call, not
a call through a member that happens to be a pointer to a function. I realize
that this is a small point, but that was my reasoning.
I decided that I would not distinguish between a call through a pointer or

through an object itself. In other words, the above statement could be written
as follows:

status = (*inFile) read(&buf, sizeof buf);

I decided that automatically stripping one level of indirection would not
cause any significant problems. Since pointers cannot have methods themselves,
the only way a method call could be valid would be if the object being referenced
was used instead. My experience of using the language is that blurring the
distinction between objects and pointers to objects is not a major source of
confusion.

Normal Methods

Unless you specify otherwise, a method will be defined to be normal. This
means that any calls to that method are bound at compile-time. For static
or automatic objects, compile-time binding is always possible since you know



196 The Journal of C Language Translation – December, 1991

exactly which type is being referenced. Normal methods are not polymorphic. If
you call a normal method through a pointer you will execute the method defined
for the exact type mentioned in the pointer. If the object being referenced has
its own version of the same method it will not be used.
Because calls are bound at compile-time, normal methods can be redefined

in a subtype without restriction.

Dynamic Methods

Dynamic methods are like normal methods, except that they are polymorphic.
For example:

write: dynamic (buf: ref, len: int) int =
{

...
}

This defines a write function, with two arguments. The dynamic keyword
indicates that this is a dynamic method. Dynamic methods are like virtual
functions in C++. Note that the type of the buf parameter is a pointer to no
specific type (i.e., a void pointer).
Dynamic methods work by using a tag pointer stored with each object.

When an object with a type containing dynamic methods is declared or allo-
cated, the tag pointer is stored into the object. The tag points to a dynamic
function vector. For each type with dynamic methods, a function vector is
created, with one function pointer to each dynamic method of the type.
When redefining a dynamic method in a subtype, you must use the same

number and type of arguments and the same return type. The method’s address
is stored in the corresponding vector entry of the subtype vector as the original
method’s address was in the base type vector.
When calling a dynamic method, the tag value of the object is used to locate

the dynamic function vector. In this way, the pointer type used to reference the
object determines the interface of the method, but the actual type of the object
determines which version of the method is actually called. Since all versions
of the method have the same interface, the call itself is nearly as efficient as a
normal function call.

Factory Methods

Factory methods are the third kind of function that can be declared in a struc-
ture type. They are somewhat different from other kinds of methods. Instead
of using the method call described above, you call a factory method for the type
itself. For example:
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stream: {
open: factory (name: ref char,

options: int) ref stream =
{ ... }

};

inFile = stream open("somefile", AR_READ);

This statement calls the factory method open. Most factory functions return
a pointer to their owning type. Factory methods mostly provide a convenient
means of defining a function that creates objects of the desired type.

self and super

Inside methods, two built-in variable names are predefined. The self keyword
is a pointer to the invoking object. For normal and dynamic methods, the
object mentioned in the method call is assigned to self by being passed as
a hidden argument. The super keyword is a pointer to the same object, but
with type of the direct supertype of the enclosing type. super is valuable when
recursively calling methods for the supertype, such as initializing an object
when it is created.

self is also defined for factory methods, but means something a little dif-
ferent. In a factory method, self is an automatic variable that can be used
like any other. (It was not passed to the function.) Typically, the first line of
a factory method allocates the space for the object and assigns its address to
self. self rarely appears in code explicitly. Any unqualified reference to a
member of the enclosing type is interpreted as a reference through self.

Bob Jervis authored the Wizard C compiler and was the chief architect for
Borland’s popular Turbo C compiler. He is now self-employed and is developing
software using Parasol. Bob can be reached at uunet!bjervis!rbj.

∞



20. Electronic Survey Number 10

Compiled by Rex Jaeschke

Introduction

Occasionally, I’ll be conducting polls via electronic mail and publishing the
results. (Those polled will also receive an E-mail report on the results.)
The following questions were posed to about 100 people, with 28 of them

responding. Since some vendors support more than one implementation, the
totals in some categories may exceed the number of respondents. Also, some re-
spondents did not answer all questions, or deemed them ‘not applicable.’ I have
attempted to eliminate redundancy in the answers by grouping like responses.
Some of the more interesting or different comments have been retained.

Compiler Response Files

Many implementations support a large set of command-line options. Some sys-
tems have severe limits on the maximum length of a command-line. As a result,
some compilers support response files from which they can read arbitrary long
command lines. Do you support such a notion and if so, what syntax do you
use?

• 7 – Provide support via a response file
• 3 – Provide support via an environment variable
• 12 – No support or handled by operating system method

• Comments:

1. The @name syntax is used. It can appear anywhere on the command
line. name is first searched for in the environment. If it is there, the
environment string is inserted into the command line at that point.
If name is not an environment variable, it is searched for as a file,
and the contents of the file are inserted into the command line at
that point. The environment variable approach is nice because it is
much faster than the file approach, and no cleanup is necessary.

2. The right place to get rid of the limit on argument size is in the
kernel. That’s where we are going to do this.

198
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3. Currently our system supports an environment variable that may
contain more “permanent” options but any remaining options must
be specified on the command line. Since length limitations usually
occur in specifying multiple source/object files on a command line
our implementation allows a file reference containing additional files
using @filename.

4. The -via command line options causes commands to be read from
that file as if they appeared on the command line. Also users can
have local configuration files that may contain command line options.

5. Our response file uses syntax similar to that of the command line
but only one control per line is permitted.

6. Our shell supports arbitrary length command lines. In addition,
the shell language allows copying a file into the command line. In
addition, every command line option is also available as a pragma
(and these can be included in a header).

7. We support response files using a prefix @ character. This is the
convention used by other applications on our system (inherited no
doubt from the DEC ancestry of the CP/M and MS-DOS systems).

8. @file1 means back-substitute the contents of file1 as if it were on
the command line. Such files can be nested arbitrarily deep, limited
only by memory availability.

9. There is no command line. Option settings are controlled via dialog
boxes and may also be adjusted by using pragmas.

Support for C++-style Comments

Do you support the C++ style of line-oriented comments? If so, how do you
handle the following fragment of code?

i = j; // some comment \
i++;

According to C’s phases of translation, backslash/new-lines are dealt with in
phase 2 while comments are handled in phase 3 which means the line containing
i++; would be treated as part of the preceding line’s comment. What would it
take to accommodate this comment style in the phases of translation such that
the two lines would be kept separate?

• 9 – Support // comments with i++; as part of comment

• 2 – Support // comments with i++; as as separate statement

• 11 – Don’t support // comments
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• Comments:

1. I believe this is a reasonable restriction. It is a silly construct (to
have a backslash/new-line on the end of a // comment) so there is
no point in making the compiler jump through hoops to handle it in
some “intelligent” way.

2. For both C and C++ compilers this is treated as two statements.
In my opinion this is preferable to the way that ANSI defines it.
Despite my opinion, in our next C compiler release the i++ line will
be treated as part of the preceding comment.

3. We initially implemented rules that ended the comment on the same
line in spite of the translation phases ordering. This was changed
later on as a result of test suite checking for this.

4. The C++ committee is so far begrudgingly accepting this so as not
to “mess up” the phases of translation.

5. To change it so that // comments are not continued by the \ would
be so ugly that I would not consider it as a solution at all.

6. One problem that is frequently overlooked with regard to // is that
Japanese programmers like to put wide characters into comments.
Some of these turn out to have byte sequences in them that “look
like” new-lines.

Subscripting Invalid Pointers

A common programming technique involves pretending arrays begin at sub-
script 1 instead of 0. This is achieved by writing something like the following:

int a[10], *p = &a[-1];

p[1] ≡ a[0]

Standard C declares this to be undefined behavior since p does not point into a
known object. Do you know of any systems where this will not work?

• 18 – Works on the systems I know of
• 1 – Can have problems on IBM System 38 and AS/400

• Comments:

1. The key is that pointer arithmetic silently wraps around (like inte-
gers) and that there is always a single, flat address space. If either
of these is not true, the above code can fail, even though for most
implementations, most of the time, it will work as intended.
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2. I detect and flag the out-of-bounds reference at compile-time but the
code will work anyway.

3. We haven’t implemented this yet but may give a compile-time diag-
nostic and a runtime error if access to a[i] is out of bounds.

4. We went over all this in X3J11 and agreed that this constraint was
necessary; the relaxation for &a[10] was a compromise that causes
many implementations to have to resort to a bit of game playing, but
we felt it was necessary and sufficient for simple array looping. Note
also that &a[-1] can overlap the data address space by an arbitrarily
large amount, depending on the type of an element of the array; this
is not true for &a[10], which requires only a single byte of address
space extension.

5. This will work but the debugger will not let you look at a[-1] and
if range-checking is enabled it will detect an error.

6. This particular example will work on Intel’s 80x86 segmented archi-
tecture. Even if a is another pointer and is assigned a malloced
pointer, and even if the pointer arithmetic wraps around, so that
p[0] has a higher address than p[1], the identity p[1] == a[0]
holds. However, consider the following DOS-specific example:

double far * a, huge * p;
a = malloc(10 * sizeof (double));
p = &a[-1];
p[1] ≡ a[0]?

We need to use double type to have something large enough to
allow for wrap-around to happen. In this case, a uses fast pointer
arithmetic that doesn’t compensate for wrap-around (that is, the
arithmetic is not normalized), but p uses huge pointer arithmetic
that does compensate. As a result, &a[-1] wraps, is assigned to p
and normalizes to some high address, and &p[1] != &a[0]. This is
a pretty contrived example, and relies on non-standard extensions.

7. &a[-1] may fail on an IBM AS/400 depending on where a is located
in storage and how big each element of a is. The AS/400 will not
allow an address to become negative and it does not wrap around to
the high end like many other chips do. The System 38 behaves in
the same manner.

STDC in Future Standard Revisions

Standard C defines STDC to be 1 if you are compiling in a strict standard-
conforming mode. However, it makes no reservation for future standard ver-
sions. And to complicate matters, some vendors are defining this macro to be
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0, 2, 3, etc., to indicate various levels of sub- or super-setting of Standard C. At
the last WG14 (ISO C) meeting in Tokyo in May, I indicated I would be intro-
ducing a proposal to specify further values. My proposal is that future revisions
of Standard C define STDC as a 4-digit integer matching the year in which
that revision was finally adopted. So assuming the revised ISO C standard de-
buts in 1993, STDC would be defined as 1993 for that version. Implementors
would be at liberty to use values less than 1989 for their own purposes allowing
us to also add 1989 for Level I conformance later if we so desired. Comments
please.

• 13 – Like the idea
• 5 – Don’t like the idea
• 5 – Sounds interesting but not sure
• Comments:

1. I believe the standards-making bodies should attempt to direct the
way non-conforming compilers use STDC by specifying more in-
formation on its usage (in the Future Language Directions section)
and making recommendations on quality of implementation issues in
the Rationale or some other appropriate forum.

2. I have no problem with branding successive standards with successive
values of STDC but see no particular value in using the year as the
value. There are obviously a few minor problems with this: What if
we come out with two standards in one year; why do we choose to use
the Western calendar for the year. It seems simpler and cleaner to
just bump up the value by 1 with each successive standard. I admit
to having absolutely zero sympathy for somebody who has already
assigned a value of 2 to STDC .

3. I think this is short sighted. If STDC is to pass information beyond
yes/no, use a character string and define a few cases. Then I would
not mind "1993". Type int is not a very flexible way for the compiler
to say what it does. On the other hand my suggestion requires
adding stuff to preprocessor constant expressions so that conditional
compilation can actually be done. Muddy waters!

4. A fundamental problem is that no standard can constrain what a
non-conforming implementation does.
The original intention was that STDC be predefined as 2 in the
next revision of the C standard; I see no need to deviate from that.
Vendors who have invented their own use for STDC should not be
allowed to constrain what the standard meaning is.

5. Sounds okay but ... what about an implementation that incorporates
all of ISO C except for the Japanese multibyte proposal? Are they
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1989? 1992? What if a later version of C removes some part of 1989
ANSI C but an implementation keeps that part as an extension?
1989 (because they support all of 1989)? or 1995 (because they
support all of it plus the extension)? Of course, NCEG will have
its own set of values. Will NCEG be set according to some year
or according to some value indicating what portions are supported
(i.e., floating-point extensions but not variable-length arrays).

6. The only practical use I’ve seen for STDC is to be able to write
code that works with old and new compilers. The question that is
asked is really, “Are prototypes supported and is const around?”
Since the ISO C addenda are mostly additional library functions,
I’m not sure that an updated STDC is needed. Moreover, the only
addendum that affects the language (new tokens) is such that having
a compile-time test for availability defeats the entire intent! (I can’t
see how something like

#if __STDC__ > 1989
main()
<:
:>

#else
main()
??<
??>

#endif

is at all likely!) Another drawback is that the simple test of today

#ifdef __STDC__

cannot be used once there are rules about the values. Code would
now have to protect itself further:

#if (__STDC__ - 0) == 1 || (__STDC__ - 0) >= 1989

Ugh! I’d hold off on any upgrading of STDC until there is a clear
need for this sort of distinction.

7. Your proposal would assure that no compiler could conform to both
the current standard and the revision. Probably a safe assumption
on general principles, but not something I’d like to have to get up at
an ISO C meeting and defend.
I think the whole idea of STDC was unsound from the beginning
and I don’t see any purpose being served by complicating it further.
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Defining Function-Like Macros Using a Com-
piler Option

Just about every implementation provides a mechanism for defining an object-
like macro on the compiler command-line. Does yours also allow you to define
a function-like macro in this way? Since such a macro definition may contain
almost arbitrary characters it is possible that some of them (e.g., < and >)
might be misinterpreted by the operating system’s command-line shell. Any
comments on the value of having this capability?

• 6 – Support this
• 18 – Do not support this
• Comments:

1. I can think up situations in which they might be useful, but since the
facility is most often used to choose conditional compilation paths it
does not seem to be necessary.

2. No customer has ever asked for it in the 6 years we’ve been shipping.

3. If somebody came up with a standard way of doing this we might
implement it, but it seems fairly unimportant to me.

4. Not yet, but maybe in the future.

5. Our C/C++ compilers support this. To get the equivalent of

#define f(x) ((x)+1)

we use either of the following:

-Df(x)=((x)+1)
-Df\(x\)=\(\(x\)+1\)

Naturally it is possible that special characters (in addition to ( and
)) will be (mis)interpreted by the UNIX shell and the user must take
care; but, of course, the same also applies to object-like macros.
This ability seems to be nice but really only marginally useful.

6. We accept macros of the form -Dmacro(a,b,c)=body. It is up to
the user to ensure that no conflicts with the current operating shell
occur and that the option winds up being parsed into a single argv
element.

7. The special character “problem” really isn’t one [in UNIX] as far as
I can tell; anything can be escaped or quoted to protect it from the
shell. [Ed: It certainly is a problem in a number of other popular
systems.]
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8. The syntax we use is -DM(a)=foo and the limitation is that no blanks
are allowed in the right-hand side.

9. Unlike object-like macros, which are good for entering configuration
parameters, function-like macros are too powerful to be defined sep-
arately from the source code.

10. We permit cc test.c "-Dg(x)=((x)*(x))". I can imagine that a
program-generating program might make use of the facility.

11. Our implementation allows the user to specify an arbitrary “prefix,”
which is simply source text that is automatically prepended to each
source file. The feature is intended to be used to specify #define,
#include, and #pragma directives, although no restrictions are en-
forced.

Default Value for Object-Like Macros

Defining an object-like macro using something like cc -dM or cc -DM causes
the macro M to be defined with a value of 1 on many implementations. Does it
do so on yours? If not, what value, if any, is assigned to M? If so, can the user
override this somehow to get M to be defined with no value?

• 19 – -DM defines the macro to 1 with -DM= assigning an empty string

• 1 – -DM defines the macro to 1 with -DM= not permitted

• 3 – -DM defines the macro as an empty string
• Comments:

1. As a user I would prefer the implementations treat -DM as #define
M. What use is there in providing an arbitrary value?

2. The compiler is never invoked with a command line, so this question
doesn’t apply. Via an interactive dialog box, the user may specify
an arbitrary “prefix,” containing, for example, a standard (unabbre-
viated) #define directive.

∞



21. ANSI C Interpretations Report

Jim Brodie
Motorola, Inc.
Tempe, Arizona

Abstract

This article examines X3J11’s responses to, and the issues surrounding, a
variety of Requests for Interpretation that have been addressed by X3J11,
the committee tasked with interpreting the American National Standard
for the C language.

In this article we continue our look at the answers to the Requests for
Interpretation that have been addressed by X3J11.

Accessing Objects

The first request for interpretation focuses on the rules concerning valid accesses
to data objects.
The rules that govern access to objects are defined in §3.3, Expressions.

They state:

“An object shall have its stored value accessed only by an lvalue
that has one of the following types:

• the declared type of the object,
• a qualified version of the declared type of the object,
• a type that is the signed or unsigned type corresponding to the
declared type of the object,

• a type that is the signed or unsigned type corresponding to a
qualified version of the declared type of the object,

• an aggregate or union type that includes one of the afore-
mentioned types among its members (including, recursively,
a member of a sub-aggregate or contained union), or

• a character type.”
The underlying theme of these rules is that a value stored in an object may

only be accessed through an lvalue of an appropriate type. For example, given
the declarations

206



ANSI C Interpretations Report – Brodie 207

double d = 3.0;
int i;
int *pi;

an attempt to access the value stored in the object associated with d, using

pi = (int *) &d;
i = *pi;

results in undefined behavior (for which the Standard imposes no requirements).
These rules also allow translator optimization to assume that only declared

objects with the target type of a pointer may be affected by a write through
that pointer. For example, after the declarations

short s1;
float *f;

and the code

/* arbitrary code setting the value in f */
s1 = 14;
*f = 3.2

the optimizer can safely assume that the value stored in the object associated
with s1 still has the value 14.
The catch in all of this is that, with the exception of char-based access3,

the rules depend on “the declared type of the object.”
The issue that the Request for Interpretation raises is “Do the rules apply

when there is no declared type of an object?” This occurs when the object
is created using calloc, malloc, or realloc. The committee’s response was
that these rules do apply for dynamically allocated objects as well as explicitly
declared objects.
In its response the committee notes that Standard wording does not explic-

itly address this additional case. However, the committee felt that the footnote
on the above list of ways you can access a value, which states

“The intent of this list is to specify those circumstances in which an
object may or may not be aliased.”

indicated clearly that the intent was to include all cases.
In addition to the above citation, the Standard states a consistent position

on limiting the way that values can be accessed. For example, in §3.3.2.3,
Structure and Union Members, the Standard states:

3The char-based access was grandfathered in the Standard because of the common practice
of viewing objects as a sequence of bytes.
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“... if a member of a union object is accessed after a value has
been stored in a different member of the object, the behavior is
implementation defined.”

This interpretation is an extrapolation of the wording in the Standard. How-
ever, it is consistent with the rest of the document and known existing practice.

Tags and Types

A request for interpretation asked, “Was it the committee’s intent that the two
types must have the same tag (or both lack tags) to be compatible?” The
author of the request used the following example:

/* Translation Unit #1 */

struct foo { int i; } x;

/* Translation Unit #2 */

extern struct bar { int i; } x;

He then asks “Should these be considered compatible?”
The committee’s response was that tags do not have to be the same for

structure, union, or enumeration types to be compatible in separate translation
units. In the example shown the two declarations are considered compatible.
To support this position the committee referenced §3.1.2.6, Compatible

Type and Composite Type, which states:

“... two structure, union, or enumeration types declared in separate
translation units are compatible if they have the same number of
members, the same member names, and compatible member types;
for two structures, the members shall be in the same order; for two
structures or unions, the bit-fields shall have the same widths; for
two enumerations, the members shall have the same values.”

This section indicates, by omission, that the tags are not part of the type
compatibility comparison.

Constant Expressions

The evaluation and exception handling of constant expressions was the topic of
the next Request for Interpretation.
The request noted two potentially contradictory Standard references. The

first, from §3.3, Expressions, states:



ANSI C Interpretations Report – Brodie 209

“If an exception occurs during the evaluation of an expression (that
is, if the result is not mathematically defined or not in the range of
representable values for the type), the behavior is undefined.”

The second statement from §3.4, Constant Expressions, states:

“Each constant expression shall evaluate to a constant that is in the
range of representable values for its type”

The request then asks, in light of these statements, how each of the following
should be handled:

INT_MAX + 2
INT_MAX + 2ul
(INT_MAX*4) / 4
enum { a = INT_MAX, b };

There are several parts to the answer for this Request for Interpretation.
The first is the observation that the statement, “Each constant expression

shall evaluate to a constant that is in the range of representable values for its
type” is a requirement placed upon a strictly conforming program and not a
requirement upon the translator. It is the responsibility of the programmer to
avoid writing a program that violates this constraint, rather than a statement
to translator writers that they must make the constant value map into a spe-
cific range of values. This is supported by the somewhat obtuse definition of
Constraints in §1.6, Definition of Terms, which states:

“Constraints – syntactic and semantic restrictions by which the ex-
position of language elements is to be interpreted.”

The next issue that must be considered when determining the rules for
constant expressions is whether or not sub-expressions are considered liable to
the same constraints as an entire expression.
The committee position is that the intent of the “representable” requirement

(from, “Each constant expression shall evaluate to a constant that is in the
range of representable values for its type.”) applies to each sub-expression of
the complete expression. Essentially, this position is based upon the fact that
each sub-expression is, itself, an expression. If this were not the position taken,
then the sub-expressions would have to be calculated using types with a larger
range of representable values and this is clearly not required by the Standard.
With this background, we can now answer the questions about the first three

expressions.

INT MAX + 2 is a constraint violation (the result is larger than can
be held in an int, which is the type used for the computation and
the result).
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INT MAX + 2ul is OK (the result can be represented as an unsigned
long, which is the type used for the computation and the result).
(INT MAX * 4) / 4 is a constraint violation (the intermediate value
is too large to be represented in an int).

The answer to the final example requires a little more information. In
§3.5.2.2, Enumeration Specifiers, the following constraint is established:

“The expression that defines the value of an enumeration constant
shall be an integral constant expression that has a value repre-
sentable as an int.”

In the Semantics portion of that section, the following rule is specified for
how the value of an enumeration constant is determined:

“... Each subsequent enumerator with no = defines its enumera-
tion constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant.”

These two items make it clear that in

enum { a = INT_MAX, b };

that the expression b would have the value INT MAX + 1. However, since this is
outside the range of values “representable as an int” this is a constraint error.

Allowable Domain Errors

The next Request for Interpretation asks:
“If sin(DBL MAX) results in errno being set to EDOM, is this [a] violation of

the standard?” This question is based on the statement in §4.5.1, Treatment
of Error Conditions, which states:

“For all functions, a domain error occurs if an input argument is
outside the domain over which the mathematical function is defined.
The description of each function lists any required domain errors;
an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of
the function.”

The issue centers around the limitations on what an implementation can
declare as domain errors for a function.
X3J11’s position was that this section does not allow an implementation

to set errno to EDOM for sin(DBL MAX). Since the mathematical function is
defined for this value the error would not be “consistent with the mathematical
definition of the function.” The footnote attached to the above reference in the
Standard gives a better feeling for what kind of flexibility is intended by these
words. The footnote says:
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“In an implementation that supports infinities, this allows infinity
as an argument to be a domain error if the mathematical domain of
the function does not include infinity”

It is interesting to note that while the standard prevents a conforming trans-
lator from generating code that will set errno to EDOM in this case, it does not
impose any restrictions on the accuracy of the resulting value. In this arena,
the accuracy of the results is left to the market forces and “quality of imple-
mentation.”

Questions about strtod

Another Request for Interpretation probes the requirements placed upon strtod
when dealing with unusual specifications of the value 0. The request asks:

“Assuming that 99999 is larger than DBL MAX 10 EXP, what is the
result of strtod("0.0e99999", &ptr)—is it 0.0, HUGE VAL, or un-
defined.”

The request cites several references and arguments for each possible inter-
pretation:
In §3.1.3.1, Floating Constants, the Standard states:

“The significand part is interpreted as a decimal rational number;
the digit sequence in the exponent part is interpreted as a deci-
mal integer. The exponent indicates the power of 10 by which the
significand part is to be scaled.”

The request notes that in this case 0.0e99999 means 0.0 times 10 to the
power 99999, which is still 0.
The second reference is §4.10.1.4, The strtod Function, which states:

“If the correct value is outside the range of representable values,
plus or minus HUGE VAL is returned (according to the sign of the
value), and the value of the macro ERANGE is stored in errno.”

The Request for Interpretation argues that

“Since the exponent is larger than DBL MAX 10 EXP, the value is out-
side the range of representable values (overflow). Therefore, return
HUGE VAL.”

The third reference is §2.2.4.2.2, Characteristics of Floating Types, which
describes the floating-point types. The number 0.0e99999, as written, is not
part of that model (it cannot be represented since the exponent is larger than
emax). Based upon this and §3.2.1.4, Floating Types, which states:
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“... if the value being converted is outside the range of values that
can be represented, the behavior is undefined.”

The Request for Interpretation argues:

“Therefore, since this number, as written, has no representation,
the behavior is undefined.”

After evaluating these arguments, the committee position was that the re-
sult of calling strtod("0.0e99999", &ptr) is exactly representable. The value
does lie within the range of representable values and can be represented exactly
as 0. Despite the way the value is specified in the C program source, the math-
ematical value is clear and therefore the arguments based on a value “outside
the range of values that can be represented” do not apply in this case.
This means that implementations have to perform a special case test for the

value 0.0 to ensure that it creates the correct internal floating-point represen-
tation, independent of the size of the exponent part of the constant.
The next request also examines the strtod function. It asks what first

appears to be a simple question:

“What is the result of strtod("100ergs", &ptr)? Is it 100.0 or is
it 0.0?

If you look at §4.10.1.4, The strtod Function, it states:

“The strtod function converts the initial portion of the string point-
ed to by nptr [the first argument to strtod] to double represen-
tation. First, it decomposes the input string into three parts: an
initial, possibly empty, sequence of white-space characters (as spec-
ified by the isspace function), a subject sequence resembling a
floating-point constant and a final string of one or more unrecog-
nized characters, ...”
“... The subject sequence is defined as the longest initial sub-
sequence of the input string, starting with the first non-white space
character, that is of the expected form.”

In this case, the longest initial sub-sequence of the expected form is "100",
therefore the value returned should be 100.
The confusion arose when the author of the request considered §4.9.6.2, The

fscanf Function, which describes the conversion specifiers:

“... e, f, g – Matches an optionally signed floating-point number,
whose format is the same as expected for the subject string of the
strtod function.”

Examples later in that section of the Standard show that "100ergs" fails
to match the %f specifier in an fscanf function call. The examples show that
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the 100e is consumed by the fscanf function, but since this is an invalid form
for a floating-point constant, the function fails.
The essential question is, “If the input string "100ergs" fails in fscanf,

should it also fail in strtod?” If the answer is yes, then the strtod function
should return 0 instead of 100. This is based on the statement in §4.10.1.4, The
strtod Function, which establishes:

“If no conversion could be performed, zero is returned.”

In reply to this Request for Interpretation the committee writes:

“strtod and fscanf are different—fscanf expects a sequence that
matches what works for strtod. fscanf can easily get into corners
that it can’t back out of, as it is constrained not to “leave unread”
more than one byte. On the other hand, strtod must do a reason-
able job with any input string.
Thus, fscanf(fp, "%f", &f) when handed "100ergs" on its

input stream will fail to convert, lose "100e", and leave "rgs"
unread (§4.9.6.2). In contrast, strtod("100ergs", &ptr) returns
100.0 and sets the pointer to point to the e character (§4.10.1.4).”

The key difference can be further explained in terms of the rules that are
used to establish what item is to be converted to a floating-point value. As
noted above, the strtod function identifies the item to convert using the rule:

“... The subject sequence is defined as the longest initial sub-
sequence of the input string, starting with the first non-white space
character, that is of the expected form.”

On the other hand, the fscanf function uses the following rule to select its
input item:

“An input item is defined as the longest matching sequence of input
characters”

In this case, the trailing e matches a potential floating-point number format
and is therefore included as part of the input item. It is only after the input
item is selected that the fscanf matching process is used to determine if the
input item is a valid format for a floating-point constant or only a prefix for
such a constant.

Jim Brodie is Chair of the ANSI C standards committee, X3J11, and a
Chief Software Engineer for Motorola, Inc. He has coauthored books with
P.J. Plauger and Tom Plum and is the Standards Editor for The Journal of
C Language Translation. Jim can be reached at (602) 897-4390 or brodie@ssdt-
tempe.sps.mot.com.
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Abstract

A subset of Standard C is presented together with a set of transformations
for taking Standard C into the subset. The intended purpose of the
subset is to enable a software vendor to distribute a C program in source
form without disclosing proprietary ideas that would normally be obvious
to someone reading the source. Subsidiary uses are an enhancement to
ANDF, the definition of some C semantics, a low-level target for language
processors, and a C compiler test generator.

Introduction

The distribution of software in source form is attractive from the viewpoint
of portability (standard library headers are target dependent) and user-chosen
application tailoring (implemented with #if). On the other hand availability of
source code normally reveals more proprietary information about the software
than the vendor would like. One solution is to mangle the source for human
readers without changing the meaning of the program. This paper presents
some largely untried ideas for creative mangling.
The idea of mangling source has been around a long time. The Stanford

Computer Center compressed Algol source to save space and card stock in the
metal file cabinet which held the run-time library. Randy Meyers tells me that
Digital distributed some of the PDP-11 operating system without comments
in MACRO assembler source. Jim Gimpel mentioned some distribution of ob-
scured Fortran. The C Shroud4 product is an existing example of a program to
obscure C source [3, 4].
This paper introduces a very small but complete subset of standard C [1].

The subset, a kind of opposite to C++, is an elaboration of the C Shroud
technology. The monogram for C++ could have been C� because it is a little
bit higher than C. I have therefore chosen the name C� for C with its structure
flattened. It is my intent that the name C� be generic in the sense that it can be

4C Shroud is a trademark of Gimpel Software.
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used for any language designed in the spirit of C�. C� can be compiled by any
standard-compliant compiler or alternatively by a (simpler) C� compiler. The
use of C� is as a target intermediate language. It can also be used to generate
a new kind of test for compilers.
The intent of flattening a C program down to C� is to obscure the engineering

decisions that went into the programwithout degrading the eventual executable.
The C� form of the source can then be safely used as a distribution medium. C�
is principally a post-preprocessor source and target language. A special hack is
added to allow the inclusion of standard library headers to be deferred, allowing
the #include to be passed into C�. All other preprocessing is completed prior
to flattening. C� therefore does not provide the capability for the user to make
build-time choices by setting -D flags for the compiler.
ANDF, standing for ‘Architecture Neutral Distribution Format’ is a com-

piler intermediate language with some special features to parameterize it rela-
tive to different target machines [2]. One of the requirements for ANDF was
security of proprietary engineering information. What was achieved is the pro-
tection naturally inherent in tree-structured compiler intermediate code (which
is to say, not much). To remedy this defect in ANDF, C� can be used as a
preprocessor for ANDF input to enhance the protection and make reverse engi-
neering more difficult. One should still not expect too much. While removal of
comments and renaming of variables is not mechanically reversible, much of the
structure of the program could be largely recovered from flow-graph analysis,
which is an inherent part of optimizing compilation.
A set of transformations from Standard C into C� is the principal contri-

bution of this paper. A well-engineered C program can be processed into C�
leaving an ugly but still standard compliant C program. Because the transfor-
mations introduce a large number of explicit gotos, the eventual compiler of C�
must have excellent flow analysis and optimization. There is the chance that
a compiler would be able to compile some program but not its flattened form.
That possibility reduces the utility of the idea proposed here and also motivates
fixing any errant compilers.
The unit of translation is the module. In its flattest form, the translated

module contains no comments and no pretty white space. One static variable
without initialization replaces all the uninitialized statics. Each function con-
tains the declaration of one local variable followed by a sequence of so-called
flat fragments. The flat fragments are position-independent, and therefore can
be sorted into an arbitrary order. The enabling technology of the transforma-
tions is a traditional front-end for C including scanner, preprocessor, parser,
and symbol table. The flattener itself would be about as complicated as a
straightforward C compiler. I have not implemented it. There probably exist
correct C programs that cannot be flattened, requiring some adjustments to
user source.
The order of presentation below of obscuring transformations is not the

algorithmic order of application.
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An Example

A hand-prepared before/after, C/C� example follows. As a courtesy to the
reader, white space has not been entirely suppressed. The after form shows
the result of a few of the obscurations. They are pretty horrible for the human
reader. C compilers, on the other hand, face this kind of stuff all the time. The
introduced typedef names below may force the programmer to change some
program names to avoid complaints from the mangler.

/* before scrambling */
# include <stddef.h>
int
main(int argc, char **argv) {

int i, j;
struct {

char a;
wchar_t b;

} c;
i = c.b = argc--;
{long j = 0;

while(--i) j++;
}
exit(0);

}

/* after scrambling */
typedef char T1;
typedef signed char T2;
typedef unsigned char T3;
typedef short T4;
typedef unsigned short T5;
typedef int T6;
typedef unsigned int T7;
typedef long T8;
typedef unsigned long T9;
typedef float TA;
typedef double TB;
typedef long double TC;
# include <stddef.h>
int
main(T6 L8F021812, T1 **LEDE011B8) {
T3 L[
3*sizeof(T6)
+sizeof(wchar_t)
+sizeof(T8)
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];
T7 L1001D4D1;
T3 *L19098AEB,*LDD3A3EF1,*LABA0B310;
goto LFDF1FE34;

L003A3F11:*(T6*)L= *(T6*)L-1;goto L1EC10566;
L00AF3F1B:*(T8*)LABA0B310=0;goto L003A3F11;
L1EC10566:if(*(T6*)L)goto L29887E12;else goto L320F832A;
L29887E12:*(T8*)LABA0B310= *(T8*)LABA0B310+1;goto L003A3F11;
L320F832A:exit(0);goto L6A6A1210;
L445AA12E:LDD3A3EF1=L19098AEB+sizeof(T6);goto L554A1101;
L54AEB1BB:L8F021812=L8F021812-1;goto L91123AE1;
L554A1101:*(wchar_t*)LDD3A3EF1=L8F021812;goto L7680D810;
L652DDE10:L19098AEB=L+L1001D4D1;goto L445AA12E;
L6A6A1210:return;
L7680D810:*(T6*)L= *(T7*)LDD3A3EF1;goto L54AEB1BB;
L91123AE1:LABA0B310=LDD3A3EF1+sizeof(T7);goto L00AF3F1B;
LFDF1FE34:L1001D4D1=2*sizeof(T6);goto L652DDE10;
}

The Header Hack

At the cost of losing the portability parameterization of standard library head-
ers, those headers can be expanded and their contents obscured along with the
rest of the program. This is the simplest way to handle headers. If preserv-
ing the #include directives into the C� target is deemed important, one can
imagine a two stage elaboration to the flattening process.
The insertions from the standard library headers are in fact macro definitions

and declarations of various kinds. These header contents are inserted as usual
into the C source file during the C� translation process, using a vanilla version
of the header. Any name defined in the inserted material is marked untouchable
(not be be mangled and not to be expanded). In the final target image, the
inserted material is deleted and the original #include directive restored in its
place. This hack will not work for headers in general because not all headers
are structured as simply as those in the standard library.

Boring Names and Expression

One of the tasks of the flattener is generating names that convey no information
to replace the names carefully crafted by the programmer. I propose names of
the form LXXXXXXXX where the Xs are random hexadecimal digits. They are
reasonably simple to generate using rand() and sprintf() with format %8X.
In C� generated names are used temporarily for variables but in the final output
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appear mostly as labels. The fixed-width format is used because it is convenient
in the final scrambling sort of executable statements.

Variable Renaming

Because of scoping and name spaces, one name can be used for more than one
thing in a C module. The symbol table is the mechanism that separates the uses
based on context. Suppose that every use of every name local to the module
(e.g. no externs) and not defined in a library header is consistently given a
unique LXXXXXXXX name. The resulting C program still has the same behavior
as before the substitution.
Automatic variable declarations in function scope or deeper may or may

not have initializers. If they do, the initializers can be dropped and replaced
with one or more explicit assignments just following the declarations. Now any
declaration in inner function scopes can be physically moved to the outermost
function scope without introducing any name conflicts or changing the meaning
of the program, or (excepting performance) changing its behavior. Other decla-
rations in local contexts are treated similarly. The declaration transformations
allows the simpler rule:

compound-statement:
{ statement-listopt }

dropping all local declarations, to be used except for function-definition itself.

Local Variable Clotting

The next set of transformations eliminates most declaration and expression
information. It is described now because it fits with the previous material but
in fact must be carried out later because declarations and expressions subject
to these transformations are generated in some later processing steps.
Each function scope contains zero or more variable declarations. Delete all

the variable declarations (except for formal parameters to the function, struc-
tures with bit-fields, and anything carrying the qualifier volatile). Replace
the declarations with a single declaration:

T3 L[n];

where n is the total accumulated size of the locals as expressed as a sum of
sizeof(type) primaries. Now replace every reference to a local variable with
an expression of the form

*(type *)(L + frame-offset + local-offset)

where L becomes a base address for the local frame, the first offset is a (perhaps
null) sum of sizeof operands giving the start of the variable in that frame, and
the second offset is another sum of sizeof operands or an offsetof operand
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giving the offset within the variable (for a structure member). The cast re-
stores the type information lost when the declaration was deleted. Avoiding
the generation of explicit constant values keeps the transformed code target
independent. It is reasonable to assume that L, being the first variable in a
frame, is aligned on an efficient memory boundary, as are all subsequent local
variables. The offsets take this into account by rounding up to the size of the
addressed data item as necessary.
Variables with volatile can be included in clotting if the whole array L is

given the attribute volatile. This may, however, cause optimizers real trouble.
Structure selection ‘.’ has disappeared except for bit-fields. All subscripts

a[e] are turned into their equivalent form *(a+(e)). All structure pointer
indirections e->n are turned into their equivalent *(*(e) + local-offset).

Expression Flattening

Turn all compound assignments into a pair of simple assignments
(i.e. ++ -- *= /= %= += -= <<= >>= &= ^= |=):

–before– –after–
++a (a+=1)
--a (a-=1)
a++ (p=&a, t=*p, *p+=1, t)
a-- (p=&a, t=*p, *p-=1, t)
a op= e (p=&a, *p=*p op e)

and transform expression statements not in the form:

;
p;
a = p;
a = q op r;

Here a is an identifier or dereferenced identifier; p is an identifier, constant or
function invocation; and q and r are identifiers. Transform these statements
into a sequence of expression statements in the above forms by introducing
temporary variables. All parameters for function invocations are therefore gen-
erated names, to which the actual values have just previously been assigned.
The consequence of these transformations is to replace all local names with

anonymous references to the local frame (except for formal parameters which
just get boring names), and to replace all expression statements with the equiv-
alent of compiler triples. The transformations never cause side-effect changes
because each side-effect causing construct is moved out of its containing expres-
sion into an assignment to a temporary variable.
Because expression flattening introduces new variables and variable clotting

introduces new expressions, these two processes are best carried out together.
The example starting this paper, in fact, left generated local variables unclotted,
which is a viable option.
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Static Variable Clotting

Uninitialized static variables are collected analogously to variables in a frame.
The clot is

static T3 S[n];

Initialized static variables are renamed LXXXXXXXX but otherwise left alone.
After these transformations only the external names and names from library

headers have their original mnemonic form.

Transforming the Function Body

A series of transformations is applied to the executable statements in the func-
tion body, outside in. In each case the outer construct is matched to a template
and replaced with a simpler, and perhaps more verbose, equivalent. The final
objective is to turn the entire function body into a non-nested list of fragments,
each having one of the following six forms where e is an expression:

LXXXXXXXX: goto LXXXXXXXX;
LXXXXXXXX: return;
LXXXXXXXX: return e;
LXXXXXXXX: e; goto LXXXXXXX;
LXXXXXXXX: if (e) goto LXXXXXXX; else goto LXXXXXXX;
LXXXXXXXX: switch (e) { transfer vector } goto LXXXXXXXX;

The transfer vector is a list labeled statements of the form
case e: goto LXXXXXXXX; followed by one more goto. See the transforma-
tions for switch below for more detail.
These constructs are called flat fragments. Part of the process is generating

label names. Since there is no value in obscuring the meaning of this paper
from the reader, the more readable names L00, L01, L02 ... will be used in
the examples instead of random values for LXXXXXXXX. The flat fragments are
position-independent within the function body, and therefore may be sorted
into a meaningless order before exposing them to examination. Since the labels
are randomly generated, the labels become a convenient key for the sort.
The first transformation is applied to the statement-list in the function body.

The statement list is transformed as follows:

–before– –after–
{local declarations; {local declarations; goto L00;
S0; L00:S0; goto L01;
S1; L01:S1; goto L02;
...
S3; L03:S3; goto L04;

L04:return;
} }
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This transformation may generate unreachable code; never mind—it will
be taken care of later. The generated return may be inconsistent with the
function itself. If the original program conforms to the standard, an inconsistent
return cannot be reached, so never mind. The resulting fragments are position-
independent but not necessarily flat because each of the statements S1, S2,...
S3 above may be complex. Thus there are some transformations left to do.
Each statement can be processed independently of its neighbors, which means
one at a time, or even in parallel.

Transforming Statements

The total set of statements that must be transformed is described in the C Stan-
dard [1]. Some of the transformations are purely textual; some require context
analysis (such as associating break with its correct span).

Transforming break Statements

The break statement requires special preprocessing before the other transfor-
mations are carried out. Suppose S5 is an iteration-statement or switch

L05: S5; goto L06;

and S5 contains one or more occurrences of break not nested within a deeper
iteration or switch. Then the text goto L06 is substituted for each such break.

Transforming Empty Statements

An empty expression statement is shortened:

–before– –after–
L07: ; goto L08; L07:goto L08;

Transforming goto Statements

A goto statement is shortened:

–before– –after–
L09: goto L0A; goto L0B; L09:goto L0A;

Transforming return Statements

A simple return without a return value drops the following goto to get into
flat form.

–before– –after–
L0C: return; goto L0D; L0C:return;
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If there is an expression, it may be separated out into an assignment that
can be flattened using the expression algorithm detailed above.

–before– –after–
L0E: return e; goto L0F; L0E:L10 = e; goto L11;

L11:return L10;

Transforming Labeled Statements

A labeled statement is flattened as follows:

–before– –after–
L12:L13:S6; goto L14; L12:goto L13;

L13:S6; goto L14;

Transforming Compound Statements

A compound statement has no declarations because of the initial flattening of
the declarations. The transformation removes the curly braces.

–before– –after–
L15:{S7; S8;...S9;} goto L16; L15:S7; goto L17;

L17:S8; goto L18;
...
L19:S9; goto L16;

Transforming switch Statements

Replace the switch expression with a generated variable and precede the switch
with a flat assignment of the expression to the generated variable. Then trans-
form the switch by inserting a new switch statement body just before the orig-
inal switch statement body. The new body is a transfer vector in the form of
a compound-statement listing all the original case labels (including default),
each followed by a goto to a new generated label, and one final unlabeled goto
to the label following the original switch body. The original switch body itself
gets a new generated label and each case label in it is replaced by the corre-
sponding generated label in the transfer vector. This restores the program to
flat form, although the generated assignment and substituted original switch
body now need to be flattened. As before, this may generate some unreachable
code. Never mind.
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–before– –after–
L20:switch(e) S10; goto L21; L20:L22 = e; goto L23;

L23:switch(L22) {
case C1: goto L24;
case C2: goto L25;
...

} goto L21;
L27:substituted S10; goto L21;

Alternatively, a switch statement can be mangled into a sequence of if state-
ments, but this places an unreasonable load on the optimizer of the eventual
compiler.

Transforming Iteration Statements

An iteration-statement has one of four forms: two for for and one each for do
and while. For all of them the continue statement must be processed as part
of the flattening transformation. The details of removing continue are slightly
different for the four cases.
The while statement is treated much as in C Shroud and also the standard.

–before– –after–
L28:while(e)S11;goto L29; L28:if(e)goto L2A;else goto L29;

L2A:S11;goto L28;

Any continue statements in S11 (and not in a more deeply nested iteration-
statement) are replaced with goto L28 either before or after the above trans-
formation.
The do statement is similar:

–before– –after–
L2B:do S12;while(e);goto L2C; L2B:S12; goto L2D;

L2D:if(e) goto L2B; else goto L2C;

The continue statements in S12 turn into goto L2D.
The for statement with a non-null limit expression e2 translates as follows.

Either e1 or e3 or both can be null.

–before– –after–
L2E:for(e1;e2;e3)S13; goto L2F; L2E:e1; goto L30;

L30:if(e2) goto L31; else goto L2F;
L31:S13; goto L32;
L32:e3; goto L30;

The continue statements in S13 (not in more deeply nested loops) turn
into goto L32.
The for statement with a null limit expression translates as follows. As

above, either e1 or e3 can be null.
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–before– –after–
L33:for(e1;;e3)S14;goto L34; L33:e1; goto L35;

L35:S14; goto L36;
L36:e3; goto L35;

The continue statements in S14 (and not in nested loops) turn into goto
L36.

Transforming if and else

There are two forms of the if statement, with and without else. The control
expression may be separated out to make them available to the expression
statement flattener.

–before– –after–
L37:if(e) S15; L37:L39 = e; goto L3A;
else S16; goto L38; L3A:if(L39) goto L3B; else goto L3C;

L3B:S15; goto L38;
L3C:S16; goto L38;

–before– –after–
L3D:if(e) S17; goto L3E; L3D:L3F=e; goto L40;

L40:if(L3F) goto L41; else goto L3E;
L41:S17; goto L3E;

Dead Code

Programs in C may have unavoidable dead code. For example, the statement
following a switch clause cannot be reached because the switch is an uncon-
ditional transfer. After the flattening transformations, this dead code, and
other dead code introduced by the transformations, shows up as labels that
are never referenced. The flat fragments starting with unreachable labels may
be deleted without changing the effect of the program (and perhaps avoiding
compiler-generated or lint-generated complaints). Mechanical means to recover
the original text may be defeated by such removal—something must be invented
to replace the removed stuff.
Similarly, arbitrary dead code can be inserted behind unreachable labels to

further obscure meaning.

Order of Flattening

Flattening takes place in a specific order because of the interdependence of the
steps.

1. Rename all but external names with LXXXXXXXX names.
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2. One function at a time:

(a) Replace all initializations with assignments.

(b) Move all declarations to the outermost function scope.

(c) Label the statements in the outermost statement list.

(d) Flatten one statement at a time, applying transformations until the
statement is a sequence of flat fragments.

(e) Remove dead code.

(f) Clot local variables and flatten expressions.

(g) Sort the flat fragments by leading label.

3. Clot uninitialized static variables.

Testing Compilers

Testing requires generating a test, running the test, and evaluating the result
against a criterion for correctness. The first and third steps are often labor
intensive, so much so that providing them is a reasonable commercial activity.
For compilers in particular, because there is no one correct output (object file),
the test criterion is correct behavior of the compiled program. Any substantial
testing of compilers, except for correctness and quality of error diagnosis, is
necessarily indirect.
Suppose some arbitrary C program compiles and runs, producing some ev-

idence of its behavior (trace, output, dump). The C� transformation may be
applied to the C program, the program compiled and run again. Now it is
required that the two outputs are identical. Thus the problem of generating a
test is reduced to selecting any existing C program. The problem of evaluat-
ing the test is reduced to a file comparison. When the flattener has optional
transformations, more than one test can be derived from each C program.
The assumption underlying this test strategy is that flattening causes the

compiler to take wildly different paths, and that comparing the results of those
paths allows the compiler to be tested against itself. It is also true that flattened
code would never be written by a programmer, so it tests otherwise unexercised
functionality in the compiler.
In fact each use of C� for making a distributable program falls into the above

pattern. Surely the engineer is going to test the transformed program against
the original. When a difference does appear it is not clear how one would go
about locating the problem.

Summary

Nearly every Standard C program can be transformed into an equivalent pro-
gram in C�. C� is a reasonable low-level intermediate language, obscures engi-
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neering design information, can be compiled by standard compliant compilers,
and provides a new kind of compiler testing.
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23. European C Conformance Testing

Neil Martin
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In June of this year we held our second Test Method Control Executive
(TCME) Meeting. The TCME is the committee tasked with controlling the
content of the test suite used in formal validation. For the European Testing
Services (CTS-C) this is the Plum Hall C Validation Suite. Participation in the
TCME is open to all, but in practice it is largely users of the CVS, certifica-
tion bodies, plus one or two others that participate. Decisions are made on a
consensus basis.
Last year we held our meeting in London, but this year we wished to get

input from the large number of CVS users in the U.S. The second TCME meet-
ing was therefore held in the historical setting of the Colonial Inn in Concord,
Mass. (Note some considered this to be a dangerous activity for the British as
there was once a tendency for Americans to shoot at us there.)
The meeting itself concentrated mainly on technical issues although, not

surprisingly, the issue of mutual recognition of certificates between the CTS-C
service and the forthcoming NIST service was raised. Mutual recognition of
certificates is now a big issue in Europe, Japan, and the USA, for the simple
reason that the absence of agreement creates trade barriers. This is true not
just in specific software related areas such as compiler and POSIX certification,
but across the board.
Within Europe the whole issue of trade barriers is high on the political

agenda with 1992 approaching rapidly. In fact, within Europe an organisation
known as the European Organisation for Testing and Certification (EOTC) has
been tasked with harmonising cross-border certificates of conformity. Although
most of the activity of EOTC relates to testing and certification, the actual goal
behind it all is the free trade of products. This relates as much to products
originating outside the EEC as within it.
The current status of EEC vs. USA C compiler certificates is that the

two parties agreed at a meeting in May, at NIST, to work towards mutual
recognition of certificates. This means that NIST and the CTS-C service need
to come up with a satisfactory means of demonstrating that conformance testing
with different test suites can give comparable results. Current timetables are
for a plan by August with implementation by October. The Japanese have now
chosen to follow the CTS-C approach and also use the Plum Hall test suite for
their testing service.
The rest of the meeting was dedicated to practical issues regarding the test

suite and the content of tests. Some of the issues raised sufficient doubt with
those present that a formal interpretation request will be made to X3J11. In
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general, vendors wanted as many test cases as possible both of a conformance
and of a quality nature. The compromise situation is that any new tests will
have a status of “pending” for one year to allow for debate and objection before
being included in the formal test process. It is hoped that this will give sufficient
time for vendors to implement any necessary changes.
One of the more interesting subjects discussed related to hardware architec-

tures that are accurate to only 6 digits (decimal). In some embedded systems
10 digits of accuracy cannot therefore be reasonably obtained (or possibly re-
quired). The test suite currently judges two floating-point numbers to be “suf-
ficiently equal” if their DBL DIG-1 decimal digits of representation are equal.
(This is referred to as one decimal digit of fuzz.) Two questions therefore arise:

1. Is one decimal digit of fuzz based on the compiler vendors’ value of
DBL DIG satisfactory?

2. Can a compiler based on an architecture that is only capable of working
to six significant digits be standard conforming?

Neil Martin is a Principal Software Engineer at BSI Quality Assurance
in Milton Keynes, United Kingdom. He may be reached electronically via
neil@bsiqa.uucp.

∞



24. Massively Parallel C: Architectures and Data
Distribution

Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121

Abstract

The usability of massively parallel systems to solve real problems is grow-
ing. One popular memory system design for massively parallel systems
distributes the memory with the processors. Mapping data structures,
such as arrays, onto distributed memories requires the individual elements
to be distributed, such that each processor owns part of the data struc-
tures. Careful data distribution can permit a processor to spend most of
its time referencing array elements that are located in its fast local mem-
ory. Since data distribution syntax does not exist in Standard C, linguistic
enhancements are needed to support the mapping of data structures onto
distributed memory systems. One possible approach is presented that
defines syntax for declaring arrays with regular data distributions across
the distributed memory.

Introduction

Amdahl’s Law tells us that program speedup is asymptotically limited to the
amount of time spent executing the sequential region. For example, if an al-
gorithm that requires 1000 time steps when executed sequentially permits 800
time steps to execute in parallel, the speed up approaches 5 times not 800 times.
However, the expense of 800 processors was required to achieve this speedup.
Explaining Amdahl’s Law this way is an oversimplification of the behavior of
real parallel programs. One problem with this explanation is that the efficiency
is relative to the performance of the program running on a single processor.
The single processor implementation may itself be inefficient relative to the
peak performance of the processor. In particular the parallel region, which we
assume can distribute work across all the processors, itself has overhead associ-
ated with it just to get additional processors synchronized and executing. Once
all the processors are executing, there is memory contention, network commu-
nication costs, and synchronization overhead. The effect of all this overhead is
that the maximum speedup is often less than the number of processors, and a
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point of diminishing returns is reached beyond which adding more processors
actually decreases performance. A reasonable conclusion from this is that a
parallel program should be designed to run on as many processors as possible,
but the implementation bottlenecks may force a change in algorithm or data
layout to achieve the best efficiency.
Much of the current parallelism focus is on hardware architecture, especially

for massively parallel systems. The belief is that the classic von Neumann
architectures are not capable of solving the problems of tomorrow, and that
massively parallel systems offer peak performance capability not available by
any other technology. Another belief is that RISC processors, improvements
in memory technology, and better communication networks have sufficiently
reduced the hardware impediments to usable parallel processing.
The National Science Foundation has identified Grand Challenge Problems

and U.S. taxpayers will fund attempts to conquer them. Grand Challenge
Problems attempt to solve compute intensive and heretofore unsolved problems
like long-range climate modeling, semiconductor and superconductor modeling,
quantum chromodynamics, and mapping the human genome. Any research
organization, wishing to receive funding for these problems must be willing to
include a massively parallel architecture in their approach.
Since my background is primarily in programming languages, my interest

lies in the language extensions and execution environments needed to support
these new architectures. Even if hardware technology has advanced sufficiently,
it is not at all clear that software is in the same position. What are the issues
that confront implementors defining a parallel programming model? Before
language extensions are explored, an understanding of massively parallel archi-
tectures and the current limitations of existing languages is necessary. Massively
parallel systems are often harder to program, run many applications slower than
sequential machines, and permit execution time errors that are not readily re-
producible.
When considering programming languages for massively parallel systems,

one can take the extreme position that additional compiler technology can ex-
tract parallelism from “dusty deck” programs and programmers can continue to
use existing sequential languages. Another extreme position is that new func-
tional languages will eliminate dependence problems and allow parallelism to
be expressed without side-effects (caused by assignments) getting in the way.
Both positions have merit but also leave scientists and engineers with either in-
adequate compilers or languages that are not based on standards. It is my belief
that near-term practical solutions must build on existing language standards
even if linguistic purity is compromised along the way. Most modern archi-
tectures were built knowing which programming languages are primarily used
by customers. Architectural features were added to enhance the performance
of these languages. Massively parallel systems are designed around available
hardware technology that offers very high peak performance, and the program-
ming languages are expected to catch up. Since language standards are a treaty
between the implementors and the programmers, it is essential to understand
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the needs of both. This is the first in a series of articles that outlines the issues
of extending C for massively parallel architectures.

Architectures

Access to the parallel capability of many existing parallel machines is through
automatic parallelization by the compilers, directives inserted by the program-
mer, and array syntax. Many supercomputers have vector registers that permit
a form of Single Instruction Multiple Data (SIMD) parallelism that is often re-
ferred to as vectorization. Array processors are another form of SIMD architec-
ture. More recently, arrays of Processing Elements (PEs) have been connected
by networks to create another kind of SIMD architecture. The term SIMD is
used to describe parallelism where a single operation is applied to many data
elements. A single instruction stream is combined with multiple data streams to
produce a result. SIMD offers a simpler synchronization mechanism because the
operations are kept in lock step by the instruction issue mechanism. Even with
multiple PEs there is no need for user-specified synchronization because every
PE is executing the same instruction at the same time. SIMD architectures map
nicely onto data parallel operations, like those defined by a Fortran-90 style of
array syntax, because multiple array elements are operated on in parallel.
Another kind of parallel architecture is called Multiple Instructions Multiple

Data (MIMD). These architectures use a network to combine several general
purpose processors that are capable of executing their own separate instructions
on their own data. In a MIMD machine, each PE must be capable of storing its
own instruction stream (or at least that part that it will execute) and contain
enough intelligence to decode and execute the instructions. MIMD architectures
require synchronization primitives to control communication and coordination
between the PEs. MIMD is more general but also more complicated. Sometimes
SIMD is compared to a puppet and MIMD to a robot.
There is another kind of architecture called Very Long Instruction Word

(VLIW). Execution of instructions occur in lock step, but each PE can execute
a different instruction. An instruction word carries many instructions. Because
there is one instruction for each PE, it is not necessary for each PE to be
capable of storing an instruction stream. This places VLIW somewhere in
between SIMD and MIMD.

Memory Systems

There are two common ways of arranging multiple processing elements P with
respect to memory modules M . The dancehall configuration, shown below, is
used for designs with shared memory architectures.
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P P P . . . P

NETWORK

M M M . . . M

This design permits every processor P to have equal access to every memory
module M . All of memory takes the same amount of time to reference no
matter which PE makes the reference. Another configuration is the boudoir
configuration, shown below, used with distributed memory architectures.

NETWORK

P P P . . . P
	 	 	 	 	 	 	
M M M . . . M

In this configuration, each processor P has direct access to to its own local
memory module M , but must send a request across the network in order to ref-
erence a remote processor’s memory. The amount of time it takes to reference
a remote memory location depends upon how far away it is. Implementations
may provide a memory latency tolerance feature that decreases the marginal
cost of referencing a block of remote memory locations. The most distinguish-
ing difference between shared memory designs and distributed memory designs
is the cost function associated with memory references. Fast access shared mem-
ory designs are complicated and expensive to build but provide a more general
programming model. Distributed memory machines force the programmer to
maximize the locality of data references in order to achieve high performance.
In order to maximizing locality, programmers must specify the data layout of
major data structures across the PEs. Specification of exact data layout is an
additional programming burden that programmers of massively parallel ma-
chines must endure. However, distributed memory machines are simpler and
cheaper to build, and provide good peak performance.
Again, one can take an extreme position that the compiler should optimize

for data locality, freeing the programmer from this burden. Since this kind of
compiler technology is not currently available, short term solutions are needed.
Traditionally, C programs have executed on sequential processors with mono-
lithic memories. Memory systems contained one or more monoliths and all data
objects were expected to fit entirely within one monolith, or possibly several
contiguous monoliths. The desire for higher peak performances is changing
these traditions.
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Interconnection Networks

Networks connect all the PEs together. Interconnection Networks are not new,
having been around at least as long as telephone systems. The network al-
lows PEs to communicate with each other. Networks provide data sharing
mechanisms, synchronizations, and useful primitives such as global broadcasts,
compare and swaps, and fetch and adds. The network is an integral part of
the computational model. The primary factors to consider when evaluating a
network are:

I/O Latency The time it takes for data to travel from one PE to another.

I/O Bandwidth The amount of traffic the network can handle.

Network Diameter the maximum of the shortest distances between all pairs
of processors.

Bisection width the number of wires that must be cut to separate the network
into two sub-networks of equal size.

The I/O constraints indicate how the network performs and how easily the
network can become flooded. It is important to get enough data in as short a
time as possible to keep the PEs busy. A small network diameter minimizes
the amount of time data spends traveling across the network. A network with
a small bisection width is cheaper to build but may also have a large diameter.
There are many trade-offs to evaluate when deciding which network is best.
An example of one popular network is the hypercube. The hypercube is a

versatile and efficient network that is a popular choice for multipurpose parallel
machines. A 1-D hypercube has two PEs and one connection, a 2-D hypercube
has four PEs and four connections, and a 3-D hypercube has eight PEs and
twelve connections. They can be represented pictorially as follows:
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In general an n-dimensional hypercube has 2n PEs and n×2n−1 edges. A
convenient PE numbering scheme is a cyclic Gray code because consecutive
numbers differ by a single bit. This allows all nearest neighbor PEs to also differ
by one bit. Traversing the network is accomplished by noting which bits differ,
and traveling in that direction. For example, one algorithm for traversing from
source PE[010] to destination PE[001] is accomplished by noting that the first
bit is 0 in both the source PE and the destination PE. This means no traversal
is necessary because both nodes already reside on the same plane of the first
dimension. Next, the second bit is examined, revealing a 1 in the source PE but
a 0 in the destination PE. A traversal is necessary when the bits differ. The
first traversal is from PE[010] to PE[000]. The third bit also differs between
the source and destination PEs. After the second traversal from PE[000] to
PE[001], the destination has been reached. Two traversals (commonly called
hops) were needed to reach the destination PE. The number of hops to reach
the destination PE is equal to the number of bit positions that differ between
the source and the destination. Three hops are required to travel from PE[010]
to PE[101] because all three bit positions differ.
The advantage of a hypercube is that it can efficiently simulate other net-

works of the same size because of its small diameter (log2N). Algorithms that
are efficient for those networks are automatically efficient on a hypercube. The
disadvantage of the hypercube is that the number of edges to each PE grows
exponentially with the size of the network. The cost of the network becomes
prohibitive as the size of the network increases because the bisection width
becomes large (N/2). To overcome this scaling problem, vendors choose hyper-
cube derivatives such as butterfly networks or tori. Understanding the network
is important to figuring out how to minimize the communication costs of a
parallel algorithm.

Data Distribution

A distributed memory architecture adds another layer to the layout of mem-
ory. Now the address of a data object consists of two pieces of information,
the PE number and the address on the PE. In some ways this is similar to
segmented architectures that require a segment number and an offset into the
segment. However, massively parallel systems must provide ways to distribute
the elements of an array across all the PEs that are working on a particular
solution. Many parallel solutions involve divide and conquer algorithms where
distributing the data is as important as distributing the work to achieve high
performance. Effective data distribution maximizes memory references that are
local to the PEs and minimizes global memory references across the network.
An effective data distribution method for one algorithm may not be effective for
another. Effective distribution methods also vary from one massively parallel
system to another because different interconnection networks have different op-
timal inter-processor communication schemes. Consider the following example:
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for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < N; k++)
c[i][j] += a[i][k] * b[k][j];

The two outer loops have N2 independent iterations that can execute in
parallel because each iteration is computing a different element of matrix c.
These loops are called the i and j loops because they are the loop control
variables. The method used to distribute matrices a, b, and c can have a signif-
icant effect on performance. Since the inner k loop references row i of matrix
a and column j of matrix b every time an element of matrix c is computed,
it is reasonable to keep row i of a on the same PE as column j of b to help
maximize locality. The memory latency tolerance feature can be used to fetch
remote rows and columns while each PE computes c[i][j] values with local
elements. However, different implementations may require different layouts to
maximize locality. Programmers need a convenient mechanism for controlling
the data layout of major data structures like matrices.
Traditional programming languages do not allow programmers to define the

distribution of data across a number of PEs. Much current research is devoted
to exploring ways to distribute the elements of arrays by extending Fortran-77
and Fortran-90. These extensions have some applicability to Standard C. The
distribution methods provide ways for specifying the distribution of different
dimensions and different elements. Consider the problem of trying to specify
that an array of N elements should be distributed across P processors such that
each processor contains a block of contiguous elements, and each block has the
same number of elements. One approach might be to introduce a new keyword,
block, that can be used in an array declaration as follows:

double a[N ; block];

The ; token terminates the size expression of the array declaration and
the block keyword specifies that each PE is allocated a block of contiguous
elements. The number of elements in each block is called the block-size and is
defined to be N/P where P is the number of PEs the data is spread across.
Consider the case where P = 4 and N = 8. The data is distributed as shown
in the following figure.

0 1 2 3 4 5 6 7
P0 P1 P2 P3

In this example the block-size is 2 with the first two elements residing on P0,
elements 2 and 3 residing on P1, elements 4 and 5 residing on P2, and the last
two elements residing on P3. Now consider the case where P = 4 and N = 11.

0 1 2 3 4 5 6 7 8 9 10
P0 P1 P2 P3
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Note that in this example, N is not evenly divisible by P . In this case the
ceiling of N/P is used to determine that the block-size is 3. Note that the last
PE does not contain as many elements as the others.
Permitting arbitrary block-sizes gives greater flexibility in data distribu-

tions. For example:

double a[N ; block(2)];

declares the block-size to be 2. If N = 32 and P = 4 then blocks of 2 elements
each cycle across the PEs in a round-robin fashion as follows:

Element: 1111111111222222222233
01234567890123456789012345678901

P: 00112233001122330011223300112233

There are 4 cycles through the PEs. A completely cyclic distribution is
possible by specifying a block-size of 1 as follows:

double a[32 ; block(1)];

Element: 1111111111222222222233
01234567890123456789012345678901

P: 01230123012301230123012301230123

Dimensional distributions are also defined for multidimensional arrays. Again
assume that P = 4 for the following example:

double x[8 ; block][8 ; block];

The distribution is pictorially represented as:

0 1 2 3 4 5 6 7
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7
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This can be conceptually viewed as assigning two PEs to each dimension
and 16 elements to each PE. Other reasonable two dimensional distributions
are:

double x[8 ; block(1)][8 ; block];

0 1 2 3 4 5 6 7
0 P0 P1
1 P2 P3
2 P0 P1
3 P2 P3
4 P0 P1
5 P2 P3
6 P0 P1
7 P2 P3

double x[8 ; block(2)][8 ; block(4)];

0 1 2 3 4 5 6 7
0

P0 P1
1
2

P2 P3
3
4

P0 P1
5
6

P2 P3
7

The last example declares block-sizes of 2 and 4 for the first and second
dimensions, respectively. This essentially creates tiles of 2×4 elements that are
cycled through all the PEs.
It is also possible to define the block-size to be the same as the number

of elements in that dimension. This means that all elements of that dimension
should be resident on a PE, and the PEs should be assigned to other dimensions.
The following example places a block of consecutive rows on each PE.

double x[8 ; block][8 ; block(8)];
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0 1 2 3 4 5 6 7
0

P0
1
2

P1
3
4

P2
5
6

P3
7

As a syntactic convenience the token : refers to a block-size that is the size
of the dimension. The following example places a column on a PE and cycles
through all the PEs.

double x[8 ; : ][8 ; block(1)];

0 1 2 3 4 5 6 7
0

1

2

3
P0 P1 P2 P3 P0 P1 P2 P3

4

5

6

7

Another data distribution consideration is the mapping of the PEs onto the
array dimensions. By convention, all of the 2-D examples above used P = 4 and
mapped 2 PEs onto each dimension (excluding the : dimensional distributions).
However, it might be desirable to weight the PE map such that one dimension
gets more PEs than another. For instance, if P = 8 then one dimension can be
assigned 4 PEs and the other 2 PEs. The following syntax could be used for
this purpose:

double y[4 ; 1:block][8 ; 2:block];
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The 1: and 2: specifiers are weights that indicate how the PEs should be
mapped onto the dimensions. The example above indicates that half as many
PEs should be assigned to dimension 1 than are assigned to dimension 2. The
distribution is pictorially represented as:

0 1 2 3 4 5 6 7
0

P0 P1 P2 P3
1
2

P4 P5 P6 P7
3

This distribution allows 4 elements to reside on every PE. A dimension
declared without a weight has a default weight of 1. If no weights are specified
in the declaration then an equal number of PEs are assigned to each dimension.
The following declarations show two arrays such that corresponding rows of

array a reside on the same PE as corresponding columns of array b.

double a[N ; block][N ; : ];
double b[N ; : ][N ; block];

The data distributions described above are called regular distributions be-
cause each PE is allocated the same number of blocks, and each block has the
same number of elements. A variety of regular distributions is available with
these syntactic extensions. For many problems these distributions are adequate
to maximize locality. Declarations of irregular distributions involve the speci-
fication of an additional level of indirection. Irregular distributions allow the
user to specify that certain PEs have more blocks than other PEs, or that
some blocks have more elements than others. They are useful for sparse array
applications but are not considered further in this article.

Array References

A reference to an array element involves calculating where the element resides,
and the offset into that PE. Assume that P = 4 in the following example:

double a[32 ; block];

for (i = 0; i < 32; i++)
a[i]++;

For this example the block-size is 8 because four equal sized blocks of 8 el-
ements each can reside on each PE. This means that a[0] resides on P0 with
offset 0 from the base address of a, and a[9] resides on P1 with offset 0 from
the base address of a. Every PE has its own base address of a and this base
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address must be at the same location on every PE. This makes the calculations
associated with array references more complicated. Traditionally, the array ref-
erence a[i] is computed by first adding i to the base address of a and then
referencing that memory location. With data distribution the calculation is
more involved. The index expression i contains two pieces of information, a
PE number and an offset in that dimension. Both pieces of information must
be extracted. First i must be divided by the block-size, i/8, to find the PE on
which the element resides. The offset is obtained by computing i%8 (because
8 is the block-size). It is apparent that having block-sizes and dimension sizes
that are powers of two reduces the divide to a right shift instruction and the
modulus to a bitwise-AND with a mask. The offset can now be added to the
base address of a on the identified PE to reference that memory location.
The following 2-D example is more complicated. Assume that P = 4.

double z[16 ; block(4)][8 ; block(2)];

Equal number of PEs are assigned to each dimension because no weights are
specified. The number of PEs assigned to dimension 1 is 2 and the block-size is
specified to be 4. The number of PEs assigned to dimension 2 is also 2 and the
block-size is specified to be 2. Given this information it is possible to compute
the PE number and offset for any z[i][j] expression.
The following program computes the PE number and an offset that can be

added to the base of any two-dimensional array that is distributed in a regular
way. The required input for each dimension is the the dimension size (extent),
number of PEs assigned to the dimension, and block-size for the dimension,
Since this program processes two dimensional arrays, six numbers must be spec-
ified on the command line. It is possible to see one-dimensional distributions
by entering 1 1 1 as the last three or first three numbers. The results for array
z in the example above are shown after the program is discussed. The main
function reads in the extents, block-size, and number of PEs, one-dimension
at a time. Next it calls functions to compute PE number and offset for every
element of the array.

#include <stdio.h>
#include <stdlib.h>
static const int rank = 2;

main(int argc, char **argv) {
int PE_num, PE_off, i, j, offset[2];
int PEs[2], bk_sz[2], extents[2], indices[2];
if (argc != 7) {

printf("Usage: %s extent[1] bk_sz[1] PE[1]"
" extent[2] bk_sz[2] PE[2]\n", *argv);

exit(1);
}
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for (i = rank-1; i >= 0; i--) {
extents[i] = atoi(*++argv);
bk_sz[i] = atoi(*++argv);
PEs[i] = atoi(*++argv);
offset[i] = (extents[i]+PEs[i]-1) / PEs[i];

}

for (j = 0; j < extents[0]; j++)
printf("%7d", j);

putchar(’\n’);

for (i = 0; i < extents[1]; i++) {
printf("%2d", i);
for (j = 0; j < extents[0]; j++) {

indices[1] = i; indices[0] = j;
PE_num = compute_PE(indices, PEs, bk_sz);
PE_off = compute_off(indices, PEs, bk_sz, offset);
printf(" (%1d,%2d)", PE_num, PE_off);

}
putchar(’\n’);

}
}

The compute PE function extracts the PE field from each index and com-
putes the PE number that the element resides on. This is done by dividing by
the block-size and ‘mod’-ing with the number of PEs assigned to that dimen-
sion. Finally, the contribution of this index to the PE number must be scaled
appropriately. The scaling is done by setting scale to 1 initially and accumu-
lating the partial products of the number of PEs assigned to each dimension.

compute_PE(int *ix, int *NP, int *bk_sz) {
int P = 0, scale = 1, i;

for (i = 0; i < rank; i++) {
P += (ix[i] / bk_sz[i] % NP[i]) * scale;
scale *= NP[i];

}
return P;

}

The function compute off computes the offset into the PE by performing
the following operations for each dimension. First, extract the block-size field
from the index with a modulus operation. Second, eliminate the block-size and
PE fields by dividing them out, leaving the cycle field. Third, scale the cycle
field by the block-size add it to the block-size, producing the contribution of
this index to the local offset. Finally, scale this dimension’s contribution to the
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local offset appropriately and add it to the accumulated offset.

compute_off(int *ix, int *NP, int *bk_sz, int *offset) {
int local_off = 0, scale = 1;
int bk, cyc, i;

for (i = 0; i < rank; i++) {
bk = ix[i] % bk_sz[i];
cyc = ix[i] / (bk_sz[i] * NP[i]);
local_off += (bk + cyc * bk_sz[i]) * scale;
scale *= offset[i];

}
return local_off;

}

The output for array z in the example above is obtained by running the
program as follows:

a.out 16 4 2 8 2 2

0 1 2 3 4 5 6 7
0 (0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (0, 3) (1, 2) (1, 3)
1 (0, 4) (0, 5) (1, 4) (1, 5) (0, 6) (0, 7) (1, 6) (1, 7)
2 (0, 8) (0, 9) (1, 8) (1, 9) (0,10) (0,11) (1,10) (1,11)
3 (0,12) (0,13) (1,12) (1,13) (0,14) (0,15) (1,14) (1,15)
4 (2, 0) (2, 1) (3, 0) (3, 1) (2, 2) (2, 3) (3, 2) (3, 3)
5 (2, 4) (2, 5) (3, 4) (3, 5) (2, 6) (2, 7) (3, 6) (3, 7)
6 (2, 8) (2, 9) (3, 8) (3, 9) (2,10) (2,11) (3,10) (3,11)
7 (2,12) (2,13) (3,12) (3,13) (2,14) (2,15) (3,14) (3,15)
8 (0,16) (0,17) (1,16) (1,17) (0,18) (0,19) (1,18) (1,19)
9 (0,20) (0,21) (1,20) (1,21) (0,22) (0,23) (1,22) (1,23)

10 (0,24) (0,25) (1,24) (1,25) (0,26) (0,27) (1,26) (1,27)
11 (0,28) (0,29) (1,28) (1,29) (0,30) (0,31) (1,30) (1,31)
12 (2,16) (2,17) (3,16) (3,17) (2,18) (2,19) (3,18) (3,19)
13 (2,20) (2,21) (3,20) (3,21) (2,22) (2,23) (3,22) (3,23)
14 (2,24) (2,25) (3,24) (3,25) (2,26) (2,27) (3,26) (3,27)
15 (2,28) (2,29) (3,28) (3,29) (2,30) (2,31) (3,30) (3,31)

The address of every element is printed as a pair (PE, offset) which can be
used to reference the memory location assigned to that element. It is possible
to see the 4× 2 tiling of elements on each PE.
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Conclusions

It is highly probable that sometime in the next decade massively parallel sys-
tems will be commonplace tools to most scientists and engineers. The architec-
tural simplicity of PEs with local memories connected by a network is a trade-off
that is being accepted over a simpler programming model. The programming
model proposed here imposes the burden of declaring data layout specifications
on programmers wishing to use data structures that span the entire network.
The data distribution program demonstrates how complicated it is to calculate
the PE number and the offset required to address elements of an arbitrary reg-
ular distribution. The expense associated with irregular distributions is even
higher. The complications associated with address computation exist because a
pointer value represents both a PE number and a location. Pointer arithmetic
requires knowledge of the block-size and the number of PEs over which the data
is distributed. Since array subscripting is defined in terms of pointer arithmetic
and pointer dereferencing, implementations might want to require dimension
sizes, block-sizes, and the number of PEs over which the data is distributed
to all be powers of two. Powers of two permit strength reduction optimiza-
tions to shifting and masking. Long term solutions may be found to ameliorate
this restrictive requirement but short term needs for performance may force
these power-of-two sizes for regularly distributed arrays. These trade-offs are
being explored in hopes of reaching the peak performances capable of solving
tomorrow’s problems with a usable programming model.
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25. C/C++ Compatibility

Paul Kohlmiller
Control Data Corporation

Abstract

This paper identifies more cases of ANSI C programs that cannot be
compiled with a C++ compiler. As with the last installment, each case
is documented with section numbers from the ANSI C Standard and the
Annotated C++ Reference Manual.

18. In C++ it is invalid for a function to promise to return a value and then
not deliver.

int f(int x) {
x++;

}

C++ does not allow this for two reasons. First, it very likely is an er-
ror. Second, making such code invalid allows the compiler to make some
assumptions. For example, the compiler might be able to assume that a
return value is actually an address returned in a register. The compiler
can generate code that assumes that the register contains an address and
not some garbage left from some previous code. Relevant standards ref-
erences: ANSI C §3.6.6.4, The return statement, and ARM §6.6.3, The
return statement.

ANSI C++ will retain the difference. ANSI C allows this but says the
behavior is undefined if you use the returned “value.” Writing code in
this way is to be discouraged.

19. C is happy to ignore some things that C++ considers to be in error. For
example, it does not make much sense to define a structure template and
give it a storage class specifier.

extern struct tag1 {
int j,k;

};

In C++, static and extern can only be applied to names of objects and
functions.

244
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Relevant standards references: ANSI C §3.5.1, Storage-Class Specifiers,
and ARM §7.1.1, Storage Class Specifiers.
ANSI C++ will keep this distinction because such code adds nothing to
the language. Also, a C++ class definition could include some member
functions that can be declared to be static. Imagine the confusion if
a class is declared static and one or more member functions are also
declared static.

20. When a C++ program defines a structure it is really defining a type for
the block that contains the definition. This means that a structure name
hides any other use of the name in the enclosing scope of the definition.
Consider the following program:

#include <stdio.h>
main() {

int x[89];
struct x { int a,b,c; };

printf("The size of x is %lu\n",
(unsigned long)sizeof(x));

/* size of the array in C */
/* size of the struct in C++ */

}

The program compiles without error for both ANSI C and for C++.
However, the answer that is printed out in each case is quite different.
The structure definition for x hides the definition of the array x in C++
but not in C.

Relevant standard sections: ANSI C §3.1.2.3, Names Spaces of Identifiers,
and ARM §9.1, Class Names.
ANSI C++ will certainly not change this. The use of structure tag names
as type names is essential to C++. This allows user-defined type names
to look like basic type names.

21. ANSI C and C++ will generally turn a “function returning type” to a
“pointer to function returning type.” Each language makes an exception
for the & operator. C++ goes on to make an exception for the function
call operator () too. This is not really an exception since the function
call operator obviously results in a function call and the function returns
something of the appropriate type. ANSI C makes an exception when the
function is the operand of the sizeof operator. The result is that trying
to find sizeof a function gives a diagnostic. C++ simply says that the
operand of the sizeof operator may not be a function. Therefore this
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code won’t work with either ANSI C or C++ but you may get different
diagnostics.

int g();
int f() {return sizeof(g);}

Relevant standards sections: ANSI C §3.2.2.1, Lvalues and Function Des-
ignators, and ARM §4.6, Pointer Conversions, and ARM §5.3.2, sizeof.

22. ANSI C allows for recursive calls to main. In §2.1.2.2.3 it describes how a
return from the initial call to main is supposed to behave just like a call
to exit. C++ explicitly disallows user calls to main.

#include <stdio.h>
#include <stdlib.h>

int i = 0;

main() {
i++;
printf("Invocation number %d\n",i);
if (i > 2) {

printf("Leaving main\n");
return 0;

}
main();
printf("Returned from main\n");
return 0;

}

C++ does not allow recursive calls to main because exiting from main
invokes the destructors for all initialized static objects. Also it allows an
implementation to implement main as something other than a function.

Relevant standards sections: ANSI C §2.1.2.2, Hosted Environment, and
ARM §3.4, Start and Termination.

23. In item 12 of my September article we saw that void * expressions on
the right-hand side of assignments were likely to cause problems. Here is
a particular case.

main() {
int *ptr;
#define NULL (void *)0;
ptr = NULL;

}
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This will work for ANSI C where (void *)0 is a typical definition for
NULL. However, C++ will complain about this.

Relevant standards references: ANSI C §3.2.2.3, Pointers, and ARM §4.6.
Certainly, a lot of people want to be able to write code like ptr = NULL.
To allow for this some C++ implementations define NULL to be 0 in their
C++ header files. This leads to header files with code like this:

#ifdef __cplusplus
#define NULL 0
#else
#define NULL (void *) 0;
#endif

There is some sentiment to allow code like ptr = (void *)0; However,
this opens up uses of void * on the right hand side of an assignment. Of
course, a compiler could special case zero cast to void * but then you
have type checking being done based on values not types. I doubt that
ANSI C++ will change this situation.
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26. Miscellanea

compiled by Rex Jaeschke

Problems in stdio.h

Each time I come across a new implementation I like to peruse the standard
headers. And over the years I’ve developed a small set of tests to check their
contents. In a recent investigation of 12 implementations that claim to either
be standard-conforming or very close to it, I found that half had a problem in
the way they declared the vprintf function family.
According to Standard C, the prototypes for these functions are as follows:

int vfprintf(FILE *stream, const char *format, va_list arg);
int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);

In the past, many implementors created their prototypes exactly the same
as they existed in the Standard. However, as I pointed out in a paper to
X3J11 some three or four years ago, all dummy argument identifier names
used in the Standard are non-conforming! (The essence of my paper
was distilled into a few examples and narrative and added to the Rationale.)
Essentially, these identifiers must either be omitted, spelled with a leading
underscore and a capital letter, or with two leading underscores. Of course,
this rule applies to all standard headers, not just stdio.h.
Standard headers may be included in any order and must not be interdepen-

dent. Specifically, stdio.h must compile whether or not stdarg.h is included.
This requires that the type name va list be defined prior to the three vprintf
prototypes being processed. A common “solution” is to have something like the
following piece of conditional code in both stdio.h and stdarg.h:

#ifndef _VA_LIST
#define _VA_LIST
typedef ... va_list;
#endif

Unfortunately, this is not permitted as the name va list simply is not
defined for stdio.h. That is, the following code is standard-conforming:

248
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#include <stdio.h>

void f()
{

int va_list[20];
}

Another common “solution” is to have stdio.h directly include stdarg.h
itself. This too is invalid since not only does it cause the name va list to be
defined subordinate to stdio.h, it also defines the names va arg, va end, and
va start, none of which is allowed to be defined when stdio.h is included.
The trick then is that you need something equivalent to va list defined in

stdio.h but it must be spelled in the implementor’s namespace. For example,
you could use something like:

typedef ... __va_list;

int vfprintf(FILE *, const char *, __va_list);
int vprintf(const char *, __va_list);
int vsprintf(char *, const char *, __va_list);

Rather than create this secret typedef name, you could simply hard-code
the actual type directly in the prototypes, as follows:

int vfprintf(FILE *, const char *, char *);
int vprintf(const char *, char *);
int vsprintf(char *, const char *, char *);

In the Standard, the synopsis for each of these functions indicates that in
order to call them, the user must include both of the headers stdarg.h and
stdio.h. However, from the implementor’s viewpoint, each header must stand
alone.
Apparently, X/Open is trying to get va list defined in stdio.h.

Calendar of Events

• January 19–22, 1992 Principles of Programming Languages – Loca-
tion: Albuquerque, NewMexico. This is the 19th Annual ACM SIGPLAN-
SIGACT symposium. For information, contact Andrew Appel at (609)
258-4627 or appel@princeton.edu.

• March 2–4, 1992 X3H5: Parallel Model and Language Bindings –
Location: New Jersey. For information, contact the Vice-Chair Walter G.
Rudd at (503) 737-5553, Fax: (503) 737-3014, or rudd@cs.orst.edu.

• March 8–13, 1992 ISO C SC22/WG21 C++ Meeting – Location:
London, England.
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• April 29–May 2, 1992Workshop on Parallel Compilation – Location:
Kingston, Ontario Canada. Researchers are invited to submit an extended
abstract of about 2,000 words by January 13th 1992. Invitations will be
made by February 15th, 1992, and final versions of papers will be required
by March 15th, 1992. Workshop Chair: David Skillicorn (613) 545 6050,
Fax: (613) 545 6453, or skill@qucis.queensu.ca.

• May 11–12, 1992 Numerical C Extensions Group (NCEG) Meet-
ing – Location: Salt Lake City, Utah, hosted by DECUS. For more in-
formation about NCEG, contact the Convenor Rex Jaeschke at (703)
860-0091 or rex@aussie.com, or Tom MacDonald at (612) 683-5818 or
tam@cray.com.

• May 13–15, 1992 Joint ISO C SC22/WG14 and X3J11 Meeting
– Location: Salt Lake City, Utah. WG14: Contact the US International
Rep. Rex Jaeschke at (703) 860-0091, or rex@aussie.com, or the Convenor
P.J. Plauger at pjp@plauger.com for information. X3J11: Address corre-
spondence or enquiries to the Vice Chair, Tom Plum, at (609) 927-3770
or uunet!plumhall!plum.

• May 24–26, 1992 X3H5: Parallel Model and Language Bindings –
Location: Ithaca, New York.

News, Products, and Services

• Gimpel Software is shipping V5.0 of their tools PC-Lint and FlexeLint.
New features include strong type checking of typedefs and control-flow
based analysis of variable initialization. (215) 584-4261.

• TheNumerical Algorithms Group, Inc. has released the world’s first
Fortran 90 compiler. What makes this interesting to the C community
is that the compiler, f90, is written in portable K&R C, and produces
K&R C as its output. At this time, f90 is available primarily on UNIX-
based workstations. NAG also sells a scientific C library containing
support for complex arithmetic, Fourier transformations, interpolation,
linear algebra, basic statistics, and regression analysis. For further infor-
mation, contact NAG at 1400 Opus Place, suite 200, Downers Grove, IL
60515-5702. Phone: (708) 971-2337, fax: (708) 971-2706.

• If you are at all interested in internationalization of software, you
might wish to pick up a copy of Digital Guide to Developing International
Software from Digital Equipment Corporation’s publishing group Digital
Press. While parts of the text talk about DEC’s proprietary systems
there is sufficient general information to make it of interest in non-DEC
environments.
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• Watcom of Canada is shipping V8.5 of their PC-based 16- and 32-bit
C compilers. They will also supply their 32-bit compiler to IBM for their
forthcoming OS/2 2.0 operating system. For more information, phone:
(800) 265-4555, fax: (519) 747-4971.

• SAS Institute has announced a Release 5.00 of the SAS/C compiler for
IBM mainframes running MVS and CMS. Contact them at SAS Campus
Drive, Cary, NC 27513, phone: (919) 677-8000.

• Quantitative Technology Corporation has announced the availability
of a C library for scientific and engineering applications. Both Mac
and PC versions are being shipped. Contact QTC at 8700 SW Creekside
Place, Beaverton, OR 97005. Phone: 503) 626-3081, fax: (503) 641-6012.

• Zortech, implementor’s of C and C++ compilers for PCs, are shipping
V3.0. Included in that release is support for numerous IEEE library
routines proposed by the Numerical C Users Group. The company
has also been acquired by Symantec. Contact them at 4-C Gill Street,
Woburn, MA 01801. Phone: (617) 937-0696, fax: (617) 937-0793.

• MetaWare is shipping a Windows development kit for their C compiler
family. (408) 429-6382, fax: (408) 429-9273.

• The C Standard is available in Australia as document AS 3955-1991. It
has been reproduced from ISO/IEC 9899:1990. Its title is Programming
languages – C and its number is ISBN 0 7262 6970 0. The Rationale is
not included. Cost is about A$122 (including handling and postage).

Standards Australia
80 Arthur Street

North Sydney, NSW 2060
Telex 26514

Phone (02) 746 4600
Fax (02) 959 3896
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